CHAPTER EIGHT

Schottky Transistor-Transistor logic (STTL)

Digital flectronics.

Introduction

Ch 8

<u>Transistor-Transistor</u> <u>Logic (TTL)</u>

Schottky Transistor-Transistor
Logic (STTL)

STTL is obtained by replacing the BJT with Schottky-clamped BJT (SBJT)

The primary advantage of SBJTs is their improved transient times since SBJT does NOT operate in saturation

Schottky-Barrier Diodes (SBD)

Schottky-barrier diode is made by adjoining **m**etal and **N**-type semiconductor (usually aluminum with N-type silicon)

Circuit symbol

Current voltage characteristics

 $V_{BC}(Sat) = 0.6V$ $I_{C} = \sigma\beta_{F}I_{B}$ $V_{CE}(Sat) = 0.2V$ $V_{BE}(Sat)$ = 0.8V $I_{C} = \sigma\beta_{F}I_{B}$ $V_{CE}(Sat) = 1$

Saturation Mode

The saturation can be <u>avoided</u> by limiting the forward-biased base-collector voltage to values <u>less</u> than 0.6 V

A serious problem that <u>limits</u> the switching speed of a BJT inverter as well the TTL gates is the time required to <u>remove</u> the enormous <u>stored charge</u> of the base of a <u>saturated BJT</u>.

Thus, the solution is to use BJTs that do not saturate.

The saturation mode is characterized by the forward biased B-C voltage

$$V_{BC}(sat) = V_{BE}(sat) - V_{CE}(sat)$$

= 0.8 - 0.2 = 0.6V

This is accomplished by placing SBD across the base and collector terminals of a BJT.

"Inverse-active" Schottky Mode:

Since V_{BC} is limited to $V_{SBD}(ON)=V_{BC}(HARD)=0.3V$ $V_{BC}(RA)=0.7V$

The SBJT can not operate in inverse active mode

However, for

$$V_{BE} < V_{BE}(FA), V_{BC} = V_{BC}(RS) = 0.3V$$

$$I_C' = -I_{SBD}$$

$$I_B' = I_{SBD}$$

$$I_B = I_C = I_E = 0$$

= 0.5V

Determine the logic swing of SBJT shown, assuming

Solution

When $V_{\rm I}$ is low, SBJT is cut-off $I_{RC} = I_{C} = 0$ $V_{OH} = V_{CC} = 5V$

 V_{OL} \rightarrow SBJT is "ON-HARD" mode,

 $V_{OL} = V_{CE}(HARD) = 0.5V$

 $V_{LS} = V_{OH} - V_{OL} = 4.5V$

Logic swing voltage=

 $R_C = 4k\Omega$ $R_{B1} = 2k\Omega$ ا Edge of conduction $V_{LS} = 4.5V$ Edge of hard mode $V_{OL} = V_{CE}(HARD)$

Schottky-Clamped TTL (SSTTL) 54S00/74S00

- BJTs are replaced with SBJTs (except for Q_{P2})
 - •The Darlington pair $(Q_{P1} \& Q_{P2})$ provides higher current to charge the load capacitance (Output low-high)
 - ${}^{ullet}Q_{P2}$ is a normal BJT because it can not saturate since

$$V_{CE,P2}(FA) = V_{CE,P1}(HARD) + V_{BE,P2}(FA)$$
$$V_{CE,P2}(FA) > V_{CE}(sat)$$

Schottky-Clamped TTL (SSTTL) 54S00/74S00

Advantages of Q_D , R_{BD} , R_{CD} :

- 1. The break point between V_{OH} and V_{OL} is eliminated $(Q_S,\,Q_O$ turn ON at the same time)
- Narrower transition width and better noise margin
- 3. Discharge the base charge of Q_0 during the low-high transition

 R_B , R_C have smaller values than in TTL gates to increase the fan-out (but also increase $P_{CC}(avg)$)

VTC of SSTTL

VTC of SSTTL

VTC of SSTTL

Fan-Out of SSTTL

When the output is high, $I_{\rm IL}$ is negligible. Therefore, Fan-out depends on the output low state

Input current low ITL

For the input low state, Q_I is sat and Q_S is cut-off

$$I_{IL} = I_{EI} = I_{RB} = \frac{V'_{CC} - V'_{BE,I}(HARD) - V_{CE,O}(HARD)}{R'_{B}}$$

Fan-Out of SSTTL

Fan-Out of SSTTL

Example

Determine the maximum fan-out of the SBJT circuit shown, assuming $\beta_F = 49$

Solution

$$I_{IL} = \frac{5 - 0.8 - 0.5}{2.8k} = 1.32mA$$

$$I_{RCD} = 1.2mA$$
 $I_{B.S} = 1.11mA$

$$I_{RS} = 1.11 mA$$

$$I_{C.S} = 4.11 mA$$

M = 149

Ch 8

HW #8:Solve Problems:8.1, 8.3, 8.8, and 8.19