Self Assessment B | 1 | Assume that magnesium consists of three isotopes having the abundance | |---|--| | _ | and masses given below. According to these data, calculate the average | | | atomic mass of magnesium. | | | isotope | abundance | mass | |---|--|--|--| | | ²⁴ ;Mg | 78.70% | 23 . 985 amu | | | ²⁵ Mg | 10.13% | 24 . 986 amu | | | ²⁶ Mg | 11.17% | 25.983 amu | | | O A) | 25 . 00 amu | | | | | 2 . 431 amu | | | | ○ c) | 2431 amu | | | | O D) | 24 . 31 amu | | | | ○ E) | None of the above. | | | 2 | 2 One mole of H ₂ | | | | | (A) | contains 6.0×10^{23} H | l atoms. | | | | contains 6.0×10^{23} H | t ₂ molecules. | | | O c) | contains 1 g of H_2 . | | | | O D) | is equivalent to 6.02 | $\times 10^{23}$ g of H ₂ . | | | ○ E) | None of the above. | | | 3 | How many ox | kygen atoms are prese | ent in 5.2 g of O ₂ ? | | | (A) | 5.4×10^{-25} atoms | | | | ○в) | $9.8 \times 10^{22} \text{ atoms}$ | | | | () c) | $2.0 \times 10^{23} \text{ atoms}$ | | | | O D) | $3.1 \times 10^{24} \text{ atoms}$ | | | | ○ E) | 6.3 x 10 ²⁴ atoms | | | 4 | | | resent in 57.7 g of potassium | | | hexafluoromanganate(IV), K ₂ MnF ₆ ? | | ? | | | , | 0.470 atoms | | | | _ , | 2.81 x 10 ²³ atoms | | | | | 0.233 atoms | | | | ∪ D) | 1 . 41 x 10 ²³ atoms | | | | ○ E) | 9.84×10^{23} atoms | |----|--|---| | 5 | ○ A)
○ B)
○ C)
○ D) | mass of 5.45 x 10^{-3} mol of glucose, $C_6 H_{12}O_6$? 0.158 g 982 g 3.31 x 10^4 g 0.982 g None of the above. | | 6 | ○ A)
○ B)
○ C)
○ D) | e mass percent of iron in $Fe_4[Fe(CN)_6]_3$. 45% Fe 26% Fe 33% Fe 58% Fe None of the above. | | 7 | 14.3% H, and of the composition (A) B) C) D) | CH_2 C_2H_4 CH_3 | | 8 | are PCI ₃ + H ₂ ○ A) ○ B) ○ C) | rrectly balanced, the correct coefficients for the equation below $0 - \cdots > H_3PO_3 + HCI$
1, 3, 1, 1
1, 3, 1, 3
1, 1, 1, 3
2, 3, 2, 3 | | 9 | chemical equal many grams (NaCl? | acid can be prepared using the reaction described by the ation: 2 NaCl(s) + $H_2SO_4(\mathbf{i})$ > 2 HCl(g) + $Na_2SO_4(\mathbf{s})$. How of HCl can be prepared from 393 g of H_2SO_4 and 4.00 moles of 4.00 g 2.49 g 146 g 284 g None of the above. | | 10 | shown in the the reaction r A) B) C) | percent yield of iron if 950 g of Fe_3O_4 underwent the reaction chemical equation below and 533 g of Fe was isolated from mixture. Fe_3O_4 (s) + 2 C(s)> 2 CO_2 (g) + 3 Fe (s) 25.9% 77.5% 56.1% None of the above. | ## **Self Assessment A** | 1 | Determine th | e number of moles of aluminum in 0.2154 kg of Al. | |---|-------------------------------|--| | | | 1.297×10^{23} mol 5.811×10^{3} mol | | | | 7.984 mol | | | | 0.1253 mol | | | | 7.984 x 10 ⁻³ mol | | 2 | How many ph | nosphorus atoms are there in 2.57 g of P? | | | (A) | 4.79×10^{25} | | | | 1.55×10^{24} | | | | 5.00×10^{22} | | | O D) | 8.30×10^{-2} | | | ○ E) | 2.57 | | 3 | How many gr
10-2 mol of C | rams of acetylsalicylic acid (aspirin, C_9H_8 O_4) are present in 1.32 x C_9H_8 O_4 ? | | | | 1.32 x 10 ⁻² g | | | • | 2.38 g | | | • | 180.2 g | | | | 7,33 x 10 ⁻⁵ g | | | , | None of the above. | | 4 | Calculate the $(NH_4 NO_3)$. | percent composition by mass of nitrogen in ammonium nitrate | | | O A) | 0.175% | | | ○ B) | 0.350% | | | ○ c) | 17.5% | | | O D) | 35.0% | | | ○ E) | 42.5% | | 5 | recently disco | with a percent composition by mass of 87.5% N and 12.5% H was overed. What is the empirical formula of this compound? $ {\sf NH}_2 \\ {\sf N}_2{\sf H}_3 $ | | | , | | 3 May | | ○ c)
○ d)
○ e) | | |---|--|--| | 6 | | 4
6
8 | | 7 | 45.6 g of cop
AgNO ₃ > (| f copper nitrate would be produced from the complete reaction of per, according to the chemical reaction shown below? Cu + 2 Cu(NO $_3$) $_2$ + 2 Ag 0.72 g 21.1 g 98.7 g 135 g 187 g | | 8 | treated with below, Ba(OF O A) O B) O C) O D) | number of moles of H_2O formed when 0.200 mole of Ba(OH) $_2$ is 0.500 mol of $HCIO_3$ according to the chemical reaction shown H) $_2$ + 2 $HCIO_3$ > Ba(CIO_3) $_2$ + 2 H_2O 1.00 mol 0.600 mol 0.500 mol 0.400 mol 0.200 mol | | 9 | Write the ballargest mass and 15.0 g of A) A) B) C) D) | roduced industrially from the reaction of nitrogen and hydrogen. anced chemical equation for this reaction, and determine the of NH ₃ that could be produced from the reaction of 105 g of N ₂ f H ₂ . 28.4 g 42.2 g 63.8 g 84.3 g 128 g |