

Ch. 10 - 5

Reactions in which

only bond breaking

Ch. 10 - 6

endothermic.

 $\Delta H^0 = +436 \text{ kJ/mol}$

 $\Delta H^0 = +243 \text{ kJ/mol}$

The energies required to break covalent bonds homolytically a homolytic bond dissociatio energies, and they are usuall abbreviated by the symbol DF	K nre called n y f °		ond Homo (DH°) at Bond Broker H–H F–F Cl–Cl Br–Br I–I	blytic Dissocia 25°C kJ/mol 436 159 243 193 151	ation Ch. 10 - 8
 Single-Bond Homolytic Dissociation Energies (DH°) at 25°C 	ation	 Single-B Energies 	ond Homo (DH°) at	olytic Dissocia 25°C	ation
Bond Broken kJ/mol		Bond Broken	kJ/mol	Bond Broken	kJ/mol
H–F 570		H₃C–H	440		
H–Cl 432		H ₃ C–F	461		
H–Br 366		H₃C–Cl	352		
H–I 298		H ₃ C–Br	293	H ₃ C–OH	387
		H ₃ C–I	240	H ₃ C–OCH ₃	348
	Ch. 10 - 9				Ch. 10 - 10
 Single-Bond Homolytic Dissociation Energies (DH°) at 25°C 	ation	♦ Single-B Energies	ond Homo s (DH°) at	olytic Dissocia 25°C	ation
Bond Broken kJ/mol Bond Broken	kJ/mol	Bond Broken	kJ/mol	Bond Broken	kJ/mol
Cl 354 Br	294	H	423	H	369
\rightarrow Cl 355 \rightarrow Br	298	— н	413	Н	465
		Н	400	Ph—H	474
Cl 349	292	Ph H	375	HC≡C—Н	547
`	Ch. 10 - 11				Ch. 10 - 12

 Alkanes react with molecular halogens to produce alkyl halides by a substitution reaction called radical halogenation

R-H + Ya	heat	R-Y + H-Y
	or light (hv)	

3A. Multiple Halogen Substitution

3B. Lack of Chlorine Selectivity

- Chlorination of most higher alkanes gives a mixture of isomeric monochloro products as well as more highly halogenated compounds
 - Chlorine is relatively *unselective;* it does not discriminate greatly among the different types of hydrogen atoms (primary, secondary, and tertiary) in an alkane

Ch. 10 - 21

Ch. 10 - 19

 Because alkane chlorinations usually yield a complex mixture of products, they are not useful as synthetic methods when the goal is preparation of a specific alkyl chloride

Ch. 10 - 22

 An exception is the halogenation of an alkane (or cycloalkane) whose hydrogen atoms *are all equivalent*. [Equivalent hydrogen atoms are defined as those which on replacement by some other group (e.g., chlorine) yield the same compound.]

 Bromine is generally less reactive toward alkanes than chlorine, and bromine is *more selective* in the site of attack when it does react

 (3) Chain termination Free radical reactions cannot be completed without chain termination All radicals are quenched in this step Radical reactions usually provide mixture of many different products Synthesis of CH₃Cl or CCl₄ is possible using different amounts of reactants (CH₄ and Cl₂). Ch. 10-31 	e.g.: $CH_{4} (large excess) + Cl_{2}$ $hv \qquad CH_{3}Cl (mainly)$ $CH_{4} + Cl_{2} (large excess)$ $hv \qquad CCl_{4} (mainly)$ CH_{10-32}
5. Chlorination of Methane: Energy Changes \Rightarrow Chain initiation Step 1 $CI \longrightarrow 2 CI \cdot (DH^{\circ} = 243) \Delta H^{\circ} = +243 \text{ kJ/mol}$	
Ch. 10 - 33	Ch. 10 - 34
	* The addition of the chain-propagation steps yields the overall equation for the chlorination of methane $H_{3}C-H + Q + Q + Q + Q + Q + Q + Q + Q + Q + $

Τ

<equation-block><section-header><equation-block><equation-block><equation-block><text></text></equation-block></equation-block></equation-block></section-header></equation-block>	 CH₄ + Cl₂ → CH₃Cl + HCl 2 mol of the products are formed from the same number of moles of the reactants Thus the number of translational degrees of freedom available to products and reactants is the same CH₃Cl is a tetrahedral molecule like CH₄, and HCl is a diatomic molecule like Cl₂ This means that vibrational and rotational degrees of freedom available to products and reactants should also be approximately the same
$CH_4 + CI_2 \rightarrow CH_3CI + HCI$ $\Rightarrow \Delta S^o = +2.8 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Rightarrow \text{ At room temperature (298 \text{ K}) the } T\Delta S^o \text{ term is } 0.8 \text{ kJ mol}^{-1}$ $\Rightarrow \Delta H^o = -101 \text{ kJ mol}^{-1}$ $\Rightarrow \Delta G^o = -102 \text{ kJ mol}^{-1}$ Ch. 10 - 39	5B. <u>Activation Energies</u> • A low energy of activation means a reaction will take place rapidly; a high energy of activation means that a reaction will take place slowly Chain initiation Step 1 $Cl_2 \rightarrow 2 Cl^{\circ}$ $E_{act} = +243 \text{ kJ/mol}$ Chain propagation Step 2 $Cl^{\circ} + CH_4 \rightarrow HCl + CH_3^{\circ}$ $E_{act} = +16 \text{ kJ/mol}$ Step 3 $Cl^{\circ} + Cl_2 \rightarrow CH_3Cl + Cl^{\circ}$ $E_{act} = ~8 \text{ kJ/mol}$ Ch. 10 - 40
Settimates of energies of activation (1) Any reaction in which bonds are broken will have an energy of activation greater than zero. This will be true even if a stronger bond is formed and the reaction is exothermic. The reason: Bond formation and bond breaking do not occur simultaneously in the transition state. Bond formation lags behind, and its energy is not all available for bond breaking	★ Estimates of energies of activation (2) Activation energies of endothermic reactions that involve both bond formation and bond rupture will be greater than the heat of reaction, ΔH^o H ₃ C-H + Cl· → ·CH ₃ + H-Cl (DH ^o = 440) ΔH^o = +8 kJ/mol (DH ^o = 432) E _{act} = +16 kJ/mol H ₃ C-H + Br· → ·CH ₃ + H-Br (DH ^o = 440) ΔH^o = +74 kJ/mol (DH ^o = 366) E _{act} = +78 kJ/mol Ch. 10 - 42

 Estimates of energies of activation

 (4) The energy of activation for a gasphase reaction in which small radicals combine to form molecules is usually zero

- Estimates of energies of activation
 - (3) The energy of activation of a gasphase reaction where bonds are broken homolytically but no bonds are formed is equal to ΔH^{o}

5C. <u>Reaction of Methane with Other</u> <u>Halogens</u>

FLUORINATION

	∆ <i>H^o</i> (kJ/mol)	<i>E_{act}</i> (kJ/mol)
Chain initiation		
$F_2 \rightarrow 2 F^{\bullet}$	+159	+159
Chain propagation		
$F^{\bullet} + CH_4 \rightarrow HF + {}^{\bullet}CH_3$	-130	+5.0
${}^{\bullet}\text{CH}_3 + \text{F}_2 \rightarrow \text{CH}_3\text{F} + \text{F}^{\bullet}$	-302	small
Overall $\Delta H^o =$	-432	Ch. 10 - 46

CHLORINATION			
	∆ <i>H[°]</i> (kJ/mol)	<i>E_{act}</i> (kJ/mol)	
Chain initiation			
$\text{Cl}_2 \rightarrow 2 \text{ Cl}$ •	+243	+243	
Chain propagation			
$Cl^{\bullet} + CH_4 \to HCl + {}^{\bullet}CH_3$	+8	+16	
${}^{\bullet}\mathrm{CH}_3 + \mathrm{Cl}_2 \rightarrow \mathrm{CH}_3\mathrm{Cl} + \mathrm{Cl}{}^{\bullet}$	-109	small	
Overall $\Delta H^o =$	-101		
		Ch. 10 - 47	

BROMINATION			
	∆ <i>H[°]</i> (kJ/mol)	<i>E_{act}</i> (kJ/mol)	
Chain initiation			
$Br_2 \rightarrow 2 Br^{\bullet}$	+193	+193	
Chain propagation			
$Br^{\bullet} + CH_4 \to HBr + {}^{\bullet}CH_3$	+74	+78	
${}^{\bullet}\mathrm{CH}_3 + \mathrm{Br}_2 \to \mathrm{CH}_3\mathrm{Br} + \mathrm{Br} {}^{\bullet}$	-100	small	
Overall $\Delta H^o =$	-26		

Ch. 10 - 53

Ch. 10 - 54

\bigcirc END OF CHAPTER 10 \bigcirc

Ch. 10 - 73