Self Assessment B

edit this page

This assignment is due on January 27 2012, 12:45 PM EST.

Question 1

An endothermic process

A) raises the temperature of one gram of a substance by one degree Celcius.

B) takes in heat from the surroundings.

 \bigcirc C) increases the acidity of the surroundings.

D) gives off heat to the surroundings.

E) releases carbon dioxide into the surroundings.

Question 2

The chemical equation describing the conversion of SO₂ into SO₃ is shown below. Calculate Δ H^o when 89.6 g of SO₂ is converted into SO₃.

SO₂(g) + ¹/₂O₂(g) ----> SO₃(g) ΔH^o_{rxn} = -99.1 kJ **A**) -69.3 kJ **B**) -139 kJ **C**) 69.3 kJ **D**) 139 kJ **E**) -111 kJ

Question 3

How much energy in calories is required to heat 25.0 g of platinum (specific heat capacity = 0.032 cal/g.K) from 24.5 °C to 75.0 °C?

A) 48 cal
B) 20. cal
C) 80 cal
D) 40. cal
E) None of the above.

Question 4

If a substance has a specific heat capacity of 1.0 J/g-^oC and a density of 2.0 g/mL, how much energy would be required to raise the temperature of 100 mL of the substance from 25 to 45 °C?

A) 0.20 kJ
 B) 2.0 kJ
 C) 4 kJ

D) 8 kJ

Question 5

A 0.468-g sample of pentane (C_5H_{12}) was burned in a bomb calorimeter. The temperature of the calorimeter and the 1.00 kg of water rose from 20.45 to 23.65 °C. The specific heat capacity of the calorimeter is 2.21 kJ/ °C, and the specific heat capacity of water is 4.184 J/g-°C. What is the heat of combustion of one mole of $C_5 H_{12}$?

(**A**) -7.07 x 10³ kJ/mol

B) -2.05 kJ/mol

C) -3.16 x 10³kJ/mol

D) 1.34 x 10⁴ kJ/mol

E) 3.16 x 10³ kJ/mol

Question 6

Calculate the standard heat of formation of carbon disulfide (CS₂) from its elements, C(s) + 2 S(s) ----> CS₂(I), given that:

 $C(s) + O_2(g) ----> CO_2(g), \Delta H = -393.5 \text{ kJ};$

 $S(s) + O_2(g) ----> SO_2(g), \Delta H = -296.8 \text{ kJ}; \text{ and}$

 $CS_{2}(I) + 3 O_{2}(g) ----> CO_{2}(g) + 2 SO_{2}(g), \Delta H = -1076.8 \text{ kJ}.$ A) -1767.1 kJ B) -386.5 kJ C) 89.7 kJ D) 386.5 kJ E) None of the above

Question 7

For which of the substances below is $\Delta H^{o}_{f} = 0$? **A**) $O_{2}(g)$ **B**) $N_{2}(I)$ **C**) Na(g)