Chemistry, 10th Edition

General Chemistry 107: 1 &5 Taught by Abdullah Saleh

Switch Book | Go to Another Course or Section

Home Assignments Announcements Roster Gradebook Online Tutor Resources Course Management

Results for ch6-B

Your Assignment Results

You received 0 out of 10 possible points (not including any ungraded questions). Your final grade is 0 %

Question		Possible Points	Your Score
1.	An endothermic process	1	0
	 raises the temperature of one gram of a substance by one degree Celcius. 		-
	Correct answer: () takes in heat from the surroundings.		
	 increases the acidity of the surroundings. 		
	gives off heat to the surroundings.		
	releases carbon dioxide into the surroundings.		
2.	The chemical equation describing the conversion of SO_2 into SO_3 is shown below. Calculate ΔH^o when 89.6	1	0
	g of SO_2 is converted into SO_3 .		
	$SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g) \Delta H_{con} = -99.1 \text{ kJ}$		
	○ -69.3 kJ		
	Correct answer: -139 kJ		
	○ 69.3 kJ		
	○ 139 kJ		
	○ -111 kJ		
2	How much energy in calories is required to heat 25.0 g of platinum (specific heat capacity = 0.032 cal/g.K)	1	0
3.	from 24.5 °C to 75.0 °C?	1	U
	O 20. cal		
	○ 80 cal		
	Correct answer: 0 40. cal		
	None of the above.		
4.	If a substance has a specific heat capacity of 1.0 J/g \circ C and a density of 2.0 g/mL, how much energy would be	1	0
	required to raise the temperature of 100 mL of the substance from 25 to 45 °C?		
	○ 0.20 kJ		
	O 2.0 kJ		
	Correct answer: 0 4 kJ		
	○ 8 kJ		
5.	A 0.468-g sample of pentane (C_5H_{12}) was burned in a bomb calorimeter. The temperature of the calorimeter and the 1.00 kg of water rose from 20.45 to 23.65 °C. The specific heat capacity of the calorimeter is 2.21 kJ/	1	0
	°C, and the specific heat capacity of water is 4.184 J/g °C. What is the heat of combustion of one mole of C ₅		
	H ₁₂ ?		
	○ -7.07 x 10 ³ kJ/mol		
	Correct answer: 0 -3.16 x 10 ³ kJ/mol		
	1.34 x 10 ⁴ kJ/mol		
	3.16 x 10 ³ kJ/mol		
6.	Calculate the standard heat of formation of carbon disulfide (CS_2) from its elements, $C(s) + 2 S(s) \longrightarrow CS_2(I)$, given that:	1	0
	$C(s) + O_2(g)> CO_2(g)$, $\Delta H = -393.5 \text{ kJ}$;		
	$S(s) + O_2(g)> SO_2(g)$, $\Delta H = -296.8$ kJ; and		
	$CS_2(I) + 3 O_2(g)> CO_2(g) + 2 SO_2(g), \Delta H = -1076.8 \text{ kJ}.$		
	○ -1767.1 kJ		
	○ -386.5 kJ		
	Correct answer: 89.7 kJ		

		○ 386.5 kJ			
		None of the above			
7.	For which of the	substances below is $_{\Delta}\text{Ho}_{_{\mathbf{f}}}$ = 0?	1	0	
	Correct answer:	O ₂ (g)			
		○ N ₂ (I)			
		○ Na(g)			
		○ Xe(I)			
		Aand B			
8.	To which of the following reactions occurring a 25 °C does the symbol $_{\Delta}$ Ho $_{f}$ [H $_{2}$ O(I)] apply?			0	
		$\bigcirc H_2O(I) \longrightarrow 2 H(g) + O(g)$			
		$\bigcirc 2 H(g) + O(g) \longrightarrow H_2O(I)$			
		$H_2(I) + \frac{1}{2}O_2(I)> H_2O(I)$			
	Correct answer:	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(I)$			
		$\bigcirc H_2O(g) \longrightarrow H_2O(I)$			
9.	The heat of solution of KCl is 17.2 kJ/mol, and the combined heats of hydration of one mole of gaseous chloride ions and one mole of gaseous potassium ions is -698 kJ. What is the lattice energy of potassium chloride?				
		○ -681 kJ/mol			
	Correct answer:	715 kJ/mol			
		○ -715 kJ/mol			
		○ -332 kJ/mol			
		○ 681 kJ/mol			
10.		rands in volume from 2.0 L to 24.5 L at constant temperature. Calculate the work done by the against a constant pressure of 5 atm. 112.5 J	1	0	
		1.24 x 10 ⁴ J			
	Correct answer:	○ -1.14 x 10 ⁴ J			
		O 113 J			
		1.14 x 10 ⁴ J			

< go back to assignments

© 2009 McGraw-Hill Higher Education Site Map

Any use is subject to the Terms of Use and Privacy Notice, McGraw-Hill Higher Education is one of the many fine business of The McGraw-Hill Companies,

Contact Us