Question		Possible Poir			
1.	Which of the following compounds has the lowest entropy at 25 °C?				
	C	CH ₃ OH(l)			
	C	CO(g)			
	Correct answer:	MgCO ₃ (s)			
	C	H ₂ O(1)			
	C	H ₂ O(g)			
2.	Which of the following substances has the greatest entropy per mole?				
	0	$O_2(g)$			
	C	N ₂ (g)			
	C	CO(g)			
	C	CO ₂ (g)			
	Correct answer:	$C_4H_{10}(g)$			
3.	3. Without consulting entropy tables, predict the sign of ΔS for the following process:				
	Correct answer: \square	$\Delta S < 0$			
		AS > 0			
		AS = 0			
	n n	More information is needed to make a reasonable prediction			
4.	Using the data belo	we calculate ΔS^{o}_{reg} for the following reaction:			
	$4 \operatorname{Cr}(s) + 3 \operatorname{O}_2(g)> 2 \operatorname{Cr}_2O_3(s).$				
		Substance ΔS , J/K·mol			
		$O_2(g) = 205.138$			
		$Cr_2O_3(s) = 81.2$			
	C	548.1 J/K			
	C	147.7 J/K			
	C	-147.7 J/K			
	Correct answer:	-548.1 J/K			
	C	None of the above.			
5.	5. In 1774 Joseph Priestly prepared oxygen by heating mercury(II) oxide according to the reaction He $\frac{1}{2}O_2(g)$, for which $\Delta H^\circ = 90.84$ kJ/mol and $\Delta S^\circ = 108$ J/K.mol. Which of the following statements is reaction?				
		The reaction is spontaneous only at low temperatures.			

	C	The reaction is spontaneous a	t all temper	atures.		
	C	ΔG° becomes less favorable a	s temperatu	ire increases.		
	Correct answer:	The reaction is spontaneous o	nly at high	temperatures.		
	C	The reaction is at equilibrium	at 25 °C an	d 1 atm pressure.		
6.	Is H ₂ O ₂ (g) stable?	For the reaction H ₂ O ₂ (g)	> H ₂ O(I) +	1/2 O ₂ (g), ΔH° = -106 kJ/mol; ΔS° = 58 J/K.		
	Correct answer:	No.				
	0	Yes, if the temperature is low	enough.			
	C	Yes, if the rate of decomposit	ion is low.			
	C	Yes, if the O-O bond energy i	s greater th	an the O-H bond energy.		
	C	Yes, under all conditions.				
7.	The signs of ΔH° , Δ	$S^{\circ}, \Delta G^{\circ}$ for the vaporization	of water a	t 50 °C are		
	Correct answer:	positive, positive, and positive	e.			
	0	negative, negative, and negati	ve.			
		positive, negative, and positiv	e.			
	C	positive, positive, and negativ	re.			
	C	More information would have	e to be give	n to answer the question.		
8.	Use the following d	the following data to calculate ΔG° at 298 K for the combustion of propane: $C_3H_8(g) + 5 O_2(g)> 3 CO_2(g) + 4$				
	()		Substance	$e \Delta G^{o}_{f} kJ/mol$		
			$C_3H_8(g)$	-23.0		
			$O_2(g)$	-394.6		
			$H_2O(1)$	-237.2		
	C	2109.6 kJ/mol	2 ()			
	C	608.8 kJ/mol				
	C	-608.8 kJ/mol				
	Correct answer: 🚺	-2109.6 kJ/mol				
	C	None of the above.				
9.	The heat of vaporiz	ation of 1-pentanol is 55.5 k	J/mol, and	its entropy of vaporization is 148 J/K•mol. What is the		
		point of 1-pentanol?				
	Correct answer:	100 C				

C 375 °C

	C	0 °C				
		25 %				
10.	Calculate ΔG° for th	the dissociation of HF in H ₂ O at 25 °C. [K _a of HF = 6.9 x 10 ⁻⁴ at 25 °C].				
		-18 kJ				
	•	7.83 kJ				
		-7.83				
	0	1.51 kJ				
	Correct answer: 🚺	18 kJ				
11.	1. Spontaneous reactions occur in one direction only and are not spontaneously reversable in the opposite direction					
	Correct answer: 💟	True				
	C	False				
12.	2. What is the best way to predict whether a reaction will be spontaneous?					
		Energy changes in a system				
	C	Entropy				
	Correct answer: 🚺	Both entropy and change in enthalpy				
	C	none of the above				
13.	13. The greater the number of microstates the less likely the possibility of a spontaneous reaction.					
		True				
	Correct answer: 🚺	False				
14.	14. Which statement is true concerning entropy?					
		An exothermic process results in a decrease in the entropy of the surroundings.				
	Correct answer:	An exothermic process transfers heat from system to surroundings.				
	0	An endothermic process absorbs heat from within the system.				
		An endothermic process increases the entropy of the surroundings.				
15.	If the change in free	e energy is less than zero then				
	Correct answer: 🌅	the reaction is spontaneous in the forward direction.				
	0	the reaction is non-spontaneous or spontaneous in the opposite direction.				
	0	the system is in equilibrium.				
	C	none of the above.				