Self Assessment B

Question 1

A chemical reaction is at equilibrium when

- A) the concentrations of reactants is equal to the concentrations of products
- **B**) the limiting reagent has been completely depleted
- **C**) the rate of the forward reaction equals the rate of the reverse reaction

D) A and B.

Question 2

What is the correct equilibrium constant expression for the following reaction? $2 \text{ NO}_2(g) \leftrightarrow 2 \text{ NO}(g) + O_2(g)$ **A**) $K_{eq} = [O_2]^2 [NO] / [NO_2]^2$

B) $K_{eq} = [O_2][NO]^2/[NO_2]^2$

C) $K_{eq} = [NO_2]^2 / [NO]^2 [O_2]$

D) $K_{eq} = [NO_2]^2 / [NO] [O_2]^2$

E) None of the above

Question 3

The equilibrium constant for the reaction $2 \text{ NH}_3(g) \rightarrow N_2(g) + 3 \text{ H}_2(g)$ is 3×10^{-3} at some temperature. What is K_{eq} for the reaction 0.5 $N_2(g) + 1.5 \text{ H}_2(g) \leftrightarrow \text{NH}_3(g)$ at the same temperature?

- **A**) 0.003
- **B**) 0.05
- C) 18
- **D**) 20

Question 4

Consider the reaction that describes the Haber process for the production of ammonia (NH₃): N₂(g) + 3 H₂(g) \leftrightarrow 2 NH₃(g) for which K_c at 300°C is 9.5. Calculate K_p for this reaction at 300 °C.

A) $K_p = 4.3 \times 10^{-3}$ **B)** $K_p = 9.5$

C) $K_p = 2.1 \times 10^4$

D) $K_p = 1.6 \times 10^{-2}$

Question 5

For the reaction $H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$, $K_c = 12.3$ at some temperature T. If $[H_2] = [I_2] = [HI] = 3.21 \times 10^{-3} M$ at that temperature, which one of the following statements is true?

- A) The concentration of HI will rise as the system approaches equilibrium
- **B**) The system is at equilibrium, so the concentrations will not change
- C) The concentrations of H_2 and I_2 will increase as the system approaches equilibrium
- **D**) The concentrations of H₂ and HI will decrease as the system approaches equilibrium
- **E**) Not enough information is given to answer the question

Question 6

 K_c for the reaction 2 NH₃(g) \leftrightarrow N₂(g) + 3 H₂(g) is 3 x 10⁻³ at some temperature. A 1.0 L mixture containing 1.0 mol of NH₃, 0.50 mol of N₂, and 0.15 mol of H₂ is prepared at this temperature When equilibrium is reached,

- \square A) there will be more N₂ and H₂ present
- **B**) there will be more NH₃ present
- **C**) there will be less N_2 but more H_2 present.
- **D**) there will be less NH_3 and less N_2 present
- E) No shift will occur

Question 7

If the equilibrium constant for the reaction $PCl_5 \leftrightarrow PCl_3 + Cl_2$ is 1.0, how many moles of PCl_5 must be placed into one liter of solution in order to obtain 0.50 mol of PCl_3 when the system reaches equilibrium?

- **A**) 0.25
- **B**) 0.50
- **C**) 0.75
- **D**) 1.00

Question 8

When the reaction $CH_3CI + OH^- \leftrightarrow CH_3OH + CI^-$ is started with 0.1 mol of CH_3CI and 0.2 mol of OH^- , 0.03 mol of CH_3OH is present when the system reaches equilibrium. Calculate the equilibrium constant for the reaction.

- **A**) 0.18
- **B**) 0.08
- C) 0.0009
- **D**) 0.30

Question 9

At some temperature, K_c for the reaction $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$ is 0.020. If 0.10 mol of PCl_5 and 0.20 mol of PCl_3 are added to a 1-L flask, what will be the Cl_2 concentration when equilibrium is reached? (A) 0.020 M

B) 8.7 x 10⁻³ M

- **C**) 0.0052 M
- **D**) 0.12 M

Question 10

Consider the following reaction: $H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$ for which, at some temperature, $K_c = 4.0$. When the reaction is started with equimolar quantities of H_2 and I_2 and equilibrium is reached, 0.20 mol of HI is present. How much H_2 was used to start the reaction?

A) 0.10 mol

B) 0.23 mol

C O 0.20 mol

D) 4.0 mol