Qu	estion 1
The	equilibrium constant K_{eq} for a certain reaction will change if changes. A) pressure
	B) time
	C) volume
	D) temperature
	E) reactant concentrations
O	action 2
	estion 2
(1) 2	at is the relationship of the equilibrium constants for the following two reactions? $2 \text{ NO}_2(g) \leftrightarrow \text{N}_2\text{O}_4(g)$;
(2) 1	$N_2O_4(g) \leftrightarrow 2 \ NO_2(g)$ A) K_{eq} of reaction (1) is the reciprocal of K_{eq} of reaction (2).
	B) K_{eq} of reaction (2) is the reciprocal of K_{eq} of reaction (1)
	C) K_{eq} of reaction (2) is the receptoral of R_{eq} of reaction (2)
	D) Answers A and B are both correct
	E) There is no relationship between the K_{eq} s of these reactions
	b) There is no relationship between the Keqs of these reactions
Qu	estion 3
	estion 3 at is the correct equilibrium constant expression for the following reaction? $2 \text{ Cu(s)} + \text{O}_2(g) \rightarrow 2 \text{ CuO(s)}$ A) $K_{eq} = 1/[O_2]^2$
	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + $O_2(g) \rightarrow 2$ CuO(s)
Wha	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + O ₂ (g) \rightarrow 2 CuO(s) A) $K_{eq} = 1/[O_2]^2$
Wha	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + O ₂ (g) \rightarrow 2 CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$
Wha	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + O ₂ (g) \rightarrow 2 CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$
Wha	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + O ₂ (g) \rightarrow 2 CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$ D) $K_{eq} = [O_2]$
Wha	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + $O_2(g) \rightarrow 2$ CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$
What Control of the C	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + O ₂ (g) \rightarrow 2 CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$
What Con	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + $O_2(g) \rightarrow 2$ CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$
What Con	at is the correct equilibrium constant expression for the following reaction? $2 \text{ Cu}(s) + O_2(g) \rightarrow 2 \text{ CuO}(s)$ A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$ estion 4 Issider the reaction: $2 \text{ SO}_2(g) + O_2(g) \leftrightarrow 2 \text{ SO}_3(g)$. If, at equilibrium at a certain temperature, $[SO_2] = 1.50$ $O_2] = 0.120 \text{ M}$, and $[SO_3] = 1.25 \text{ M}$, what is the value of the equilibrium constant?
What Con	at is the correct equilibrium constant expression for the following reaction? $2 \text{ Cu(s)} + O_2(g) \rightarrow 2 \text{ CuO(s)}$ A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [\text{CuO}]^2/[\text{Cu}]^2$ C) $K_{eq} = [\text{CuO}]^2/[\text{Cu}]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$ estion 4 Is sider the reaction: $2 \text{ SO}_2(g) + O_2(g) \leftrightarrow 2 \text{ SO}_3(g)$. If, at equilibrium at a certain temperature, $[\text{SO}_2] = 1.50 \text{ O}_2] = 0.120 \text{ M}$, and $[\text{SO}_3] = 1.25 \text{ M}$, what is the value of the equilibrium constant?
What Con	at is the correct equilibrium constant expression for the following reaction? $2 \text{ Cu(s)} + \text{O}_2(g) \rightarrow 2 \text{ CuO(s)}$ A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [\text{CuO}]^2/[\text{Cu}]^2$ C) $K_{eq} = [\text{CuO}]^2/[\text{Cu}]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$ estion 4 sider the reaction: $2 \text{ SO}_2(g) + \text{O}_2(g) \leftrightarrow 2 \text{ SO}_3(g)$. If, at equilibrium at a certain temperature, $[\text{SO}_2] = 1.50 \text{ O}_2] = 0.120 \text{ M}$, and $[\text{SO}_3] = 1.25 \text{ M}$, what is the value of the equilibrium constant? A) 5.79 B) 6.94
What Con	at is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + $O_2(g) \rightarrow 2$ CuO(s) A) $K_{eq} = 1/[O_2]^2$ B) $K_{eq} = [CuO]^2/[Cu]^2$ C) $K_{eq} = [CuO]^2/[Cu]^2[O_2]$ D) $K_{eq} = [O_2]$ E) $K_{eq} = 1/[O_2]$ estion 4 usider the reaction: 2 SO ₂ (g) + O ₂ (g) \leftrightarrow 2 SO ₃ (g). If, at equilibrium at a certain temperature, [SO ₂] = 1.50 O ₂] = 0.120 M, and [SO ₃] = 1.25 M, what is the value of the equilibrium constant? A) 5.79 B) 6.94 C) 8.68

Question 5

 PCl_5 dissociates according to the reaction: $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$. One mole of PCl_5 was placed in one liter of solution. When equilibrium was established, 0.5 mole of PCl_5 remained in the mixture. What is the equilibrium constant for this reaction?

	A) 0.25						
	B) 0.5						
	C) 1.0						
	D) 2.5						
	E) None of the above						
Qu	estion 6						
the	levated temperatures, solid silicon reacts with chlorine gas to form gaseous SiCl ₄ . At some temperature, equilibrium constant for this reaction is 0.30. If the reaction is started with 0.10 mol of SiCl ₄ in a one-liter κ , how much Cl ₂ will be present when equilibrium is established? A) 0.18 mol						
	B) 0.090 mol						
	C) 0.030 mol						
	D) 0.30 mol						
Qu	estion 7						
of H	sider the reaction: $CO_2(g) + H_2(g) \leftrightarrow CO(g) + H_2O(g)$, for which $K_c = 0.64$ at 900 K. If the initial CO_2 and CO_2 are each 0.100 M, what will be the equilibrium concentrations of each species after the reaction ches equilibrium?						
	A) $[CO_2] = 0.044 \text{ M}; [H_2] = 0.044 \text{M}; [CO] = 0.056 \text{ M}; [H_2O] = 0.056 \text{ M}$						
	B) $[CO_2] = 0.056 \text{ M}; [H_2] = 0.056 \text{ M}; [CO] = 0.044 \text{ M}; [H_2O] = 0.044 \text{ M}$						
	C) $[CO_2] = 0.020 \text{ M}$; $[H_2] = 0.020 \text{ M}$; $[CO] = 0.080 \text{ M}$; $[H_2O] = 0.080 \text{ M}$						
	D) $[CO_2] = 0.080 \text{ M}; [H_2] = 0.080 \text{ M}; [CO] = 0.020 \text{ M}; [H_2O] = 0.020 \text{ M}$						
	E) None of the above						
Qu	estion 8						
com and	ome temperature, the reaction: $3 \text{ CIO}^{\text{-}} \leftrightarrow \text{CIO}_3^{\text{-}} + 2 \text{ CI}^{\text{-}}$ has an equilibrium constant $K_c = 3.2 \times 10^3$. If the aponents of this reaction are mixed such that their initial concentrations are [CI] = 0.05 M; [CIO ₃] = 0.32; [CIO] = 0.74, is the mixture at equilibrium, yes or no? If the mixture is not at equilibrium in which ction, left to right or right to left, will reaction occur so that the mixture can reach equilibrium? A) There is not enough information given to answer this question						
	B) Yes, the mixture is at equilibrium now						
	C) No. Left to right						
	D) No. Right to left						
Qu	estion 9						
Consider the following endothermic reaction: $H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$. If the temperature is increased, A) more HI will be produced							
	${\bf B}$) some HI will decompose, forming ${\bf H}_2$ and ${\bf I}_2$						

	C) the magnitude of the equilibrium constant will decrease					
	D) the pressure in the container will increase					
	E) the pressure in the container will decrease					
Qu	estion 10					
Consider the following reaction at equilibrium: $NO_2(g) + CO(g) \leftrightarrow NO(g) + CO_2(g)$. Suppose the volume the system is decreased at constant temperature, what change will this cause in the system? A) A shift to produce more NO						
	B) A shift to produce more CO					
	C) A shift to produce more NO ₂					
	D) No shift will occur					
	b) No sinit win occur					
	estion 11					
Whi	 ich of the following statements is incorrect regarding equilibrium? A) Chemical equilibrium is a reversible process with no net change in concentrations of the products and reactants. 					
	B) Physical equilibrium can not exist between phases.					
	C) A chemical equilibrium with all reactants and products in the same phase is homogeneous.					
	D) none of the above					
Qu	estion 12					
	ich of these four factors can change the value of the equilibrium?					
	A) catalyst					
	B) pressure					
	C) concentration					
	D) temperature					
Qu	estion 13					
Whi	ich general rule helps predict the shift in direction of an equilibrium reaction? A) Le Chatelier's principle					
	B) Haber process					
	C) Equilibrium constant					
	D) Bosch theory					
0	estion 14					
There are guideline to help write equilibrium constants.						
	A) True					
	B) False					