The Hashemite University Faculty of Engineering Mechanical Engineering Department Machine Design II Spring 2018 Instructor: Dr. Ala Hijazi Ouiz - 2 Two (3189 cone & 3120 cup) taperedroller bearings were selected to support the shaft at A and B using directmounting. The shaft rotates at 1200 rpm and the bearing loads are as shown in the figure (loads are in kN). (The Weibull parameters are $x_0 = 0.05$, $(\theta - x_o) = 4.5 \text{ and } b = 1.5).$ a) Find the equivalent radial loads for the bearings at A and B. FeB = FrB = 2.24 KN Fig 11-5 ~ $$C_{10} = 22.7 \text{ kN}$$, $K = 1.76$ $$F_{iA} = \frac{0.47 F_{rA}}{k_A} = 1.68 \text{ kN}$$, $F_{iB} = \frac{0.47 F_{rB}}{k_B} = 0.6 \text{ kN}$ $$F_{iB} + F_{ae} = 12.6 \text{ kN} > F_{iA}$$ $$\Rightarrow F_{eA} = 0.4 F_{rA} + k_A (F_{iB} + F_{ae}) = 24.69 \text{ kN}$$ key Name: Student #: b) Find the expected life (in hours) at standard reliability for the bearing used at B. $$C_{10} = F_{eB} \left(\frac{L_D}{L_R}\right)^{1/2} \implies L_D = \left(\frac{22.7}{2.24}\right)^{10/3} \star (90 \star 10^6) = 202.7 \star 10^9 \text{ rev}$$ $$\implies \text{Life} = 202.7 \star 10^9 / 1200 \star 60 = 2815 \text{ kh}$$ $$2815 \text{ kh}$$ c) If the life goal is 800 h, find the reliability that the bearing used at A will live the required life. $$R = 1 - \left[\frac{x_0 \left(\frac{a_c F_0}{C_{10}} \right)^{\alpha} - x_0}{Q - x_0} \right]^b = 1 - \left[\frac{0.64 \left(\frac{1 + 24.69}{22.7} \right)^{10/3} - 0.05}{4.5} \right]^{1.5}$$ $$\Rightarrow R = 0.925$$ 5 Points 2.5 Points 2.5 Points