EXAMPLE 14-4

A 17-tooth 20° pressure angle spur pinion rotates at 1800 rev/min and transmits 4 hp to a 52-tooth disk gear. The diametral pitch is 10 teeth/in, the face width 1.5 in, and the quality standard is No. 6. The gears are straddle-mounted with bearings immediately adjacent. The pinion is a grade 1 steel with a hardness of 240 Brinell tooth surface and through-hardened core. The gear is steel, through-hardened also, grade 1 material, with a Brinell hardness of 200, tooth surface and core. Poisson's ratio is 0.30, $J_P = 0.30$, $J_G = 0.40$, and Young's modulus is $30(10^6)$ psi. The loading is smooth because of motor and load. Assume a pinion life of 10^8 cycles and a reliability of 0.90, and use $Y_N = 1.3558N^{-0.0178}$, $Z_N = 1.4488N^{-0.023}$. The tooth profile is uncrowned. This is a commercial enclosed gear unit.

- (a) Find the factor of safety of the gears in bending.
- (b) Find the factor of safety of the gears in wear.
- (c) By examining the factors of safety, identify the threat to each gear and to the mesh.

Solution

There will be many terms to obtain so use Figs. 14-17 and 14-18 as guides to what is needed.

$$d_P = N_P/P_d = 17/10 = 1.7 \text{ in}$$
 $d_G = 52/10 = 5.2 \text{ in}$

$$V = \frac{\pi d_P n_P}{12} = \frac{\pi (1.7)1800}{12} = 801.1 \text{ ft/min}$$

$$W' = \frac{33\,000 \text{ H}}{V} = \frac{33\,000(4)}{801.1} = 164.8 \text{ lbf}$$

Assuming uniform loading, $K_o = 1$. To evaluate K_v , from Eq. (14–28) with a quality number $Q_v = 6$,

$$B = 0.25(12 - 6)^{2/3} = 0.8255$$
$$A = 50 + 56(1 - 0.8255) = 59.77$$

or from Fig 14.9

Then from Eq. (14-27) the dynamic factor is

$$K_v = \left(\frac{59.77 + \sqrt{801.1}}{59.77}\right)^{0.8255} = 1.377$$

To determine the size factor, K_s , the Lewis form factor is needed. From Table 14-2, with $N_P = 17$ teeth, $Y_P = 0.303$. Interpolation for the gear with $N_G = 52$ teeth yields $Y_G = 0.412$. Thus from Eq. (a) of Sec. 14-10, with F = 1.5 in,

$$(K_s)_P = 1.192 \left(\frac{1.5\sqrt{0.303}}{10}\right)^{0.0535} = 1.043$$

 $(K_s)_G = 1.192 \left(\frac{1.5\sqrt{0.412}}{10}\right)^{0.0535} = 1.052$

The load distribution factor K_m is determined from Eq. (14–30), where five terms are needed. They are, where F = 1.5 in when needed:

Uncrowned, Eq. (14–30): $C_{mc} = 1$, Eq. (14–32): $C_{pf} = 1.5/[10(1.7)] - 0.0375 + 0.0125(1.5) = 0.0695$ Bearings immediately adjacent, Eq. (14–33): $C_{pm} = 1$ Commercial enclosed gear units (Fig. 14–11): $C_{ma} = 0.15$ Eq. (14–35): $C_e = 1$

Thus.

$$K_m = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e) = 1 + (1)[0.0695(1) + 0.15(1)] = 1.22$$

Assuming constant thickness gears, the rim-thickness factor $K_B = 1$. The speed ratio is $m_G = N_G/N_P = 52/17 = 3.059$. The load cycle factors given in the problem statement, with $N(\text{pinion}) = 10^8 \text{ cycles}$ and $N(\text{gear}) = 10^8 / m_G = 10^8 / 3.059 \text{ cycles}$, are

bending strength
$$(Y_N)_P = 1.3558(10^8)^{-0.0178} = 0.977$$

Cycle factor $(Y_N)_G = 1.3558(10^8/3.059)^{-0.0178} = 0.996$

From Table 14.10, with a reliability of 0.9, $K_R = 0.85$. From Fig. 14–18, the temperature and surface condition factors are $K_T = 1$ and $C_f = 1$. From Eq. (14-23), with $m_N = 1$ for spur gears, stress

Contact-Strength
geometry factor
$$I = \frac{\cos 20^{\circ} \sin 20^{\circ}}{2} \frac{3.059}{3.059 + 1} = 0.121$$

From Table 14–8, $C_p = 2300 \sqrt{\text{psi}}$.

Next, we need the terms for the AGMA endurance strength equations. From Table 14–3, for grade 1 steel with $H_{BP} = 240$ and $H_{BG} = 200$, we use Fig. 14–2, which

Bending Strength
$$(S_t)_P = 77.3(240) + 12800 = 31350 \text{ psi}$$

 $(S_t)_G = 77.3(200) + 12800 = 28260 \text{ psi}$

Similarly, from Table 14-6, we use Fig. 14-5, which gives

Contact Strength
$$(S_c)_P = 322(240) + 29\ 100 = 106\ 400\ psi$$

 $(S_c)_G = 322(200) + 29\ 100 = 93\ 500\ psi$

From Fig. 14-15,

Contact Strength
$$(Z_N)_P = 1.4488(10^8)^{-0.023} = 0.948$$

Cycle factor $(Z_N)_G = 1.4488(10^8/3.059)^{-0.023} = 0.973$

For the hardness ratio factor C_H , the hardness ratio is $H_{BP}/H_{BG} = 240/200 = 1.2$. Then, from Sec. 14-12,

$$A' = 8.98(10^{-3})(H_{BP}/H_{BG}) - 8.29(10^{-3})$$
$$= 8.98(10^{-3})(1.2) - 8.29(10^{-3}) = 0.00249$$

Thus, from Eq. (14-36),

$$C_H = 1 + 0.00249(3.059 - 1) = 1.005$$

is

of c

the

ely

and ith

30,

of ise

s a

(a) Pinion tooth bending. Substituting the appropriate terms for the pinion into Eq. (14-15) gives

$$(\sigma)_P = \left(W^t K_o K_v K_s \frac{P_d}{F} \frac{K_m K_B}{J}\right)_P = 164.8(1)1.377(1.043) \frac{10}{1.5} \frac{1.22(1)}{0.30}$$

= 6417 psi

Substituting the appropriate terms for the pinion into Eq. (14-41) gives

Answer

$$(S_F)_P = \left(\frac{S_t Y_N / (K_T K_R)}{\sigma}\right)_P = \frac{31350(0.977) / [1(0.85)]}{6417} = 5.62$$

Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14-15)

$$(\sigma)_G = 164.8(1)1.377(1.052)\frac{10}{1.5}\frac{1.22(1)}{0.40} = 4854 \text{ psi}$$

Substituting the appropriate terms for the gear into Eq. (14-41) gives

Answer

$$(S_F)_G = \frac{28\ 260(0.996)/[1(0.85)]}{4854} = 6.82$$

(b) **Pinion tooth wear.** Substituting the appropriate terms for the pinion into Eq. (14–16)

$$(\sigma_c)_P = C_p \left(W^t K_o K_v K_s \frac{K_m}{d_P F} \frac{C_f}{I} \right)_P^{1/2}$$

$$= 2300 \left[164.8(1)1.377(1.043) \frac{1.22}{1.7(1.5)} \frac{1}{0.121} \right]^{1/2} = 70360 \text{ psi}$$

Substituting the appropriate terms for the pinion into Eq. (14-42) gives

Answer

$$(S_H)_P = \left[\frac{S_c Z_N / (K_T K_R)}{\sigma_c}\right]_P = \frac{106400(0.948) / [1(0.85)]}{70360} = 1.69$$

Gear tooth wear. The only term in Eq. (14-16) that changes for the gear is K_s . Thus,

$$(\sigma_c)_G = \left[\frac{(K_s)_G}{(K_s)_P}\right]^{1/2} (\sigma_c)_P = \left(\frac{1.052}{1.043}\right)^{1/2} 70\,360 = 70\,660 \text{ psi}$$

Substituting the appropriate terms for the gear into Eq. (14-42) with $C_H = 1.005$ gives

Answer

$$(S_H)_G = \frac{93\,500(0.973)1.005/[1(0.85)]}{70\,660} = 1.52$$

(c) For the pinion, we compare $(S_F)_P$ with $(S_H)_P^2$, or 5.73 with $1.69^2 = 2.86$, so the threat in the pinion is from wear. For the gear, we compare $(S_F)_G$ with $(S_H)_G^2$, or 6.96 with $1.52^2 = 2.31$, so the threat in the gear is also from wear.

There are perspectives to be gained from Ex. 14-4. First, the pinion is overly strong in bending compared to wear. The performance in wear can be improved by surfacehardening techniques, such as flame or induction hardening, nitriding, or carburizing EX/