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 CH 6: Fatigue Failure Resulting from Variable Loading  

Some machine elements are subjected to static loads and for such elements static 
failure theories are used to predict failure (yielding or fracture). However, most 
machine elements are subjected to varying or fluctuating stresses (due to the 
movement) such as shafts, gears, bearings, cams & followers,etc. 

Fluctuating stresses (repeated over long period of time) will cause a part to fail 
(fracture) at a stress level much smaller than the ultimate strength (or even the yield 
strength in some casses). 

Unlike static loading where failure usualy can be detected before it happens (due to 
the large deflections associated with plastic deformation), fatigue failures are usualy 
sudden and therefore dangerous. 

Fatigue failure is somehow similar to brittle fracture where the fracture surfaces are 
prependicular to the load axis. 

 According to Linear-Elastic Fracture Mechanics (LEFM), 
fatigue failure develops in three stages: 
- Stage1: development of one or more micro cracks 

(the size of two to five grains) due to the cyclic local 
plastic deformation. 

- Stage2: the cracks progress from micro cracks to 
larger cracks (macro cracks) and keep growing 
making a smooth plateau-like fracture surfaces with 
beach marks. 

- Stage3: occurs during the final stress cycle where the 
remaining material cannot support the load, thus 
resulting in a sudden fracture (can be brittle or ductile 
fracture). 
 

 Fatigue failure is due to crack 
formation and propagation. 
Fatigue cracks usually initiate 
at locations with high stresses 
such as discontinuities (hole, 
notch, scratch, sharp corner, 
crack, inclusions, etc.). 
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 Fatigue cracks can also initiate at surfaces having rough surface finish or due to 
the presence of tensile residual stresses. Thus all parts subjected to fatigue 
loading are heat treated and polished in order to increase the fatigue life.  

 

Fatigue Life Methods 

Fatigue failure is a much more complicated phenomenon than static failure where 
much complicating factors are involved. Also, testing materials for fatigue properties is 
more complicated and much more time consuming than static testing. 

Fatigue life methods are aimed to determine the life (number of loading cycles) of an 
element until failure. 

 There are three major fatigue life methods where each is more accurate for some 
types of loading or for some materials. The three methods are: the stress-life 
method, the strain-life method, the linear-elastic fracture mechanics method. 
 

 The fatigue life is usually classified according to the number of loading cycles into: 
 Low cycle fatigue (1≤N≤1000) and for this low number of cycles, designers 

sometimes ignore fatigue effects and just use static failure analysis. 
 High cycle fatigue (N>103): 

 Finite life: from 103 →106 cycles 
 Infinite life: more than 106 cycles 

 

The Strain-Life Method 

This method relates the fatigue life to the amount of 

plastic strain suffered by the part during the repeated 

loading cycles.  

 When the stress in the material exceeds the yield 

strength and the material is plastically deformed, the 

material will be strain hardened and the yield strength 

will increase if the part is reloaded again. However, if 

the stress direction is reversed (from tension to 

compression), the yield strength in the reversed 

direction will be smaller than its initial value which 
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means that the material has been softened in the reverse loading direction (this is 

referred to as Bauschinger Effect). Each time the stress is reversed, the yield 

strength in the other direction is decreased and the material gets softer and 

undergoes more plastic deformation until fracture occurs.  

 The strain-life method is applicable to Low-cycle fatigue. 

 

The Linear Elastic Fracture Mechanics Method 

This method assumes that a crack initiates in the material and it keeps growing until 

failure occurs (the three stages described above).  

 The LEFM approach assumes that a small crack already exists in the material, and it 

calculates the number of loading cycles required for the crack to grow to be large 

enough to cause the remaining material to fracture completely. 

 This method is more applicable to High-cycle fatigue.  

 

The Stress-Life Method 

This method relates the fatigue life to the alternating stress level causing failure but it 

does not give any explanation to why fatigue failure happens.    

 The stress-life relation is obtained experimentally using 

Moore high-speed rotating beam test. 

- The test is conducted by subjecting the rotating beam 

to a pure bending moment (of a fixed known magnitude) until failure occurs. 

(Due to rotation, the specimen is subjected to an alternating bending stress) 

- The data obtained from the tests is used to generate the fatigue strength vs. 

fatigue life diagram which is known as the S-N diagram. 

- The first point is the ultimate strength which corresponds to failure in half a 

cycle. 

- The alternating stress amplitude is reduced below the ultimate strength and the 

test is run until failure. The stress level and the number of cycles until failure 

give a data point on the chart. 

- The testing continues and each time the stress amplitude is reduced (such that 

the specimen will live longer) and new point is obtained. 
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- For steel alloys the low-cycle 

fatigue and the high-cycle 

fatigue (finite and infinite) 

can be recognized as having 

different slopes. (they are 

straight lines but keep in mind 

it is a log-log curve) 

- For steels if we keep reducing 

the stress amplitude (for each 

test) we will reach to a stress 

level for which the specimen 

will never fail, and this value 

of stress is known as the Endurance Limit (Se). 

- The number of stress cycles associated with the Endurance Limit defines the 

boundary between Finite-life and Infinite-life, and it is usually between 106 to 107 

cycles. 

 

 Steel and Titanium alloys have a clear endurance limit, but this is not true for all 

materials. 

 For instance, Aluminum alloys do not have an endurance limit and for such 

materials the fatigue strength is reported at 5(108) cycles. 

 Also, most polymers do not have an endurance limit. 

 

The Endurance Limit 

The determination of the endurance limit is important for designing machine elements 

that are subjected to High-cycle fatigue. The common practice when designing such 

elements is to make sure that the fatigue stress level in the element is below the 

endurance limit of the material being used. 

 Finding the Endurance Limit using the rotating beam experiment is time consuming 

where it requires testing many samples and the time for each test is relatively long. 

Therefore they try to relate the endurance limit to other mechanical properties 

which are easier to find (such as the ultimate tensile strength). 
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 The figure shows a plot of the 

Endurance Limits versus Tensile 

Strengths for a large number of 

steel and iron specimens.  

- The graph shows a correlation 

between the ultimate strength 

and endurance limit for 

ultimate strengths up to 1400 

𝑀𝑃𝑎 then the endurance limit 

seems to have a constant value. 

- The relationship between the endurance limit and ultimate strength for steels is 

given as:  

𝑆𝑒
′ = {

0.5 𝑆𝑢𝑡               𝑓𝑜𝑟     𝑆𝑢𝑡 ≤ 1400 𝑀𝑃𝑎
700 𝑀𝑃𝑎            𝑓𝑜𝑟       𝑆𝑢𝑡 >  1400 𝑀𝑃𝑎

 

 The prime (‘) is used to denote that this is the endurance limit value 

obtained for the test specimen (modifications are still needed). 
 

Endurance Limit Modifications Factors 

Endurance limit is obtained from the rotating beam test. The test is conducted under 

closely controlled conditions (polished specimen of small size at a constant known 

temperature, etc.). It is not realistic to expect a machine element to have the exact 

same endurance limit value as that obtained from the rotating beam test because it 

has different conditions (size, surface finish, manufacturing process, environment, etc.) 

 Thus some modification factors are used to correlate the endurance limit for a 

given mechanical element to the value obtained from tests:   
                                                  

                                     

                                          𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒
′ 

 

Where,  

Finish 

Size 

Reliability 

Misc. Temp. 

Load 
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𝑆𝑒:  The endurance limit at the critical location of a machine element with the 

geometry and conditions of use. 

𝑆𝑒
′: The endurance limit obtained from the rotating beam test. 

𝑘𝑎 … 𝑘𝑓: Modification factors (obtained experimentally). 

Surface Condition Factor (𝑘𝑎) 

The rotating-beam test specimens are highly polished. A rough surface finish will 

reduce the endurance limit because there will be a higher potential for crack initiation. 

 The surface condition modification factor depends on the surface finish of the part 

(ground, machined, as forged, etc.) and on the tensile strength of the material. It is 

given as: 

                                         𝑘𝑎 = 𝑎 𝑆𝑢𝑡
𝑏  

 Constants 𝑎 & 𝑏 depend on surface condition and are given in Table 6-2. 

Size Factor (𝑘𝑏) 

The rotating-beam specimens have a specific (small) diameter (7.6mm). Parts of larger 

size are more likely to contain flaws and to have more non-homogeneities. 

 The size factor is given as:  

                                     𝑘𝑏 = {
1.24 𝑑−0.107         2.79 ≤ 𝑑 ≤ 51 𝑚𝑚
1.51 𝑑−0.157      51 < 𝑑 ≤ 254 𝑚𝑚

 

where 𝑑 is the diameter,  

and:    

                        𝑘𝑏 = 1              for axial loading 

 When a member with circular cross-section is not rotating, we use an effective 

diameter value instead of the actual diameter, where:  

                                   𝑑𝑒 = 0.37 𝑑                          

 For other cross-sections, 𝑑𝑒 is found using Table 6-3 (obtain 𝐴0.95𝜎  from table 

then solve eqn. 6-23  for the “equivalent diameter” 𝑑 and finally find 𝑑𝑒 using 

the equation above “eqn. 6-24”  ). 

For bending 

and torsion 
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Loading Factor (𝑘𝑐) 

The rotating-beam specimen is loaded in bending. Other types of loading will have a 

different effect.  

 The load factor for the different types of loading is:                

                               𝑘𝑐 = {
1             𝑏𝑒𝑛𝑑𝑖𝑛𝑔

0.85        𝑎𝑥𝑖𝑎𝑙        
0.59         𝑡𝑜𝑟𝑠𝑖𝑜𝑛    

 

Temperature Factor (𝑘𝑑) 
When the operating temperature is below room temperature, the material becomes 
more brittle. When the temperature is high the yield strength decreases and the 
material becomes more ductile (and creep may occur). 

 For steels, the tensile strength , and thus the endurance limit, slightly increases as 
temperature rises, then it starts to drop. Thus, the temperature factor is given as: 

                 𝑘𝑑 = 0.9877 + 0.6507(10−3)𝑇𝑐 − 0.3414(10−5)𝑇𝑐
2 + 0.5621(10−8)𝑇𝑐

3

− 0.6246(10−11)𝑇𝑐
4 

   For   40 ≤ 𝑇𝑐 ≤ 540 °𝐶 

 The same values calculated by the equation are also given in Table 6-4 where:   

𝑘𝑑 = (
𝑆𝑇

𝑆𝑅𝑇
) 

Reliability Factor (𝑘𝑒) 

The endurance limit obtained from testing is usually reported at mean value (it has a 

normal distribution with �̂� = 8% ). 

 For other values of reliability, 𝑘𝑒 is found from Table 6-5. 

Miscellaneous-Effects Factor (𝑘𝑓) 

It is used to account for the reduction of endurance limit due to all other effects (such 

as residual stress, corrosion, cyclic frequency, metal spraying, etc.). 

However, those effects are not fully characterized and usually not accounted for. Thus 

we use (𝑘𝑓 = 1). 
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Stress Concentration and Notch Sensitivity 

Under fatigue loading conditions, crack initiation and growth usually starts in locations 

having high stress concentrations (such as grooves, holes, etc.). The presence of stress 

concentration reduces the fatigue life of an element (and the endurance limit) and it 

must be considered in fatigue failure analysis. 

However, due to the difference in ductility, the effect of stress concentration on 

fatigue properties is not the same for different materials. 

 For materials under fatigue loading, the maximum stress near a notch (hole, fillet, 

etc.) is: 

𝜎𝑚𝑎𝑥 = 𝐾𝑓 𝜎𝑜            or           𝜏𝑚𝑎𝑥 = 𝐾𝑓𝑠 𝜏𝑜  

Where, 

𝜎𝑜  : is the nominal stress 

𝐾𝑓  : is the fatigue stress concentration factor which is a reduced value of the 

stress concentration factor (𝐾𝑡) because of the difference in material 

sensitivity to the presence of notches. 

and 𝐾𝑓 is defined as: 

𝐾𝑓 =
𝑚𝑎𝑥. 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛 𝑛𝑜𝑡𝑐ℎ𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛

𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛 𝑛𝑜𝑡𝑐ℎ − 𝑓𝑟𝑒𝑒 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 

 

 Notch sensitivity (𝑞) is defined as: 

𝑞 =
𝐾𝑓−1

𝐾𝑡−1
                 or        𝑞𝑠ℎ𝑒𝑎𝑟 =

𝐾𝑓𝑠−1

𝐾𝑡𝑠−1
 

The value of 𝑞 ranges from 0 to 1  

                                      𝑞 = 0        𝐾𝑓 = 1      (material is not sensitive) 

                                      𝑞 = 1        𝐾𝑓 = 𝐾𝑡    (material is fully sensitive) 

 Thus, 

         𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)                or           𝐾𝑓𝑠 = 1 + 𝑞𝑠ℎ𝑒𝑎𝑟(𝐾𝑡𝑠 − 1)  

 For Steels and Aluminum (2024) the notch sensitivity for Bending and Axial 

loading can be found from Figure 6-20 and for Torsion is found from Figure 6-21. 
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 Alternatively, instead of using the figures, the fatigue stress concentration factor 

𝐾𝑓, can be found as:         

  𝐾𝑓 = 1 +
𝐾𝑡−1

1+ 
√𝑎

√𝑟

 

   where,  𝑟 : radius 

√𝑎  : is a material constant known as the Neuber constant.  

 For steels, √𝑎  can be found using Eqns. 6-35a & 6-35b given in the text 

(note that 𝑆𝑢𝑡needs to be in “𝑘𝑝𝑠𝑖” and √𝑎 will be given in “√𝑖𝑛” ) 

 

 For cast iron, the notch sensitivity is very low from 0 to 0.2,  but to be conservative 

it is recommended to use 𝑞 = 0.2 

 

 For simple loading, 𝐾𝑓 can be multiplied by the stress value, or the endurance limit 

can be reduced by dividing it by 𝐾𝑓. However, for combined loading each type of 

stress has to be multiplied by its corresponding 𝐾𝑓 value. 

 

Fatigue Strength 

In some design applications the number of load cycles the element is subjected to, is 

limited (less than 106) and therefore there is no need to design for infinite life using the 

endurance limit.  

 In such cases we need to find the Fatigue 

Strength associated with the desired life. 
 

 For the High-cycle fatigue (103→106), the line 

equation is 𝑆𝑓 = 𝑎𝑁𝑏 where the constants “𝑎” 

(y intercept) and “𝑏” (slope) are determined 

from the end points (𝑆𝑓)103 and (𝑆𝑓)106   as: 
 

              𝑎 =
(𝑆𝑓)

103
2

𝑆𝑒
           𝑎𝑛𝑑           𝑏 = −

𝑙𝑜𝑔 (𝜎𝑓
′ 𝑆𝑒⁄ )

𝑙𝑜𝑔 (2𝑁𝑒)
 𝑆𝑒 is the modified 

Endurance Limit 

The Neuber equation 
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Where 𝜎𝑓
′ is the True Stress at Fracture and for steels with HB ≤ 500, it is 

approximated as: 

                                   𝜎𝑓
′ = 𝑆𝑢𝑡 + 345 𝑀𝑝𝑎 

- (𝑆𝑓)103 can be related to 𝑆𝑢𝑡 as: 

                                               (𝑆𝑓)103 = 𝑓𝑆𝑢𝑡 

      where 𝑓 is found as: 

                                                  𝑓 =
𝜎𝑓

′

𝑆𝑢𝑡
(2 × 103)𝑏 

 Using the above equations, the value of 𝑓 is found as a 

function of 𝑆𝑢𝑡(using 𝑁𝑒 = 106) and it is presented in 

graphical form in Figure 6-18. 

  

 If the value of (𝑓) is known, the constant 𝑏 can be directly found as: 

                                  𝑏 = −
1

3
𝑙𝑜𝑔 (

𝑓𝑆𝑢𝑡

𝑆𝑒
)  

and 𝑎 can be rewritten as:  

                                 𝑎 =
(𝑓𝑆𝑢𝑡)2

𝑆𝑒
 

- Thus for 103≤ 𝑁 ≤106 , the fatigue strength associated with a given life (𝑁) is: 

                                         (𝑆𝑓)
𝑁

= 𝑎𝑁𝑏  

 and the fatigue life (𝑁) at  a given fatigue stress (𝜎) is found as: 

                                     𝑁 = ( 
𝜎

𝑎
 )

1
𝑏

 

 Studies show that for ductile materials, the Fatigue Stress Concentration Factor (𝐾𝑓) 

reduces for 𝑁 < 106, however the conservative approach is to use 𝐾𝑓 as is. 

 

 

 

fraction of 

For 𝑆𝑢𝑡values less than 

490 MPa, use 𝑓 = 0.9 

to be conservative 
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Example: For a rotating-beam specimen made of 1045 CD steel, find: 

a) The endurance limit (Ne=106) 
b) The fatigue strength corresponding to (5 × 104) cycles to failure 
c) The expected life under a completely reversed stress of 400 𝑀𝑃𝑎 

 
Solution: 
From Table A-20      𝑆𝑢𝑡 = 630 𝑀𝑃𝑎 
 

a) 𝑆𝑒
′ = 0.5(𝑆𝑢𝑡) = 315 𝑀𝑃𝑎     

 

b) 𝜎𝑓
′ = 𝑆𝑢𝑡 + 345 = 975 𝑀𝑃𝑎 

              𝑏 = −
𝑙𝑜𝑔 (𝜎𝑓

′ 𝑆𝑒)⁄

𝑙𝑜𝑔(2𝑁𝑒)
= −

𝑙𝑜𝑔(975 315⁄ )

𝑙𝑜𝑔(2 × 106)
= −0.0779 

             𝑓 =
𝜎𝑓

′

𝑆𝑢𝑡
(2 × 103)𝑏 =

975

630
(2 × 103)−0.0779 = 0.856 

            𝑎 =
(𝑓𝑆𝑢𝑡)2

𝑆𝑒
=

(0.856 × 630)2

315
= 923.4 𝑀𝑃𝑎 

 

 

 

 

 

 

 

 

           (𝑆𝑓)𝑁 = 𝑎𝑁𝑏                  (𝑆𝑓)5×104 = 923.4(5 × 104)−0.0779 

                      (𝑆𝑓)5×104 = 397.5 𝑀𝑃𝑎  
 

c)  

                𝑁 = (
 𝜎 

𝑎
)

1
𝑏

= (
400

923.4
)

1
−0.0779

= 46.14 × 103𝑐𝑦𝑐𝑙𝑒𝑠  

 

Note that no modifications are needed 

since it is a specimen: 𝑆𝑒 = 𝑆𝑒
′ 

 

𝑏 = −
1

3
𝑙𝑜𝑔 (

𝑓𝑆𝑢𝑡

𝑆𝑒
) = −

1

3
𝑙𝑜𝑔 (

0.857 × 630

315
) = −0.078 

OR, easier, from Figure 6-18: 𝑓 ≅ 0.857   

Then, 

 𝑎 =
(𝑓𝑆𝑢𝑡)2

𝑆𝑒
=  

(0.857 ×630)2

315
= 925.4 MPa 
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Example:  The two axially loaded bars shown are made 
of 1050 HR steel and have machined surfaces. The two 
bars are subjected to a completely reversed load 𝑃. 

a) Estimate the maximum value of the load 𝑃 for 
each of the two bars such that they will have 
infinite life (ignore buckling).  

b) Find the static and fatigue factors of safety 𝑛𝑠  & 𝑛𝑓 

for bar (B) if it is to be subjected to a completely 
reversed load of 𝑃 = 50 𝑘𝑁.   

c) Estimate the fatigue life of bar (B) under reversed 
load of 𝑃 = 150 𝑘𝑁   (use 𝑓 = 0.9) 

Solution: 
 

From Table A-20      𝑆𝑢𝑡 = 620 𝑀𝑃𝑎        &       𝑆𝑦 = 340 𝑀𝑃𝑎 
 

a) 𝑆𝑒
′ = 0.5(𝑆𝑢𝑡) = 310 𝑀𝑃𝑎     

Modifying factors: 

- Surface factor:      𝑘𝑎 = 𝑎 𝑆𝑢𝑡
𝑏 , from Table 6-2:  𝑎 = 4.51, 𝑏 = −0.265 

                                  𝑘𝑎 = 4.51(620)−0.265 = 0.821 

- Size factor:             𝑘𝑏 = 1    since the loading is axial 

- Loading factor:      𝑘𝑐 = 0.85        (for axial loading) 

- Other factors:      𝑘𝑑 = 𝑘𝑒 = 𝑘𝑓 = 1 

Stress concentration (for bar B): 

From Figure A-15-3 with     𝑤 𝑑 = 1.2⁄      &    𝑟 𝑑⁄ = 0.1         𝐾𝑡 ≈ 2.38 

The fatigue stress concentration factor:       𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) 

From Figure 6-20 for steel:  𝑞 ≈ 0.81 

                  𝐾𝑓 = 1 + 0.81(2.38 − 1) = 2.12 

Thus the maximum stress for each should not exceed, 

   Bar (A):          𝑆𝑒 = 𝑘𝑎𝑘𝑐𝑆𝑒
′ = (0.821)(0.85)(310) = 216.3 𝑀𝑃𝑎 

  Bar (B):          (𝑆𝑒)𝑚𝑜𝑑 =
𝑆𝑒

𝐾𝑓
=

216.3

2.12
= 102.03 𝑀𝑃𝑎 

And the maximum load 𝑃 for each is, 

   Bar (A):          𝑃𝑚𝑎𝑥 = 216.3 × (25 × 25) = 135187.5 𝑁 

  Bar (B):          𝑃𝑚𝑎𝑥 = 102.03 × (25 × 25) = 63767.7 𝑁 
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 Note that the maximum load for bar (B) is smaller than that of bar (A) 

because of the notch. 

 

b) Static factor of safety 𝑛𝑠: 

From Table A-20:  𝜖𝑓 = 0.15       Ductile material, thus stress concentration is 

not applicable. 

                                    𝜎𝑜 =
𝑃

𝐴𝑛𝑒𝑡
=

50 × 103

25 × 25
= 80 𝑀𝑃𝑎 

                                𝑛𝑠 =
𝑆𝑦

𝜎𝑜
=

340

80
= 4.25  

Fatigue factor of safety 𝑛𝑓:  

                        𝑛𝑓 =
(𝑆𝑒)𝑚𝑜𝑑

𝜎𝑜
          𝑜𝑟           𝑛𝑓 =

𝑆𝑒

(𝐾𝑓𝜎𝑜)
=

216.3

(2.12)(80)
= 1.28  

c) If we calculate the fatigue factor of safety with 𝑃 = 150 𝑘𝑁  we will find it to be 
less than one and thus the bar will not have infinite life. 

                         𝑎 =
(𝑓𝑆𝑢𝑡)2

𝑆𝑒
=

(0.9 × 620)2

216.3
= 1439.5 𝑀𝑃𝑎 

                         𝑏 = −
1

3
𝑙𝑜𝑔 (

𝑓𝑆𝑢𝑡

𝑆𝑒
) = −

1

3
𝑙𝑜𝑔 (

0.9 × 620

216.3
) = −0.137 

                         𝜎𝑜 =
𝑃

𝐴𝑛𝑒𝑡
=

150 × 103

25 × 25
= 240 𝑀𝑃𝑎 

                        𝜎 = 𝐾𝑓𝜎𝑜 = 2.12 × 240 = 508.8 𝑀𝑃𝑎 

                      𝑁 = ( 
𝜎

𝑎
 )

1
𝑏⁄

= (
508.8

1439.5
)

1
−0.137⁄

= 1.98 × 103 𝑐𝑦𝑐𝑙𝑒𝑠  

 This gives more conservative results than dividing (𝑆𝑒) by 𝐾𝑓, and using 𝜎𝑜 

as is. 
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Characterizing Fluctuating Stress 

In the rotating-beam test, the specimen is subjected to 

completely reversed stress cycles (𝜎𝑚𝑎𝑥 = |𝜎𝑚𝑖𝑛|) 

 

In the case of the rotating shaft subjected to both radial and axial loads (such as with 

helical gears) the fluctuating stress pattern will be different since there will be a 

component of stress that is always present (due to the axial load). 

 The following stress components can be defined for distinguishing different states 

of fluctuating stress: 

𝜎𝑚: Mean or average stress,    𝜎𝑚 =
𝜎𝑚𝑎𝑥+𝜎𝑚𝑖𝑛

2
 

𝜎𝑟: Stress range,                        𝜎𝑟 = |𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛| 

𝜎𝑎: Stress amplitude (half of the stress range), 

                                                        𝜎𝑎 = |
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

2
| 

 For uniform periodic fluctuating stress, 𝜎𝑚& 𝜎𝑎 are used to characterize the stress 

pattern. 
 

 We also define:  

 Stress ratio:             𝑅 = 𝜎𝑚𝑖𝑛 𝜎𝑚𝑎𝑥⁄  

 Amplitude ratio:     𝐴 = 𝜎𝑎 𝜎𝑚⁄  
 

 Some common types of fluctuating stress: 

 

 

 

 

 

𝜎𝑚 = 0 

𝜎𝑎 = 𝜎𝑚𝑎𝑥 = |𝜎𝑚𝑖𝑛| 

Completely reversed stress: 

 

Repeated stress: 

Tension   𝜎𝑎 = 𝜎𝑚 = 𝜎𝑚𝑎𝑥/2 

Compression     𝜎𝑚 = 𝜎𝑚𝑖𝑛/2 
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Fatigue Failure Criteria for Fluctuating Stress 

When a machine element is subjected to completely reversed stress (zero mean, 

𝜎𝑚 = 0) the endurance limit is obtained from the rotating-beam test (after applying 

the necessary modifying factors).  

However, when the mean (or midrange) is non-zero the situation is different and a 

fatigue failure criteria is needed. 

 If we plot the alternating stress component (𝜎𝑎) vs. the mean stress component 

(𝜎𝑚), this will help in distinguishing the different fluctuating stress scenarios. 

 

 When 𝜎𝑚 = 0  &  𝜎𝑎 ≠ 0  , this will be a completely reversed fluctuating stress. 

 When 𝜎𝑎 = 0  &  𝜎𝑚 ≠ 0  , this will be a static stress. 

 Any combination of 𝜎𝑚 & 𝜎𝑎  will fall between the two extremes (completely 

reversed & static). 

General fluctuating stress: 

(non-zero mean) 

 𝜎𝑎 ≠ 𝜎𝑚 ≠ 0 
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 Different theories are proposed to predict failure in such cases: 

Yield (Langer) line: It connects 𝑆𝑦 on the 𝜎𝑎axis with 𝑆𝑦 on 𝜎𝑚 axis. But it is not 

realistic because 𝑆𝑦 is usually larger than 𝑆𝑒 . 

Soderberg line: The most conservative, it connects 𝑆𝑒 on 𝜎𝑎 axis with 𝑆𝑦 on 𝜎𝑚  axis.  

                                         
𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑦
=

1

𝑛
 

 

ASME-elliptic line: Same as Soderberg but it uses an ellipse instead of the straight 

line. 

                                        (
𝑛𝜎𝑎

𝑆𝑒
)

2

+ (
𝑛𝜎𝑚

𝑆𝑦
)

2

= 1  

Goodman line: It considers failure due to static loading to be at 𝑆𝑢𝑡 rather than 𝑆𝑦, 

thus it connects 𝑆𝑒 on 𝜎𝑎 axis with 𝑆𝑢𝑡 on 𝜎𝑚  axis using a straight line. 

                                          
𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑢𝑡
=

1

𝑛
 

Gerber line: Same as Goodman but it uses a parabola instead of the straight line. 

                                         
𝑛𝜎𝑎

𝑆𝑒
+ (

𝑛𝜎𝑚

𝑆𝑢𝑡
)

2

= 1  

 The factor of safety is found as: 

 

 It should be noted that 𝑆𝑒 is the modified endurance limit. 

 The fatigue stress concentration factor (𝐾𝑓) should be multiplied with both 𝜎𝑎 & 𝜎𝑚   

for conservative results. 

 The load line represents any combination of 𝜎𝑎  and 𝜎𝑚  , the intersection of the load 

line with any of the failure lines gives the limiting values 𝑆𝑎  and 𝑆𝑚 according to the 

line it intercepts. 

Where ( 𝑛) is the design factor 

It fits experimental data better (see fig 6-25) 
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Modified Goodman (Goodman and Langer) 

It combines the Goodman and Langer lines.  

 The slope of the loading line passing through the 

intersection point of the two lines is called the 

critical slope and it is found as:  

           𝑟𝑐𝑟𝑖𝑡 = 𝑆𝑎 𝑆𝑚⁄  

       𝑤ℎ𝑒𝑟𝑒    𝑆𝑚 =
(𝑆𝑦 − 𝑆𝑒)𝑆𝑢𝑡

𝑆𝑢𝑡 − 𝑆𝑒
   &      𝑆𝑎 = 𝑆𝑦 − 𝑆𝑚 

 According to the slope of the load line (𝑟 = 𝜎𝑎 𝜎𝑚⁄ ), it could intersect any of the 

two lines: 

 𝑟 > 𝑟𝑐𝑟𝑖𝑡        1   𝑆𝑎 =
𝑟𝑆𝑒𝑆𝑢𝑡

𝑟𝑆𝑢𝑡 + 𝑆𝑒
       &      𝑆𝑚 =

𝑆𝑎

𝑟
  , 𝑛𝑓 =

𝑆𝑎

𝜎𝑎
=

𝑆𝑚

𝜎𝑚
=

1
𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑢𝑡

 

𝑟 < 𝑟𝑐𝑟𝑖𝑡        2   𝑆𝑎 =
𝑟𝑆𝑦

1 + 𝑟
       &      𝑆𝑚 =

𝑆𝑦

1 + 𝑟
  , 𝑛𝑠 =

𝑆𝑎

𝜎𝑎
=

𝑆𝑚

𝜎𝑚
=

𝑆𝑦

𝜎𝑎 + 𝜎𝑚
 

 Where case 2  is considered to be a static yielding failure. 
 

 If we plot the Modified Goodman on stress (𝜎) vs. mean stress (𝜎𝑚) axes we obtain 

the complete Modified Goodman diagram where it defines a failure envelope such 

that any alternating stress that falls inside the diagram will not cause failure. 

 

 

 

 

 

 

 

 

The “Complete” 

Modified Goodman 

Diagram 
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 Also, there are other modified criteria: 

 Gerber-Langer (see Table 6-7) 

 ASME-elliptic-Langer (see Table 6-8) 

 

Torsional Fatigue Loading  

For shafts that are subjected to fluctuating shear stress with non-zero mean (due to 

pulsating torque), a fatigue criterion (ASME elliptic, Gerber, etc.) needs to be used. 

 It should be noted that the endurance limit 𝑆𝑒 already accounts for the torsional 

loading since 𝑘𝑐 = 0.59 is used in such case. 

 Similarly, the yield or ultimate strengths need to be corrected where the “shear 

yield strength” 𝑆𝑦𝑠 or the “shear ultimate strength” 𝑆𝑢𝑠 need to be used and those 

are found as: 

𝑆𝑦𝑠 = 0.577𝑆𝑦             𝑎𝑛𝑑              𝑆𝑢𝑠 = 0.67𝑆𝑢𝑡  

 

Combination of Loading Modes 

The procedures presented earlier can be used for fatigue calculations for a component 

subjected to general fluctuating stress (or fully reversed stress, easier) under one of the 

three modes of loading; Axial, Bending or Torsion. 

 For a component subjected to general fluctuating stress under combination of 

loading modes: 

 The stress corresponding to each mode of loading is split into its alternating (𝜎𝑎) 

and midrange (𝜎𝑚) components. 

 The fatigue stress concentration factor corresponding to each mode of loading is 

applied to the (𝜎𝑎 & 𝜎𝑚) of that mode. 

 An equivalent von Mises stress is calculated for the alternating and midrange 

components as: 

𝜎𝑎
′ = √[(𝐾𝑓)

𝑏𝑒𝑛𝑑𝑖𝑛𝑔
(𝜎𝑎)𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + (𝐾𝑓)

𝑎𝑥𝑖𝑎𝑙

(𝜎𝑎)𝑎𝑥𝑖𝑎𝑙

0.85
]

2

+ 3 [(𝐾𝑓𝑠)
𝑡𝑜𝑟𝑠𝑖𝑜𝑛

(𝜏𝑎)𝑡𝑜𝑟𝑠𝑖𝑜𝑛]
2
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𝜎𝑚
′ = √[(𝐾𝑓)

𝑏𝑒𝑛𝑑𝑖𝑛𝑔
(𝜎𝑚)𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + (𝐾𝑓)

𝑎𝑥𝑖𝑎𝑙
(𝜎𝑚)𝑎𝑥𝑖𝑎𝑙]

2

+ 3 [(𝐾𝑓𝑠)
𝑡𝑜𝑟𝑠𝑖𝑜𝑛

(𝜏𝑚)𝑡𝑜𝑟𝑠𝑖𝑜𝑛]
2

 

 Note that alternating component of the axial load is divided by 0.85 (i.e., 𝑘𝑐 

for axial loading).  

 The torsional alternating stress is not divided by its corresponding 𝑘𝑐 value 

(i.e., 0.59) since that effect is already accounted for in the von Mises stress. 

 The endurance limit is calculated assuming the loading is bending (i.e., 𝑘𝑐 = 1). 

 Finally, a fatigue failure criterion (Gerber, Goodman, ASME-elliptic, etc.) is 

selected and applied as usual. 

 

 

 

 

Example: A 40 𝑚𝑚 diameter bar has been machined from AISI-1045 CD bar. The bar 

will be subjected to a fluctuating tensile load varying from 0 to 100 𝑘𝑁. Because of the 

ends fillet radius, 𝐾𝑓 = 1.85 is to be used. 

Find the critical mean and alternating stress values 𝑆𝑎 & 𝑆𝑚 and the fatigue factor of 
safety 𝑛𝑓 according to the Modified Goodman fatigue criterion. 

Solution: 
 

From Table A-20      𝑆𝑢𝑡 = 630 𝑀𝑃𝑎     &    𝑆𝑦 = 530 𝑀𝑃𝑎 
 

𝑆𝑒
′ = 0.5(𝑆𝑢𝑡) = 315 𝑀𝑃𝑎     

 

Modifying factors: 

- Surface factor:      𝑘𝑎 = 4.51(630)−0.265 = 0.817      (Table 6-2)   

- Size factor:             𝑘𝑏 = 1    since the loading is axial 

- Loading factor:     𝑘𝑐 = 0.85        (for axial loading) 

- Other factors:       𝑘𝑑 = 𝑘𝑒 = 𝑘𝑓 = 1   

           𝑆𝑒 = 𝑘𝑎𝑘𝑐𝑆𝑒
′ = (0.817)(0.85)(315) = 218.8 𝑀𝑃𝑎 

 

Fluctuating stress:      𝜎 =
𝐹

𝐴
          ,   𝐴 =

𝜋

4
𝑑2 = 1.257 × 103 𝑚𝑚2 

A road map summarizing all the important equations for the stress-life 

method is given in Sec. 16-7 page 338. 



Shigley’s Mechanical Engineering Design, 10th Ed.      Class Notes by:  Dr. Ala Hijazi 

CH 6 (R1)          Page 20 of 20 

                 𝜎𝑚𝑎𝑥 =
100 × 103

1.257 × 103
= 79.6 𝑀𝑃𝑎       &        𝜎𝑚𝑖𝑛 = 0 

                 𝜎𝑚𝑜
=

𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
= 39.8 𝑀𝑃𝑎        &         𝜎𝑎𝑜

=
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
= 39.8 𝑀𝑃𝑎 

Applying 𝐾𝑓 to both components:      𝜎𝑚 = 𝐾𝑓 𝜎𝑚𝑜
     &      𝜎𝑎 = 𝐾𝑓 𝜎𝑎𝑜

 

         𝜎𝑚 = 𝜎𝑎 = 1.85(39.8)

= 73.6 𝑀𝑃𝑎 

 The plot shows that the load line 

intersects the Goodman line: 

𝑆𝑎 =
𝑟𝑆𝑒𝑆𝑢𝑡

𝑟𝑆𝑢𝑡 + 𝑆𝑒
=

1(218.8)(620)

1(620) + 218.8
 

            𝑆𝑎 = 162.4 𝑀𝑃𝑎 = 𝑆𝑚 

          𝑛𝑓 =
1

𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑢𝑡

         𝑜𝑟       𝑛𝑓 =
𝑆𝑎

𝜎𝑎
=

𝑆𝑚

𝜎𝑚
 

              𝑛𝑓 =
162.4

73.6
= 2.21  

 

 

 

 

See Example 6-12 from text 

 


