CH 6: Fatigue Failure Resulting from Variable Loading

Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture). However, most machine elements are subjected to <u>varying or fluctuating stresses</u> (*due to the movement*) such as shafts, gears, bearings, cams & followers, etc.

Fluctuating stresses (repeated over long period of time) will cause a part to <u>fail</u> (*fracture*) at a stress level <u>much smaller than the ultimate strength</u> (or even the yield strength in some casses).

Unlike static loading where failure usualy can be detected before it happens (due to the large deflections associated with plastic deformation), fatigue failures are usualy <u>sudden</u> and therefore dangerous.

Fatigue failure is somehow similar to brittle fracture where the fracture surfaces are <u>prependicular</u> to the load axis.

- According to Linear-Elastic Fracture Mechanics (LEFM), fatigue failure develops in <u>three stages</u>:
 - <u>Stage1</u>: development of one or more <u>micro cracks</u> (the size of two to five grains) due to the cyclic local plastic deformation.
 - <u>Stage2</u>: the cracks progress from micro cracks to larger cracks (macro cracks) and <u>keep growing</u> making a smooth plateau-like fracture surfaces with <u>beach marks</u>.
 - <u>Stage3</u>: occurs during the <u>final stress cycle</u> where the remaining material cannot support the load, thus resulting in a <u>sudden fracture</u> (*can be brittle or ductile fracture*).
- Fatigue failure is due to crack formation and propagation. Fatigue cracks usually <u>initiate</u> <u>at locations with high stresses</u> such as discontinuities (*hole, notch, scratch, sharp corner, crack, inclusions, etc.*).

• Fatigue cracks can also initiate at surfaces having <u>rough surface finish</u> or due to the presence of tensile <u>residual stresses</u>. Thus all parts subjected to fatigue loading are <u>heat treated and polished</u> in order to increase the fatigue life.

Fatigue Life Methods

Fatigue failure is a much more complicated phenomenon than static failure where much complicating factors are involved. Also, testing materials for <u>fatigue properties</u> is <u>more complicated</u> and much more <u>time consuming</u> than static testing.

Fatigue life methods are aimed to determine the <u>life</u> (*number of loading cycles*) of an element <u>until failure</u>.

- There are <u>three</u> major <u>fatigue life methods</u> where each is more accurate for some <u>types of loading</u> or for some <u>materials</u>. The three methods are: the <u>stress-life</u> method, the <u>strain-life</u> method, the <u>linear-elastic fracture mechanics</u> method.
- The fatigue life is usually <u>classified</u> according to the <u>number of loading cycles</u> into:
 - Low cycle fatigue (1≤N≤1000) and for this low number of cycles, designers sometimes <u>ignore</u> fatigue effects and just use static failure analysis.
 - <u>High cycle fatique</u> $(N>10^3)$:
 - ▶ <u>Finite life</u>: from $10^3 \rightarrow 10^6$ cycles
 - Infinite life: more than 10⁶ cycles

The Strain-Life Method

This method relates the fatigue life to the amount of <u>plastic strain</u> suffered by the part during the repeated loading cycles.

 When the stress in the material exceeds the yield strength and the material is plastically deformed, the material will be strain hardened and the yield strength will increase if the part is reloaded again. However, if the stress direction is reversed (from tension to compression), the <u>yield strength in the reversed</u> <u>direction will be smaller</u> than its initial value which

Class Notes by: Dr. Ala Hijazi

means that the material has been <u>softened</u> in the reverse loading direction (*this is referred to as <u>Bauschinger Effect</u>*). Each time the stress is reversed, the yield strength in the other direction is decreased and the material gets softer and undergoes more plastic deformation until fracture occurs.

• The strain-life method is applicable to <u>Low-cycle fatigue</u>.

The Linear Elastic Fracture Mechanics Method

This method assumes that a crack initiates in the material and it keeps growing until failure occurs (*the three stages described above*).

- The LEFM approach assumes that a <u>small crack already exists</u> in the material, and it calculates the <u>number of loading cycles</u> required for the crack to grow to be large enough to cause the remaining material to fracture completely.
- This method is more applicable to <u>High-cycle fatigue</u>.

The Stress-Life Method

This method relates the fatigue life to the alternating stress level causing failure but it does not give any explanation to why fatigue failure happens.

• The stress-life relation is obtained experimentally using *Moore* high-speed <u>rotating beam test</u>.

- The test is conducted by subjecting the rotating beam
 to a pure bending moment (of a fixed known magnitude) until failure occurs.
 (Due to rotation, the specimen is subjected to an alternating bending stress)
- The data obtained from the tests is used to generate the <u>fatigue strength</u> *vs.* <u>fatigue life</u> diagram which is known as the <u>S-N diagram</u>.
- The first point is the <u>ultimate strength</u> which corresponds to failure in half a cycle.
- The alternating stress amplitude is <u>reduced</u> below the ultimate strength and the test is run until failure. The stress level and the number of cycles until failure give a data point on the chart.
- The testing continues and <u>each time the stress amplitude is reduced</u> (*such that the specimen will live longer*) and new point is obtained.

Shigley's Mechanical Engineering Design, 10th Ed.

- For <u>steel alloys</u> the low-cycle fatigue and the high-cycle fatigue (*finite and infinite*) can be recognized as having <u>different slopes</u>. (*they are straight lines but keep in mind it is a log-log curve*)
- For steels if we keep reducing the stress amplitude (for each test) we will reach to a stress level for which the specimen will <u>never fail</u>, and this value of stress is known as the *Endurance Limit* (S_e).

- The number of stress cycles associated with the Endurance Limit defines the <u>boundary</u> between *Finite-life* and *Infinite-life*, and it is usually between 10⁶ to 10⁷ cycles.
- <u>Steel and Titanium</u> alloys have a clear endurance limit, but this is <u>not true for all</u> <u>materials</u>.
 - For instance, Aluminum alloys do not have an endurance limit and for such materials the fatigue strength is reported at $5(10^8)$ cycles.
 - > Also, most polymers do not have an endurance limit.

The Endurance Limit

The determination of the endurance limit is important for designing machine elements that are subjected to High-cycle fatigue. The common practice when designing such elements is to make sure that the <u>fatigue stress level</u> in the element is <u>below the</u> <u>endurance limit</u> of the material being used.

• Finding the Endurance Limit using the rotating beam experiment is <u>time consuming</u> where it requires testing many samples and the time for each test is relatively long. Therefore they try to relate the endurance limit to other mechanical properties which are easier to find (*such as the ultimate tensile strength*).

Shigley's Mechanical Engineering Design, 10th Ed.

- The figure shows a plot of the <u>Endurance Limits versus Tensile</u> <u>Strengths</u> for a large number of <u>steel and iron</u> specimens.
 - The graph shows a <u>correlation</u> <u>between the ultimate strength</u> <u>and endurance limit</u> for ultimate strengths <u>up to</u> 1400 *MPa* then the endurance limit seems to have a <u>constant value</u>.

 The relationship between the endurance limit and ultimate strength for <u>steels</u> is given as:

$$S_{e}{}' = \begin{cases} 0.5 \, S_{ut} & for \quad S_{ut} \le 1400 \, MPa \\ 700 \, MPa & for \quad S_{ut} > 1400 \, MPa \end{cases}$$

• The *prime* (') is used to denote that this is the endurance limit value obtained for the test specimen (*modifications are still needed*).

Endurance Limit Modifications Factors

Endurance limit is obtained from the rotating beam test. The test is conducted under closely <u>controlled conditions</u> (*polished specimen of small size at a constant known temperature, etc.*). It is not realistic to expect a <u>machine element</u> to have the exact same endurance limit value as that obtained from the rotating beam test because it has <u>different conditions</u> (*size, surface finish, manufacturing process, environment, etc.*)

• Thus some <u>modification factors</u> are used to correlate the endurance limit for a given mechanical element to the value obtained from tests:

$$Size \quad Temp. Misc.$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$S_e = k_a k_b k_c k_d k_e k_f S_e'$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Finish Load Reliability

Where,

- S_e : The endurance limit at the critical location of a <u>machine element</u> with the geometry and conditions of use.
- S_e' : The endurance limit obtained from the rotating beam test.

 $k_a \dots k_f$: Modification factors (*obtained experimentally*).

<u>Surface Condition Factor</u> (k_a)

The rotating-beam test specimens are highly polished. A <u>rough surface</u> finish will <u>reduce the endurance limit</u> because there will be a higher potential for crack initiation.

• The surface condition modification factor depends on the <u>surface finish</u> of the part (*ground, machined, as forged, etc.*) and on the <u>tensile strength</u> of the material. It is given as:

$$k_a = a S_{ut}^{\ b}$$

Constants a & b depend on surface condition and are given in <u>Table 6-2</u>.

<u>Size Factor</u> (k_b)

The rotating-beam specimens have a specific (*small*) diameter (7.6mm). Parts of larger size are more likely to contain flaws and to have more non-homogeneities.

• The size factor is given as:

For bending and torsion

 $k_b = \begin{cases} 1.24 \ d^{-0.107} & 2.79 \le d \le 51 \ mm \\ 1.51 \ d^{-0.157} & 51 < d \le 254 \ mm \end{cases}$

where d is the diameter,

and:

 $k_b = 1$ for axial loading

 When a member with <u>circular</u> cross-section is <u>not rotating</u>, we use an <u>effective</u> <u>diameter</u> value instead of the actual diameter, where:

$$d_e = 0.37 d$$

✤ For <u>other cross-sections</u>, d_e is found using <u>Table 6-3</u> (obtain A_{0.95σ} from table then solve <u>eqn. 6-23</u> for the "equivalent diameter" d and finally find d_e using the equation above "<u>eqn. 6-24</u>").

Shigley's Mechanical Engineering Design, 10^{th} Ed.

<u>Loading Factor</u> (k_c)

The rotating-beam specimen is loaded in <u>bending</u>. Other types of loading will have a different effect.

• The load factor for the <u>different types of loading</u> is:

$k_c = \cdot$	(1	bending
	0.85	axial
	0.59	torsion

<u>Temperature Factor</u> (k_d)

When the operating temperature is <u>below room temperature</u>, the material becomes more brittle. When the <u>temperature is high</u> the yield strength decreases and the material becomes more ductile (and creep may occur).

• For steels, the tensile strength , and thus the endurance limit, slightly increases as temperature rises, then it starts to drop. Thus, the temperature factor is given as:

$$\begin{split} k_d &= 0.9877 + 0.6507(10^{-3})T_c - 0.3414(10^{-5})T_c^2 + 0.5621(10^{-8})T_c^3 \\ &- 0.6246(10^{-11})T_c^4 \end{split}$$

For
$$40 \le T_c \le 540 \ ^\circ C$$

✤ The same values calculated by the equation are also given in <u>Table 6-4</u> where:

$$k_d = \left(\frac{S_T}{S_{RT}}\right)$$

<u>Reliability Factor</u> (k_e)

The endurance limit obtained from testing is usually reported at <u>mean value</u> (*it has a normal distribution with* $\hat{\sigma} = 8\%$).

• For other values of reliability, k_e is found from <u>Table 6-5</u>.

<u>Miscellaneous-Effects Factor</u> (k_f)

It is used to account for the reduction of endurance limit due to <u>all other effects</u> (*such as residual stress, corrosion, cyclic frequency, metal spraying, etc.*).

However, those effects are not fully characterized and usually not accounted for. Thus we use $(k_f = 1)$.

Stress Concentration and Notch Sensitivity

Under fatigue loading conditions, <u>crack initiation</u> and growth usually starts in locations having high <u>stress concentrations</u> (such as grooves, holes, etc.). The presence of stress concentration <u>reduces the fatigue life</u> of an element (*and the endurance limit*) and it must be considered in fatigue failure analysis.

However, due to the <u>difference in ductility</u>, the <u>effect</u> of stress concentration on fatigue properties is <u>not the same</u> for different materials.

• For materials under fatigue loading, the maximum stress near a notch (hole, fillet, etc.) is:

$$\sigma_{max} = K_f \sigma_o \qquad \underline{or} \qquad \tau_{max} = K_{fs} \tau_o$$

Where,

 σ_o : is the nominal stress

 K_f : is the <u>fatigue stress concentration</u> factor which is a <u>reduced value</u> of the stress concentration factor (K_t) because of the difference in material <u>sensitivity</u> to the presence of notches.

and K_f is defined as:

$$K_f = \frac{max.stress\ in\ notched\ specimen}{stress\ in\ notch - free\ specimen}$$

<u>Notch sensitivity</u> (q) is defined as:

$$q = \frac{K_f - 1}{K_t - 1}$$
 or $q_{shear} = \frac{K_{fs} - 1}{K_{ts} - 1}$

The value of q ranges from 0 to 1

 $q = 0 \rightarrow K_f = 1$ (material is not sensitive) $q = 1 \rightarrow K_f = K_t$ (material is fully sensitive)

• Thus,

$$K_f = 1 + q(K_t - 1) \qquad \underline{or} \qquad K_{fs} = 1 + q_{shear}(K_{ts} - 1)$$

For Steels and Aluminum (2024) the notch sensitivity for <u>Bending and Axial</u> loading can be found from <u>Figure 6-20</u> and for <u>Torsion</u> is found from <u>Figure 6-21</u>.

Shigley's Mechanical Engineering Design, 10th Ed.

• Alternatively, instead of using the figures, the fatigue stress concentration factor K_f , can be found as:

$$K_f = 1 + \frac{K_t - 1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

The Neuber equation

where, r : radius

 \sqrt{a} : is a material constant known as the Neuber constant.

- ✤ For steels, \sqrt{a} can be found using <u>Eqns. 6-35a & 6-35b</u> given in the text (note that S_{ut}needs to be in "kpsi" and \sqrt{a} will be given in " \sqrt{in} ")
- For <u>cast iron</u>, the notch sensitivity is <u>very low</u> from 0 to 0.2, but to be <u>conservative</u> it is recommended to use q = 0.2
- For simple loading, K_f can be multiplied by the stress value, or the endurance limit can be reduced by dividing it by K_f . However, for combined loading each type of stress has to be multiplied by its corresponding K_f value.

Fatigue Strength

In <u>some design applications</u> the number of load cycles the element is subjected to, is limited (*less than 10^6*) and therefore there is <u>no need to design for infinite life</u> using the endurance limit.

- In such cases we need to find the <u>Fatigue</u> <u>Strength</u> associated with the desired life.
- For the High-cycle fatigue $(10^3 \rightarrow 10^6)$, the line equation is $S_f = aN^b$ where the constants "a" (*y* intercept) and "b" (slope) are determined from the end points $(S_f)_{10^3}$ and $(S_f)_{10^6}$ as:

$$a = \frac{(S_f)_{10^3}^2}{S_e}$$
 and $b = -\frac{\log(\sigma'_f/S_e)}{\log(2N_e)}$

Shigley's Mechanical Engineering Design, 10th Ed.

Class Notes by: Dr. Ala Hijazi

CH 6 (R1)

Page 9 of 20

Where σ'_f is the *True Stress at Fracture* and for <u>steels</u> with $H_B \le 500$, it is approximated as:

, fraction of

$$\sigma_f' = S_{ut} + 345 Mpa$$

- $(S_f)_{10^3}$ can be related to S_{ut} as:

$$(S_f)_{10^3} = fS_{ut}$$

where f is found as:

$$f = \frac{\sigma_f'}{S_{ut}} (2 \times 10^3)^b$$

✤ Using the above equations, the value of *f* is found as a function of S_{ut}(using N_e = 10⁶) and it is presented in graphical form in <u>Figure 6-18</u>.

For S_{ut} values less than 490 MPa, use f = 0.9to be conservative

• If the value of (*f*) is <u>known</u>, the constant *b* can be directly found as:

$$b = -\frac{1}{3}\log\left(\frac{fS_{ut}}{S_e}\right)$$

and *a* can be rewritten as:

$$a = \frac{(fS_{ut})^2}{S_e}$$

- Thus for $10^3 \le N \le 10^6$, the fatigue strength associated with a given life (N) is:

$$\left(S_f\right)_N = aN^b$$

and the fatigue life (N) at a given fatigue stress (σ) is found as:

$$N = \left(\frac{\sigma}{a}\right)^{\frac{1}{b}}$$

• Studies show that for <u>ductile materials</u>, the Fatigue Stress Concentration Factor (K_f) <u>reduces</u> for $N < 10^6$, however the <u>conservative</u> approach is to use K_f as is. *Example:* For a <u>rotating-beam specimen</u> made of *1045 CD* steel, find:

- a) The endurance limit ($N_e = 10^6$)
- b) The fatigue strength corresponding to (5×10^4) cycles to failure
- c) The expected life under a completely reversed stress of 400 MPa

Solution:
From Table A-20
$$S_{ut} = 630 \text{ MPa}$$

a) $S_e' = 0.5(S_{ut}) = 315 \text{ MPa}$
b) $\sigma_f' = S_{ut} + 345 = 975 \text{ MPa}$
 $b = -\frac{\log(\sigma_f'/S_e)}{\log(2N_e)} = -\frac{\log(975/315)}{\log(2 \times 10^6)} = -0.0779$
 $f = \frac{\sigma_f'}{S_{ut}}(2 \times 10^3)^b = \frac{975}{630}(2 \times 10^3)^{-0.0779} = 0.856$
 $a = \frac{(fS_{ut})^2}{S_e} = \frac{(0.856 \times 630)^2}{315} = 923.4 \text{ MPa}$

OB, easier, from Figure 6-18: $f \approx 0.857$
Then,
 $a = \frac{(fS_{ut})^2}{S_e} = \frac{(0.857 \times 630)^2}{315} = 925.4 \text{ MPa}$
 $b = -\frac{1}{3}log(\frac{fS_{ut}}{S_e}) = -\frac{1}{3}log(\frac{0.857 \times 630}{315}) = -0.078$

 $(S_f)_N = aN^b \rightarrow (S_f)_{5 \times 10^4} = 923.4(5 \times 10^4)^{-0.0779}$
 $\Rightarrow (S_f)_{5 \times 10^4} = \boxed{397.5 \text{ MPa}}$

$$N = \left(\frac{\sigma}{a}\right)^{\frac{1}{b}} = \left(\frac{400}{923.4}\right)^{\frac{1}{-0.0779}} = \boxed{46.14 \times 10^3 cycles}$$

Shigley's Mechanical Engineering Design, 10th Ed.

Example: The two axially loaded bars shown are made of *1050 HR* steel and have machined surfaces. The two bars are subjected to a <u>completely reversed</u> load *P*.

- a) Estimate the maximum value of the load *P* for each of the two bars such that they will have infinite life (*ignore buckling*).
- b) Find the static and fatigue factors of safety $n_s \& n_f$ for bar (**B**) if it is to be subjected to a completely reversed load of $P = 50 \ kN$.
- c) Estimate the fatigue life of bar (**B**) under reversed load of $P = 150 \ kN$ (use f = 0.9)

Solution:

From <u>Table A-20</u> $S_{ut} = 620 MPa$ & $S_y = 340 MPa$

a)
$$S_e' = 0.5(S_{ut}) = 310 MPa$$

Modifying factors:

- Surface factor: $k_a = a S_{ut}^{\ b}$, from <u>Table 6-2</u>: a = 4.51, b = -0.265

$$- k_a - 4.51(020) = 0.021$$

- Size factor: $k_b = 1$ since the loading is axial
- Loading factor: $k_c = 0.85$ (for axial loading)
- Other factors: $k_d = k_e = k_f = 1$

<u>Stress concentration</u> (for bar **B**):

From <u>Figure A-15-3</u> with w/d = 1.2 & r/d = 0.1 \rightarrow $K_t \approx 2.38$ The fatigue stress concentration factor: $K_f = 1 + q(K_t - 1)$

From *Figure 6-20* for steel: $q \approx 0.81$

→
$$K_f = 1 + 0.81(2.38 - 1) = 2.12$$

Thus the maximum stress for each should not exceed,

Bar (A):
$$S_e = k_a k_c S'_e = (0.821)(0.85)(310) = 216.3 MPa$$

Bar (B): $(S_e)_{mod} = \frac{S_e}{K_f} = \frac{216.3}{2.12} = 102.03 MPa$

And the maximum load *P* for each is,

<u>Bar (A)</u> :	$P_{max} = 216.3 \times (25 \times 25) = 135187.5 N$
Bar (B):	$P_{max} = 102.03 \times (25 \times 25) = 63767.7 N$

Shigley's Mechanical Engineering Design, 10th Ed.

Note that the maximum load for bar (B) is <u>smaller</u> than that of bar (A) because of the notch.

b) Static factor of safety n_s :

From <u>Table A-20</u>: $\epsilon_f = 0.15$ \rightarrow Ductile material, thus stress concentration is not applicable.

$$\sigma_o = \frac{P}{A_{net}} = \frac{50 \times 10^3}{25 \times 25} = 80 MPa$$

$$\bullet \quad n_s = \frac{S_y}{\sigma_o} = \frac{340}{80} = \boxed{4.25}$$

Fatigue factor of safety n_f :

$$n_f = \frac{(S_e)_{mod}}{\sigma_o}$$
 or $n_f = \frac{S_e}{(K_f \sigma_o)} = \frac{216.3}{(2.12)(80)} = 1.28$

c) If we calculate the fatigue factor of safety with $P = 150 \ kN$ we will find it to be less than one and thus the bar will not have infinite life.

$$a = \frac{(fS_{ut})^2}{S_e} = \frac{(0.9 \times 620)^2}{216.3} = 1439.5 MPa$$

$$b = -\frac{1}{3} \log\left(\frac{fS_{ut}}{S_e}\right) = -\frac{1}{3} \log\left(\frac{0.9 \times 620}{216.3}\right) = -0.137$$

$$\sigma_o = \frac{P}{A_{net}} = \frac{150 \times 10^3}{25 \times 25} = 240 MPa$$

$$\sigma = K_f \sigma_o = 2.12 \times 240 = 508.8 MPa$$

$$\blacktriangleright N = \left(\frac{\sigma}{a}\right)^{1/b} = \left(\frac{508.8}{1439.5}\right)^{1/-0.137} = 1.98 \times 10^3 \text{ cycles}$$

This gives more conservative results than dividing (S_e) by K_f, and using σ_o as is.

Shigley's Mechanical Engineering Design, 10th Ed.

Characterizing Fluctuating Stress

In the rotating-beam test, the specimen is subjected to <u>completely reversed stress</u> cycles ($\sigma_{max} = |\sigma_{min}|$)

In the case of the <u>rotating shaft</u> subjected to <u>both radial and axial loads</u> (*such as with helical gears*) the fluctuating stress pattern will be different since there will be a component of stress that is always present (*due to the axial load*).

• The following stress components can be defined for distinguishing different states of fluctuating stress:

- For uniform periodic fluctuating stress, $\sigma_m \& \sigma_a$ are used to characterize the stress pattern.
- We also define:
 - Stress ratio: $R = \sigma_{min}/\sigma_{max}$
 - Amplitude ratio: $A = \sigma_a / \sigma_m$
- Some common types of fluctuating stress:

Completely reversed stress: $\sigma_m = 0$ $\sigma_a = \sigma_{max} = |\sigma_{min}|$

Tension $\sigma_a = \sigma_m = \sigma_{max}/2$ Compression $\sigma_m = \sigma_{min}/2$

Shigley's Mechanical Engineering Design, 10th Ed.

Repeated stress:

Class Notes by: Dr. Ala Hijazi

CH 6 (R1)

Page 14 of 20

General fluctuating stress: (non-zero mean) $\sigma_a \neq \sigma_m \neq 0$

Fatigue Failure Criteria for Fluctuating Stress

When a machine element is subjected to completely reversed stress (*zero mean*, $\sigma_m = 0$) the endurance limit is obtained from the rotating-beam test (*after applying the necessary modifying factors*).

However, when the mean (*or midrange*) is <u>non-zero</u> the situation is different and a <u>fatigue failure criteria</u> is needed.

• If we plot the <u>alternating stress component</u> (σ_a) vs. the <u>mean stress component</u> (σ_m), this will help in distinguishing the different fluctuating stress scenarios.

- When $\sigma_m = 0 \& \sigma_a \neq 0$, this will be a <u>completely reversed fluctuating stress</u>.
- When $\sigma_a = 0$ & $\sigma_m \neq 0$, this will be a <u>static stress</u>.
- Any <u>combination</u> of σ_m & σ_a will fall between the two extremes (*completely reversed* & *static*).

<u>Different theories</u> are proposed to predict failure in such cases:

<u>**Yield (Langer) line</u>**: It connects S_{γ} on the σ_a axis with S_{γ} on σ_m axis. But it is not</u> realistic because S_{v} is usually larger than S_{e} .

<u>Soderberg line</u>: The most conservative, it connects S_e on σ_a axis with S_y on σ_m axis.

ASME-elliptic line: Same as Soderberg but it uses an ellipse instead of the straight line.

$$\left(\frac{n\sigma_a}{S_e}\right)^2 + \left(\frac{n\sigma_m}{S_y}\right)^2 = 1$$

It fits experimental data better (see fig 6-25)

Goodman line: It considers failure due to static loading to be at S_{ut} rather than S_{v} , thus it connects S_e on σ_a axis with S_{ut} on σ_m axis using a straight line.

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n}$$

Gerber line: Same as *Goodman* but it uses a parabola instead of the straight line.

$$\frac{n\sigma_a}{S_e} + \left(\frac{n\sigma_m}{S_{ut}}\right)^2 = 1$$

> The factor of safety is found as: $n_f = \frac{1}{2} \left(\frac{S_{ul}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e}$

$$\frac{1}{2}\left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut}\sigma_a}\right)^2}\right] \qquad \sigma_m > 0$$

- It should be noted that S_e is the <u>modified</u> endurance limit.
- The <u>fatigue stress concentration factor</u> (K_f) should be <u>multiplied with both</u> $\sigma_a \& \sigma_m$ for conservative results.
- The load line represents any combination of σ_a and σ_m , the intersection of the load line with any of the failure lines gives the limiting values S_a and S_m according to the line it intercepts.

Shigley's Mechanical Engineering Design, 10th Ed.

Class Notes by: Dr. Ala Hijazi

CH 6 (R1)

Modified Goodman (Goodman and Langer)

It combines the Goodman and Langer lines.

 The slope of the loading line passing through the intersection point of the two lines is called the <u>critical slope</u> and it is found as:

$$r_{crit} = S_a / S_m$$

where $S_m = \frac{(S_y - S_e)S_{ut}}{S_{ut} - S_e} \& S_a = S_y - S_m$

• According to the <u>slope of the load line</u> ($r = \sigma_a / \sigma_m$), it could intersect any of the two lines:

$$r > r_{crit} \Rightarrow \boxed{1} S_a = \frac{rS_e S_{ut}}{rS_{ut} + S_e} & S_m = \frac{S_a}{r} , \qquad n_f = \frac{S_a}{\sigma_a} = \frac{S_m}{\sigma_m} = \frac{1}{\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}}}$$
$$r < r_{crit} \Rightarrow \boxed{2} S_a = \frac{rS_y}{1+r} & S_m = \frac{S_y}{1+r} , \qquad n_s = \frac{S_a}{\sigma_a} = \frac{S_m}{\sigma_m} = \frac{S_y}{\sigma_a + \sigma_m}$$
$$\bullet \text{ Where case } \boxed{2} \text{ is considered to be a static vielding failure.}$$

• If we plot the *Modified Goodman* on stress (σ) vs. mean stress (σ_m) axes we obtain the complete *Modified Goodman* diagram where it defines a failure envelope such that any alternating stress that falls inside the diagram will not cause failure.

Shigley's Mechanical Engineering Design, 10^{th} Ed.

- Also, there are other modified criteria:
 - <u>Gerber-Langer</u> (see Table 6-7)
 - <u>ASME-elliptic-Langer</u> (see Table 6-8)

Torsional Fatigue Loading

For shafts that are subjected to fluctuating shear stress with non-zero mean (*due to pulsating torque*), a fatigue criterion (*ASME elliptic, Gerber, etc.*) needs to be used.

- It should be noted that the endurance limit S_e already accounts for the torsional loading since $k_c = 0.59$ is used in such case.
- Similarly, the yield or ultimate strengths need to be corrected where the "shear yield strength" S_{ys} or the "shear ultimate strength" S_{us} need to be used and those are found as:

$$S_{ys} = 0.577S_y \qquad and \qquad S_{us} = 0.67S_{ut}$$

Combination of Loading Modes

The procedures presented earlier can be used for fatigue calculations for a component subjected to general fluctuating stress (*or fully reversed stress, easier*) under one of the three modes of loading; Axial, Bending or Torsion.

- For a component subjected to general fluctuating stress under combination of loading modes:
 - The stress corresponding to each mode of loading is split into its alternating (σ_a) and midrange (σ_m) components.
 - The fatigue stress concentration factor corresponding to each mode of loading is applied to the (σ_a & σ_m) of that mode.
 - An equivalent von Mises stress is calculated for the alternating and midrange components as:

$$\sigma_{a}' = \sqrt{\left[\left(K_{f}\right)_{bending}(\sigma_{a})_{bending} + \left(K_{f}\right)_{axial}\frac{(\sigma_{a})_{axial}}{0.85}\right]^{2} + 3\left[\left(K_{fs}\right)_{torsion}(\tau_{a})_{torsion}\right]^{2}}$$

$$\sigma'_{m} = \sqrt{\left[\left(K_{f}\right)_{bending}(\sigma_{m})_{bending} + \left(K_{f}\right)_{axial}(\sigma_{m})_{axial}\right]^{2} + 3\left[\left(K_{fs}\right)_{torsion}(\tau_{m})_{torsion}\right]^{2}}$$

- ✓ Note that alternating component of the axial load is divided by 0.85 (i.e., k_c for axial loading).
- ✓ The torsional alternating stress is not divided by its corresponding k_c value (i.e., 0.59) since that effect is already accounted for in the *von Mises* stress.
- The endurance limit is calculated <u>assuming the loading is bending</u> (i.e., $k_c = 1$).
- Finally, a fatigue failure criterion (Gerber, Goodman, ASME-elliptic, etc.) is selected and applied as usual.

A road map summarizing all the important equations for the stress-life method is given in Sec. 16-7 page 338.

Example: A 40 mm diameter bar has been machined from AISI-1045 CD bar. The bar will be subjected to a fluctuating tensile load varying from 0 to 100 kN. Because of the ends fillet radius, $K_f = 1.85$ is to be used.

Find the critical mean and alternating stress values $S_a \& S_m$ and the fatigue factor of safety n_f according to the *Modified Goodman* fatigue criterion.

<u>Solution</u>:

From Table A-20
$$S_{ut} = 630 MPa$$
 & $S_y = 530 MPa$
 $S_e' = 0.5(S_{ut}) = 315 MPa$

Modifying factors:

- Surface factor: $k_a = 4.51(630)^{-0.265} = 0.817$ (<u>Table 6-2</u>)
- Size factor: $k_b = 1$ since the loading is axial
- Loading factor: $k_c = 0.85$ (for axial loading)
- Other factors: $k_d = k_e = k_f = 1$

→
$$S_e = k_a k_c S'_e = (0.817)(0.85)(315) = 218.8 MPa$$

Fluctuating stress: $\sigma = \frac{F}{A}$, $A = \frac{\pi}{4}d^2 = 1.257 \times 10^3 \ mm^2$

Shigley's Mechanical Engineering Design, 10th Ed.

Class Notes by: Dr. Ala Hijazi

CH 6 (R1)

Page 19 of 20

See Example 6-12 from text