

The Hashemite University DEPARTMENT OF MECHANICAL ENGINEERING Machine Elements Design

Part One (Closed Book) 28-10-2010

Student No.:

Student Name:

Problem I. [7 points]							
1-1. In case of pressure	vessels having o	pen ends,	the fluid p	ressu	re induces		
a. longitudinal stress	b. circumferer	ntial stress	c. s	shear s	stress		d. none of these
1-2. In an internally	pressurized th	in-walled	cylinder,	the 1	longitudinal	stress	is of the
circumferential stress							
a. One-half	b. two-thir	d	c. three-for	urth		d. none	of these
1-3. In an internally pressurized thick-walled cylinder, the tangential stress across the thickness of the							
cylinder is							
a. maximum at the outer	surface and mini	imum at th	e inner surf	ace			
b. maximum at the inner surface and minimum at the outer surface							
c. maximum at the inner surface and zero at the outer surface							
d. maximum at the outer surface and zero at the inner surface							
1-4. In an internally pressurized thick-walled cylinder, the maximum radial stress at the outer surface							
is							
a. zero	b. <i>P</i>		cP			d. 2 <i>P</i>	
1-5. The design of the pressure vessel is based on							
a. longitudinal stress	b. hoop stre	ess	c. longitud	linal a	nd hoop stres	sses	d. none of these
1-6. The principal stresses using Mohr's circle technique are							
a. (-40, -10, 20) ksi	b. (40,- 20,	10) ksi	-				ZU KSI
c. (40, 20, -10) ksi d. (-40, 20, -10) ksi							
1-7. The maximum shear stress using Mohr's circle technique is							
a. 10 ksi b. 15 ksi	c. 25 ksi			0 ksi			40.1
1-8. The principal angle ϕ_p on the element is							
a. 45° b. 0.0°	c. 60°		d. 9	$90^{\rm o}$			
1-9. The maximum shear angle ϕ_s on the element is							
a. 45° b. 0.0°	c. 60°		d. 9	$90^{\rm o}$			
1-10 Circle the correct principal orientation corresponding to the stress							
state shown in Fig. 1.							
O							
4		4	\				
	-		<u> </u>		τ		
a 	}	L c /	\ d \	-		_	
10	\perp 20 2 $_{-}$		1	10			
						\	\
					+ (100	<u>}</u> _σ
						40	<i>1</i>
							: ,
							P
					Fig. 1	l	

1-11. The normal strains due to temperature change are

a. $\alpha \Delta T$ b. $\alpha \Delta T/E$ c. zero d. 0.5 $\alpha \Delta T/E$

1-12. When the material is loaded within elastic limit, then the stress to the strain

a. equal b. directly proportional c. inversely proportional d. none of these

1-13. The cold working process on a metals is carried out at a temperature

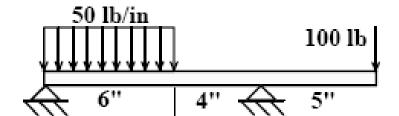
a. equal to the recrystallization temperature

b. bellow the recrystallization temperature

c. above the recrystallization temperature d. all of the above are correct

1-14. In static loading, stress concentration is more serious in

a. ductile material b. brittle material


c. elastic material d. brittle as well as ductile material

1-15. [3 Points]

For the beam shown in the Figure bellow

(i) Determine the values of the maximum shear force and maximum bending moment.

(ii) Drew the shear and moment diagrams.

$$\left| \mathbf{V}_{\mathrm{max}} \right| =$$