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Diffraction of waves by crystals: 

Crystal structures can be studied by using a diffraction method of  

(a) Photons (b) neutrons (c) electrons. 

 

X-ray diffraction and Bragg law: 

When the wave length of the beam of incident light is comparable 

or smaller than the lattice constant (i.e. a
~
<λ ), then a diffraction 

pattern may be obtained. The diffracted beams are found when 

reflections from parallel planes of atoms interfere constructively. 

Note: in such elastic scattering of waves from electrons in atoms 

such that k
r

 of incident wave = k ′
r

 of outgoing scattered wave. 

The path difference for waves reflected from adjacent planes: 

   2 d sin θ= n λ. 

 

Although Bragg law does not refer to the composition of basis of 

atoms associated with every lattice point, we can show that the 

composition of the basis determines the relative intensity of the 

various orders of diffraction (denoted by n) from a given set of 

parallel planes. (See figure 36). 
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Scattered wave amplitude: 

We need to determine the scattering intensity from the basis of 

atoms or in another meaning from the spatial distribution of 

electrons within each cell. Physical properties like charge 

concentration, electron number density, or magnetic moment 

density are invariant under translation of the 

form 332211 anananR rrrr
++= . 

 

 

Figure 36: Bragg reflection from two sets of family planes 
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a) The planes are separated by 
a distance d and the path 
difference is 2d sin θ. 

b) The planes are separated by 
d'. Both direction and wave 
length are different from these in 
(a). 
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Electron number density and Fourier analysis: 

 

The electron number density n ( rr ) is a periodic function of rr in the 

direction of the three crystal axes, namely, 

   )()( rnRrn rrr
=+ .  

This periodicity in crystals is directly related to the Fourier 

components of the electron density.  

One-Dimensional Picture: 

For example, in 1-D the electron number density n (x) with a period 

"a" along the x-axis can be expanded in a Fourier series of sines 

and cosines, i.e. 

 )]sin()cos([)( 22

0
a
mx

ma
mx

m
m CCnxn ππ ′++= ∑

>
o ,  

where m is a positive integer, Cm and mC ′  are real constants (called 

the Fourier coefficients of the expansion). The factor 
a
π2  in the 

arguments ensures that n (x) has the period a. Thus 

 )]2sin()2cos([)( 22
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ma
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m
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 )]sin()cos([)( 22
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a
mx
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>
o  

Comparing this to the above relation of n(x) we get 

   )()( xnaxn =+ .  

Here 
a
mπ2  is a point in the reciprocal lattice or Fourier space of the 

crystal. 

Notes:  

1) Reciprocal lattice points correspond to allowed terms in the 

Fourier series. 
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2) A term is allowed if it is consistent with the periodicity of the 

crystal, i.e. ∑=
x

a
mi

menxn
π2

)( , nm are complex numbers and the 

integer m may be zero, positive and negative. 

Exercise: Show that n(x) is a real function if we assume 

that mm nn =∗
− . 

The Fourier coefficient nm can be obtained from the inversion of 

Fourier series as 

   dxexn
a

n
a

a
mxi

m ∫
−

=
0

2

)(1 π

.  

Here n(x) is expressed as  

   ∑
′

′=
x

a
mi

m enxn
π2

)( .  

Thus the above form of nm is rewritten as 

   ∑∫
′

−′
−

′=
m

a
a

xmmi

mm dxen
a

n
0

)(21 π

.  

The final result depends on the integer m′ - m.  

If m′ ≠ m then the value of the integral is 0]1[
)(2

)(2 =−
−′

−′ mmie
mmi

a π

π
. 

This indicates that 1)(2 =−′ mmie π . However when m′ = m, the integral 

has the value of a, and then the final result represents the identity 

because we have mm nn ′= . 

  

Three-dimensional picture: 

In 3-D, 
rKi

G
Genrn

rrr •∑=)( is invariant under all crystal 

translations 332211 anananR rrrr
++= . The coefficient nG will determine 

the x-ray scattering amplitude. The Reciprocal vector K
r

 is an 
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integral multiple of the shortest reciprocal lattice vectorG
r

, 

i.e. GnK
rr

=   

[Hint: the integer n was previously denoted by m].   

In a similar manner to above the inversion of Fourier series to n 

( rr ) gives: 

   dVern
V

n
cell

rGi

cell
G ∫ •−=

rrr)(1
.  

Also we obtain 1=•rGie
rr

, as mentioned above for the case of 1-D, 

where wave vectors are always drawn in Fourier space, such that 

every position in Fourier space may have a meaning as a 

description of a wave. 

 Thus 
nianananbbkbhirGi eee π2)]()([ 332211321 == ++•++•

rrrr
l

rrrr

, 

 where 321 nknhnn l++= is an integer. 

Diffraction conditions: 

The set of reciprocal lattice vectors G
r

determines the possible x-

ray reflections. 

The scattering amplitude (F) is defined as follows: 

   dVernF rki∫ •∆−=
rrr)( ,  

where kkk
rrr

−′=∆ is called the scattering vector which measures the 

change in wave vector. Here 
λ
πnk

ˆ2
=

r
is the wave vector of incident 

beam and 
λ
πnk

ˆ2 ′
=′

r
is the wave vector of outgoing scattered beam. 

The scattering amplitude F can be rewritten as: 

   ∑∫ •∆−−=
G

rkGi
G dVenF

rrr
)(

,  
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where rGi

G
Genrn

rrr •∑=)( . When the condition of Gk
rr

=∆  is satisfied 

then we get the result F=VnG. 

Exercise: Show that F is negligibly small when k
r

∆  differs 

significantly from any reciprocal lattice vector. 

Note: 

In the elastic scattering of photon energy ωh , the frequency of 

outgoing beam kc ′=′ω is equal to that of incident beam ck=ω . 

This leads to the result of k = k'. This latter result also holds for 

electron and neutron beams. 

The result Gk
rr

=∆  or kGk
rrr
′=+ leads to the diffraction condition 

 22)( kGk =+
rr

   ⇒   02 2 =+• GGk
rr

.  

If G
r

 is a reciprocal lattice vector, so is G
r

− , then 

    22 GGk =•
rr

  

 (This is what is called the Bragg condition, see figure 30). 

Von Laue formulation of x-ray diffraction by a crystal: 

This approach considers the crystal as composed of set of ions (or 

atoms) located at the sites R
r
 of a Bravais lattice. Each site that 

receives the incident beam will reradiate this beam in all directions. 

The outgoing beams scattered by lattice sites then will interfere 

constructively and sharp peaks can be observed in directions and 

at wavelengths of these sites. 

Consider two scattering centers (two ionic or atomic sites) 

separated by a displacement vector rrr ˆ∆=∆
r

, as shown in figure 

37. The incident beam with a wave vector 
λ
π2

=k
r

 is along the 

direction of n̂ while the scattered beam of a wave vector 
λ
π2

=′k
r

 is 
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in the direction of n′ˆ , as shown in figure 37. The two beams will 

interfere constructively if the path difference between them is an 

integral number of wavelengths, i.e.  

  θθ ′+=′−•∆ coscos)ˆˆ( ddnnrr , where d=∆r  

It can be shown from figure 37 that:     

  λnnnr =′−•∆ )ˆˆ(r
.  

The latter equation, (when it is multiplied by 2π/λ can be rewritten 

as: 

  nkkr π2)( =′−•∆
rrr

.  

Any two scattering centers (or an array of centers) in the Bravais 

lattice can be chosen provided that they are displaced by the 

Bravais lattice vector R
r

and satisfy the condition of constructive 

interference, namely, 

  nkkR π2)( =′−•
rrr

.  

This is equivalent to the case of 1=∆• kRie
rr

 when k
r

∆  are 

characterized as set of wave vectors in reciprocal lattice and this 

case is applicable for all R
r

 in the Bravais lattice. 

Conclusion: 

Laue condition implies that constructive interference will occur 

provided that the change in wave vector Gnk
rr

=∆  is a vector of the 

reciprocal lattice.  

Note:  

Again the integer n could be set equal one when the distance 

between successive planes is considered. This integer also 

represents the common factor used to obtain the Miller indices. It 

will also be shown that such integer represents the order of the 

corresponding reflection in Bragg reflection. Here we must realize 
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that a beam of x-rays may contain different wave lengths, which in 

turn, correspond to different observed reflections. Also we must 

realize that there are several different ways of sectioning the 

crystal into planes which will result into further reflections. (See 

figure 36). 

Thus an incident wave vector k
r

 will satisfy the Laue condition if 

and only if the head of the vector lies in a plane that is 

perpendicular bisector of a line joining the origin of k-space to a 

reciprocal lattice pointG
r

. Such k-space planes are called Bragg 

planes. [i.e. 22 GGk =•
rr

, as shown in figure 37.b]. 

 

 

 
 

Figure 37: Bragg reflection from two lattice sites separated by d.

a) The path difference 2d sin θ
for rays scattered from two 
lattice points separated by a 
distance d.

b) The Laue condition is 
satisfied when 'kkG −=

rr
and 

k
r

and k ′
r

have the same length. 
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Equivalence of the Bragg and Von Laue formulations: 

The relation between vectors of reciprocal lattice and families of 

direct lattice planes implies that constructive interference of x-rays 

by a crystal can be established due to two equivalent criteria i.e. 

Bragg law and Laue approach.  

Question: How can we tell whether these two approaches are 

equivalent or not? 

Example: Show that the expression Gn
hkd rl

π2)( =  can be rewritten 

as 2 d sin θ= nλ, where θ is the angle between the incident beam of 

x-radiation and the crystal plane. [Note that the integer n is the 

same as the integer m mentioned above]. 

Solution: 

Since Laue condition implies that the change in wave vectors  

Gnk
rr

=∆  where d
G π2
=

r
, and d is the distance between two 

successive planes. 

From figure 37.b it can be shown that θsin2kk =∆
r

, and thus we 

get 

   d
nk πθ =sin , 

But we know that k = 2π /λ, then we obtain a gain the Bragg 

relation  λθ nd =sin2 . 

 


