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Other ways of obtaining Legendre Polynomials: 

1) Rodrigues Formula:   









)1(
!2

1
)( 2  x

dx

d
xP  

 
Exercise: Find Po(x), P1(x), P2(x), P3(x), and P4(x) from 
Rodrigues formula and compare your results with those 
obtained previously. (See problem 3, section 4). 

2)  Generating Function:
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Proof: Put 2xh – h2 = y and expand 2
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get: 
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h2. After simple rearrangements of terms you may have: 
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Recalling the obtained expressions for Po(x), P1(x), 
P2(x),…..etc., the generating function can be rewritten as: 
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Question: Is this a full proof that )(xP are really Legendre 

Polynomials? 
Answer: No it is not, but this is a strict verification of the 1st 

three terms. However, to prove that )(xP are 

Legendre Polynomials:  

i) )(xP must satisfy the Legendre DE.(This will be left to be 

proved by the student). 

ii) )(xP  should have the property 1)1( P . 

(See problem 2, section 4). 
 
[Hint: To solve problem 2, section 4, put x = 1 in the equations 

2
1

2 )21(),(


 hxhhx &  )()()(),( 2

2

1 xPhxhPxPhx  , 

then equate them after simple arrangements]. 
 



 

 

R. I. Badran Other ways of obtaining Legendre Polynomials      Mathematical Physics 

Recursion Relations for Legendre polynomials: 

a) )()1()()12()( 21 xPxxPxP      
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Properties of Legendre polynomials: 
 
 

1. The general behavior of Legendre polynomials can be 
shown by sketching graphs of Po(x), P1(x), P2(x), P3(x) from 
x = - 1 to x = 1. (See problem 2, section 2). 

2. 


 )1()1( P (See problem 2, section 2). 

Exercise: Find )0(P  

3.  
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1
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 if  m  (see problem 4, section 4). 

 
[Some other properties will be shown later on]. 
 
Suggested problems: Chapter 12, section 5 (4, 5, 6, 9, 11). 
 
 
Expansion of a potential:  
(An application for Legendre polynomials) 
 

(x, h) is useful in problems dealing with the potential of the 

type V ~
d

1
, where d is the distance between the source and 

field points. (e.g. gravitational or electrostatic potential).  This 

potential can be written as 
d

K
V  , where K is an appropriate 

constant that depends on the type of potential. The distance 
d, shown in the diagram, may be expressed by: 
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Put 
R

r
h   and x = cos  
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For the electrostatic problem with a single charge: K= kq 
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#For several charges qi: (Discrete charge distribution): K = kqi 
 








0

1
)(cos






P
R

r
qkV i

i

i  

 

# For a continous charge distribution:   
i

i ddqq  , 

and the potential can be expressed by: 
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density. 
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Using the cosine law we 
get: 
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Special cases: 
i) Monopole case (single charge), put    =0 you may get 

Q
R

K
V  , where  dQ is the total charge. 

ii)  Dipole case, put  =1 you get  dr
R

k
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[Note: Other cases of  =2 (Quadrupole) and  =3 (Octopole) 
will not be tackled here]. 

 


