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Complete elliptic integrals 
 

When 
2


  , the elliptic integrals are called the complete 

elliptic integrals of first and second kinds. 
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[Note: These integrals have special tables which are more  

accurate than the tables of F(k, ) and E(k, )]. 
 
 
 
Other properties of Legendre forms of elliptic integrals:  
 
 

Question: How can we find integrals with various values of ? 
 

Answer: We must always integrate over a number of  (not  

/2) intervals and then add or subtract the correct  

integral over an interval of length less than /2. 
 
 

1. Using the definition of complete elliptic integrals, we can  
show that  
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Proof: This can be proved by having a close insight into the 
shown diagram: 

 

The elliptic integrals are both functions of sin2, namely 

f(sin2). If we plot this function such that  between 0 and /2 

and that of  between /2 and  will give the same value. Thus 

for  between 0 and  is one period of f(sin2). The rest of the 
graph repeats itself. 
 

Remember that the area under the curve   df )(sin2
could 

be either F(k, ) or E((k, ). Now we can find the area under the 

curve for  between 0 and 9/4 as follows: 
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Also the area under the curve for  between 0 and 7/4 as 

follows: 
 

 
4

0

2

0

4

0

2

0

2

0

4
7

0

4






areaA
 

 
[Warning: You have to be very careful here not to confuse this  

later area with  
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2.  The elliptic integrals can be shown to be odd functions of , 
namely:  

 

  ),(),(  kFkF   

  ),(),(  kEkE   

 
3. When the lower limit in the elliptic integrals is different 

from zero, they can be expressed as follows: 
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Similarly 
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Exercise 1: Evaluate dx
x
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[Hint: take E(1/3)=1.525]. 
 

Solution: Put x = tan  and proceed. 
 

Exercise 2: Evaluate 
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[Hint: take K(1/2)=1.688]. 
 

Solution: Put 4 sin2 = sin2 and proceed… 
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Example: The problem of simple pendulum for large angles. 
 
 
Solution: 

Recalling the DE of motion C
g

  cos
2

)( 2


. 

By taking a swing of any amplitude, say , rather than /2 such 

that 0  at  = , we get cos
2



g
C  . 

)cos(cos
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g
. 

It must be noted that the period of a swing from - to  and 

back is T. Thus the limits can be summarized as : 
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The above DE can be rewritten as: 
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To obtain a final result for T we should solve problem 17, 

section 12, chap.11. 

We need to evaluate the integral 

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
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Put 
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sin
2

sin
2

sin   and change the limit of the integral 

such that for  = 0   = 0 and for  =    = /2. We have 
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Special cases: 

i) For  not too large (i.e. < /2  sin2 /2 < ½)  

[You have to solve problem 1, section 12, chap. 11].  

You might get a good approximation for T when 

you use the binomial expansion: 
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ii) For small enough     sin /2  /2, hence 
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iii) For very small  we will reach to the 
approximate result, that is, 
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[Hint: you may reach a step with ),(10 kEI  , where 

2

1
k ]. 


