Complete elliptic integrals

When $\phi = \frac{\pi}{2}$, the elliptic integrals are called the complete elliptic integrals of first and second kinds.

$$K(k) = F(k, \frac{\pi}{2}) = \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}$$

$$E(k) = E(k, \frac{\pi}{2}) = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 \phi} d\phi$$

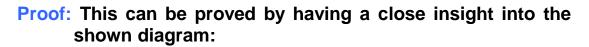
[Note: These integrals have special tables which are more accurate than the tables of $F(k, \phi)$ and $E(k, \phi)$].

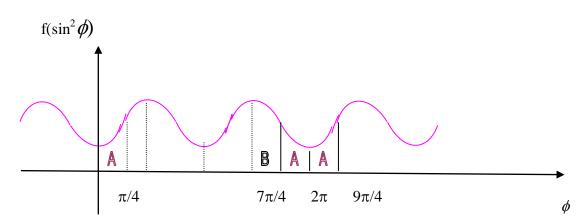
Other properties of Legendre forms of elliptic integrals:

Question: How can we find integrals with various values of ϕ ?

- Answer: We must always integrate over a number of π (not $\pi/2$) intervals and then add or subtract the correct integral over an interval of length less than $\pi/2$.
 - 1. Using the definition of complete elliptic integrals, we can show that

$$F(k, n\pi \pm \phi) = 2nK \pm F(k, \phi)$$
$$E(k, n\pi \pm \phi) = 2nE \pm E(k, \phi)$$





The elliptic integrals are both functions of $\sin^2 \phi$, namely $f(\sin^2 \phi)$. If we plot this function such that ϕ between 0 and $\pi/2$ and that of ϕ between $\pi/2$ and π will give the same value. Thus for ϕ between 0 and π is one period of $f(\sin^2 \phi)$. The rest of the graph repeats itself.

Remember that the area under the curve $\int f(\sin^2 \phi) d\phi$ could be either F(k, ϕ) or E((k, ϕ). Now we can find the area under the curve for ϕ between 0 and $9\pi/4$ as follows:

$$\int_{0}^{9\pi/4} = \int_{0}^{2\pi} + areaA = \int_{0}^{2\pi} + \int_{0}^{\pi/4} = 4\int_{0}^{\pi/2} + \int_{0}^{\pi/4}$$

Also the area under the curve for ϕ between 0 and $7\pi/4$ as follows:

$$\int_{0}^{7\pi/4} = \int_{0}^{2\pi} - areaA = \int_{0}^{2\pi} - \int_{0}^{\pi/4} = 4\int_{0}^{\pi/2} - \int_{0}^{\pi/4}$$

[Warning: You have to be very careful here not to confuse this

later area with
$$\int_{0}^{7\pi/4} \neq \int_{0}^{3\pi/2} + \int_{0}^{\pi/4}$$
].

R. I. Badran

2. The elliptic integrals can be shown to be odd functions of ϕ , namely:

$$F(k,-\phi) = -F(k,\phi)$$
$$E(k,-\phi) = -E(k,\phi)$$

3. When the lower limit in the elliptic integrals is different from zero, they can be expressed as follows:

$$\int_{\phi_1}^{\phi_2} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}} = \int_0^{\phi_2} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}} - \int_0^{\phi_1} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}}$$

$$\int_{\phi_1}^{\phi_2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}} = F(k, \phi_2) - F(k, \phi_1)$$

Similarly $\int_{\phi_1}^{\phi_2} \sqrt{1 - k^2 \sin^2 \phi} d\phi = E(k, \phi_2) - E(k, \phi_1)$

Exercise 1: Evaluate $I = \int_{0}^{\infty} \sqrt{\frac{9+8x^2}{(1+x^2)^3}} dx$, [Hint: take E(1/3)=1.525].

Solution: Put $x = \tan \phi$ and proceed.

Exercise 2: Evaluate
$$I = \int_{0}^{\pi/6} \frac{d\alpha}{\sqrt{1-4\sin^2\alpha}}$$
,
[Hint: take K(1/2)=1.688].

Solution: Put 4 $\sin^2 \alpha = \sin^2 \phi$ and proceed...

Example: The problem of simple pendulum for large angles.

Solution:

Recalling the DE of motion
$$(\theta^{\bullet})^2 = \frac{2g}{\ell} \cos \theta + C$$

By taking a swing of any amplitude, say α , rather than $\pi/2$ such

that
$$heta^ullet=0$$
 at $heta$ = $lpha$, we get $C=-rac{2g}{\ell}\coslpha$.

$$\therefore (\theta^{\bullet})^2 = \frac{2g}{\ell} (\cos \theta - \cos \alpha).$$

It must be noted that the period of a swing from $-\alpha$ to α and back is T_{α} . Thus the limits can be summarized as :

$$\begin{cases} \theta = 0 \Longrightarrow \theta = \alpha \\ t = 0 \Longrightarrow t = \frac{T_{\alpha}}{4} \end{cases}$$

The above DE can be rewritten as:

$$\int_{0}^{\alpha} \frac{d\theta}{\sqrt{\cos \theta - \cos \alpha}} = \int_{0}^{T_{\alpha/4}} \sqrt{\frac{2g}{\ell}} dt = \sqrt{\frac{2g}{\ell}} \frac{T_{\alpha}}{4}$$

To obtain a final result for T_{α} we should solve problem 17, section 12, chap.11.

We need to evaluate the integral $I = \int_{0}^{\alpha} \frac{d\theta}{\sqrt{\cos \theta - \cos \alpha}}$.

Put $\sin \frac{\theta}{2} = \sin \frac{\alpha}{2} \sin \phi$ and change the limit of the integral such that for $\theta = \mathbf{0} \Rightarrow \phi = \mathbf{0}$ and for $\theta = \alpha \Rightarrow \phi = \pi/2$. We have

$$I = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} (\frac{2\sin\frac{\alpha}{2}\cos\phi}{\cos\frac{\theta}{2}}) \frac{d\phi}{\sqrt{\sin^{2}\frac{\alpha}{2} - \sin^{2}\frac{\theta}{2}}},$$

But
$$\cos\frac{\theta}{2} = \sqrt{1 - \sin^2\frac{\alpha}{2}\sin^2\phi}$$

and
$$\sqrt{\sin^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \phi} = \sin \frac{\alpha}{2} \cos \phi$$
.

$$I = \sqrt{2} \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1 - \sin^{2}\frac{\alpha}{2}\sin^{2}\phi}},$$

$$I = \sqrt{2}F(\sin\frac{\alpha}{2}, \frac{\pi}{2}) = \sqrt{2}K(\sin\frac{\alpha}{2})$$

$$\therefore T_{\alpha} = 4\sqrt{\frac{\ell}{g}}K(\sin\frac{\alpha}{2})$$

Special cases:

i) For α not too large (i.e. $\alpha < \pi/2 \Rightarrow \sin^2 \alpha/2 < \frac{1}{2}$) [You have to solve problem 1, section 12, chap. 11]. You might get a good approximation for T_{α} when you use the binomial expansion:

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \bullet \bullet \bullet$$

Thus $F(k, \frac{\pi}{2}) = \int_{0}^{\frac{\pi}{2}} (1 - \sin^{2}\frac{\alpha}{2}\sin^{2}\phi)^{-\frac{1}{2}}d\phi$ can be written as:

$$F(k,\frac{\pi}{2}) \approx \int_{0}^{\frac{\pi}{2}} (1 + \frac{1}{2}\sin^{2}\frac{\alpha}{2}\sin^{2}\phi + \frac{3}{8}\sin^{4}\frac{\alpha}{2}\sin^{4}\phi + \bullet \bullet \bullet)d\phi$$

$$\therefore T_{\alpha} = 4\sqrt{\frac{\ell}{g}}K(\sin\frac{\alpha}{2})\left\{\frac{\pi}{2}\left(1 + \frac{1}{2} \bullet \frac{1}{2}\sin^{2}\frac{\alpha}{2} + \frac{3}{8} \bullet \frac{3}{8}\sin^{4}\frac{\alpha}{2} + \bullet \bullet\right)\right\}$$

ii) For small enough $\alpha \Rightarrow \sin \alpha/2 \approx \alpha/2$, hence

$$T_{\alpha} = 2\pi \sqrt{\frac{\ell}{g}} (1 + \frac{\alpha^2}{16} + \bullet \bullet \bullet)$$

iii) For very small α we will reach to the approximate result, that is,

$$T_{\alpha} = 2\pi \sqrt{\frac{\ell}{g}}$$

Exercise: Evaluate the integral $I = \int_{0}^{x} \sqrt{\frac{10-5x^2}{1-x^2}} dx$.

[Hint: you may reach a step with $I = \sqrt{10}E(k,\phi)$, where $k = \frac{1}{2}$

$$k = \frac{1}{\sqrt{2}} \mathbf{]}.$$