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Complete elliptic integrals

When ¢ :%, the elliptic integrals are called the complete

elliptic integrals of first and second kinds.

I
K(k)=F(k, %) = ¢
(=rl) g J1-kZsin? ¢

7
E(k) = E(k,%) - jz J1-kZsin2 gdg
0

[Note: These integrals have special tables which are more
accurate than the tables of F(k, ¢) and E(k, g)].

Other properties of Legendre forms of elliptic integrals:

Question: How can we find integrals with various values of ¢?
Answer: We must always integrate over a number of n (not

n/2) intervals and then add or subtract the correct
integral over an interval of length less than n/2.

1. Using the definition of complete elliptic integrals, we can
show that

F(k,nz + ¢) = 2nK + F(k, §)
E(k,nz+¢) = 2nE + E(K, §)
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Proof: This can be proved by having a close insight into the
shown diagram:

f(sin? @)

A

7\
AN

ATA

/4 nld  2n  9n/4

v

The elliptic integrals are both functions of sin’g, namely
f(sin®g). If we plot this function such that ¢ between 0 and =/2
and that of ¢ between n/2 and = will give the same value. Thus
for ¢ between 0 and = is one period of f(sin®g). The rest of the
graph repeats itself.

Remember that the area under the curve jf(Sin2¢)d¢could

be either F(k, ¢) or E((k, ). Now we can find the area under the
curve for ¢ between 0 and 9n/4 as follows:

7Y 2 U
J.:I +areaA=_[ +J. :4_[ +I

Also the area under the curve for ¢ between 0 and 7n/4 as
follows:

7% 2r 2 % % %

=I —areaA:_[ —I :42[ —'([

0 0 0 0

[Warning: You have to be very careful here not to confuse this

T %

|ater area with I i T _[
0 0 0

].
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2. The elliptic integrals can be shown to be odd functions of ¢,
namely:

F(k,—¢) =-F(k,¢)
E(k,—¢)=-E(k,9)

3.  When the lower limit in the elliptic integrals is different
from zero, they can be expressed as follows:

e g e 1
s 1-kZsin2¢  o0+1-k%sin2¢ 01-kZsin’g

$> d¢
L~ F(k g,) - F(k. )

m/l—k sSin“ ¢
Similarly
?,
[N1-K?sin? gdg = E(K, 4,) ~ E(k, 1)
h

. | |_Oj3 ﬂdx
Exercise 1: Evaluate : (1+X2)3 :

[Hint: take E(1/3)=1.525].

Solution: Put x =tan ¢ and proceed.

7% da
Exercise 2: Evaluate | = ,
0 V1—4sin’«a

[Hint: take K(1/2)=1.688].

Solution: Put 4 sin®a = sin’¢ and proceed...
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Example: The problem of simple pendulum for large angles.

Solution:

. 2
Recalling the DE of motion (€°)% = 7gC059 +C

By taking a swing of any amplitude, say a, rather than n/2 such

. 29
that @~ =0 at 0 = a, we get C 2—7(30305.

- (0°) = g (cos@ —cosa)

It must be noted that the period of a swing from -a to a and

back is T,. Thus the limits can be summarized as :

0=0=>0=q«
t:0:>t:T—“
4

The above DE can be rewritten as:

Ta

4
f | 1294~ |29 Te
\/cose cosa y V¢ ¢ 4

To obtain a final result for T, we should solve problem 17,

section 12, chap.11.

déo
0—-cosa

We need to evaluate the integral | = J\/
5/ COS

.0 . o .
Put SmE :SmES'n¢ and change the limit of the integral

such that for =0 — ¢=0and for 8= a— ¢=n/2. We have
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. o
o 1 f(23|n2cos¢) dg
V27 COSQ \/sinza—sinze’
2 2 2

0 ., .
But COSEZ\/l—SIn Esm 1)

., ., . s . a
SIN"— —SIN" —SINn = SIN —COS
and \/ 2 5 ¢ 5 ¢.

7
=2 49
0 \/1—sin2 Ozlsin2 ¢

.. a7 . a
| Z\/EF(SIHE,E)=\/§K(S|nE)

AT, = 4\/ZK(sing)
g 2

Special cases:

i) For anot too large (i.e. a< /2 = sin® al2 < %)
[You have to solve problem 1, section 12, chap. 11].
You might get a good approximation for T, when

you use the binomial expansion:
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(1+x)”:1+nx+M n(n—1)(n— 2)x3+....
2! 3
7

Vs L, A -
Thus F(k’E) - J‘(l—smz Esmz ?) %d¢ can be written as:

0

7
F(k,%)z j(1+%sin2%sinz¢+§sin4%sin4¢+-u)d¢

0

=T, =4 EK(sn ){—(1+£ ES|n2g+§o§sln 1% | e0)}
g 2° 2 2 2 2 8 8 2

i) For small enough « sin al2 ~al2, hence

2
T, =2r £(1+0[—+000)
g 16

i) For very small awe will reach to the
approximate result, that is,

T, —27z\/7
1 [0-5¢
Exercise: Evaluate the integral ,[ 1 x2

[Hint: you may reach a step with | = OE(k ¢) where

k:i]

)



