Elliptic Integrals

Elliptic Integrals

Integrals can be solved in two ways

Elliptic Integrals

Forms of Elliptic Integrals

Jacobi forms

First kind of elliptic integrals:

$$F(k,\phi) = \int_{0}^{x} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}$$

2. Second kind of elliptic integrals:

$$E(k,\phi) = \int_{0}^{x} \sqrt{\frac{1 - k^2 x^2}{1 - x^2}} dx$$

Where k is called the modulus and ϕ is called the amplitude.

k= sin θ where $0 \le \theta \le \frac{\pi}{2}$ and $0 \le \phi \le 2\pi$. Also *x*= sin ϕ in Jacobi forms.

Basic definitions and properties of Legendre elliptic integrals:

Definition:

Length of the ellipse
$$= 4a \int_{0}^{\pi/2} \sqrt{1 - e^2 \cos^2 \phi} d\phi$$
,
Where $x = a \cos \phi$ and $y = b \sin \phi$ and $0 \le \phi \le 2\pi$.

Elliptic Integrals

Here e is called the eccentricity of ellipse, which can be renamed as k. Thus $e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$, where a and b are the semimajor and semiminor axes, respectively, while c is the focus distance on y-axis, as shown in the figure. (Here a > b).

The equation of ellipse, here, is $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$

Example: Find the arc length of an ellipse. This is the problem that gave elliptic integrals their name.

[Hint: take the case a > b where $x = a \sin \phi$ and $y = b \cos \phi$].

The equation of ellipse, here, is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Solution:

R. I. Badran

Elliptic Integrals

$$\mathsf{But} \ ds = \sqrt{\left(dx\right)^2 + \left(dy\right)^2}$$

$$ds = \sqrt{(a\cos\phi)^2 + (b\sin\phi)^2} d\phi$$

For x= 0 and y= b $\Rightarrow \phi$ = 0

For x=a and $y=0 \Rightarrow \phi = \pi/2$.

Thus the limit from $b \Rightarrow a$ is $\phi = 0 \Rightarrow \pi/2$.

$$\int_{b}^{a} ds = \int_{0}^{\pi/2} \sqrt{a^{2}(1 - \sin^{2}\phi) + b^{2}\sin^{2}\phi} d\phi$$

$$\int_{b}^{a} ds = a \int_{0}^{\pi/2} \sqrt{1 - \frac{a^2 - b^2}{a^2} \sin^2 \phi} d\phi$$

As mentioned above $e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$ for a > b. Also e can be

renamed as k.

$$\int_{b}^{a} ds = a \int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^{2} \sin^{2} \phi} d\phi$$

Thus length of arc of ellipse $= aE(k, \frac{\pi}{2})$.

Properties of elliptic integrals: (Legendre forms)

