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Beta functions 
 
Definitions: 

i. 
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Proof: Put x = 1- y in (i) and proceed. 
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Proof: Put 
a

y
x   in (i) and proceed. 
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Proof: Put 2sinx in (i)  and proceed. 
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Proof: Put y

y
x




1  and proceed. 

 
The relation between the Beta and Gamma functions: 
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Proof: Put t = y2 for  (p) and t = x2 for  (q) and take  
the product of  both functions.[Hint: make the  
change of variables to polar coordinate]. 

 

Example: Find the integral 
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Solution: This is like 
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Here you need to get the values of p and q and then 

use the relation qp
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),(  to find the final 

answer. 
 
 
Physical Applications: 
 
 (The Simple Pendulum) 
 
The equation of motion of simple pendulum can be 
developed using the Lagrangian techniques. However 
the Lagrangian L is defined by 

 
 

m 

 L= T - V. 

Where T and V are the 

kinetic and the potential 

energies of the mass m, 

respectively. 
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  v . 
The potential energy of the mass m when it is at an 

angle : 

cosmgV  . 

From the above three equations we get: 
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From the general Lagrangian equations of motion  
 

,0)( 








 

LL

dt

d

 

and by using the last obtained Lagrangian  we get: 
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Now we are seeking a 
solution to this DE. 
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Case (i) :  (Approximate Solution) 
 

    

 

The solution to this DE is either t sin or  

t cos . 
By considering the first solution and taking its second 

derivative  2


and substituting this into the 
last DE we get: 
 

 

But T




2


. 

Thus g
T


2  is the approximate period when  is 

small. 
 
 
 
 
 
 

For small oscillations (i.e  is small) 
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Case (ii): (Exact solution)(for any  ) 

Multiply both sides of the DE 
 sin
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 by 



  to 

get: 
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Integrate both sides to obtain: 
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  where C is constant. 

C = 0 if 2
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 , for one-quarter, we will have: 
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Recalling that 
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Comparing with the integral in the last form of T, we 
should have 

2p –1 = 0  p= ½ and 2q –1 =- ½  q= ¼. 
Thus we need to evaluate B (½, ¼) 

         
(This last answer represents an exact form for T). 
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