Beta functions

Definitions:

i.
$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$$
, $p > 0, q > 0.$

ii.
$$B(p,q) = B(q,p)$$

Proof: Put $x = 1 - y$ in (*i*) and proceed.

iii.
$$B(p,q) = \frac{1}{a^{p+q-1}} \int_{0}^{a} y^{p-1} (a-y)^{q-1} dy$$

Proof: Put
$$x = \frac{y}{a}$$
 in (*i*) and proceed.

iv.
$$B(p,q) = 2\int_{0}^{\frac{\pi}{2}} (\sin\theta)^{2p-1} (\cos\theta)^{2q-1} d\theta$$

Proof: Put $x = \sin^2 \theta$ in (*i*) and proceed.

$$B(p,q) = \int_{0}^{\infty} \frac{y^{p-1}}{(1+y)^{p+q}} dy$$

V.

Proof: Put $x = \frac{y}{1+y}$ and proceed.

The relation between the Beta and Gamma functions:

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

Proof: Put $t = y^2$ for $\Gamma(p)$ and $t = x^2$ for $\Gamma(q)$ and take the product of both functions.[Hint: make the change of variables to polar coordinate].

Example: Find the integral
$$I = \int_{0}^{\infty} \frac{x^{3}}{(1+x)^{5}} dx$$
.

Solution: This is like
$$B(p,q) = \int_{0}^{\infty} \frac{y^{p-1}}{(1+y)^{p+q}} dy$$

Here you need to get the values of *p* and *q* and then use the relation $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$ to find the final

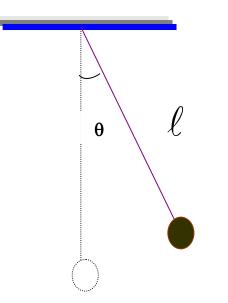
answer.

Physical Applications:

(The Simple Pendulum)

The equation of motion of simple pendulum can be developed using the Lagrangian techniques. However the Lagrangian L is defined by

L= T - V. Where *T* and *V* are the kinetic and the potential energies of the mass m, respectively.



m

$$T = \frac{1}{2}mv^2 = \frac{1}{2}m(\ell \theta)^2,$$

where $v = \ell \omega = \ell \theta$.

The potential energy of the mass m when it is at an angle θ :

$$V = -mg\ell\cos\theta.$$

From the above three equations we get:

$$\therefore L = \frac{1}{2}m(\ell\theta)^2 + mg\ell\cos\theta$$

From the general Lagrangian equations of motion

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \theta}\right) - \frac{\partial L}{\partial \theta} = 0,$$

and by using the last obtained Lagrangian we get:

$$\frac{d}{dt}(m\ell^{2}\dot{\theta}) - \frac{\partial}{\partial\theta}(mg\ell\cos\theta) = 0$$
$$m\ell^{2}\dot{\theta} + mg\ell\sin\theta = 0$$
$$\therefore \dot{\theta} = -\frac{g}{\ell}\sin\theta$$
Now we solution

Now we are seeking a solution to this DE.

 $\dot{\theta} = -\frac{g}{\ell}\theta$

Case (i): (Approximate Solution)

The solution to this DE is either $\theta = \sin \omega t$ or $\theta = \cos \omega t$. By considering the first solution and taking its second derivative $\overset{\bullet}{\theta} = -\omega^2 \theta$ and substituting this into the last DE we get:

$$-\omega^2 \theta = -\frac{g}{\ell} \theta \qquad \Longleftrightarrow \qquad \omega^2 = \frac{g}{\ell}$$

But $\omega = \frac{2\pi}{T}$. Thus $T = 2\pi \sqrt{\frac{\ell}{g}}$ is the approximate period when θ is small.

Case (*ii***): (Exact solution)(for any** θ **)**

Multiply both sides of the DE $\overset{\bullet}{\theta} = -\frac{g}{\ell}\sin\theta$ by $\overset{\bullet}{\theta}$ to get:

$$\dot{\theta}\frac{d\,\dot{\theta}}{dt} = -\frac{g}{\ell}\sin\theta\frac{d\theta}{dt}$$

$$\theta d \theta = -\frac{g}{\ell} \sin \theta d\theta$$

Integrate both sides to obtain:

$$\frac{(\theta)^2}{2} = \frac{g}{\ell} \cos \theta + C$$
, where *C* is constant

$$\mathbf{C} = \mathbf{0} \text{ if } \theta = \frac{\pi}{2}$$

$$\frac{(\theta)^2}{2} = \frac{g}{\ell} \cos \theta$$

$$\therefore \frac{d\theta}{dt} = \sqrt{\frac{2g}{\ell}} (\cos \theta)^{\frac{1}{2}}$$

$$(\cos \theta)^{-\frac{1}{2}} d\theta = \sqrt{\frac{2g}{\ell}} dt$$

$$\begin{cases} \theta = 0 \Rightarrow \theta = \frac{\pi}{2} \\ t = 0 \Rightarrow t = \frac{T}{4} \end{cases}$$
, for one-quarter, we will have:

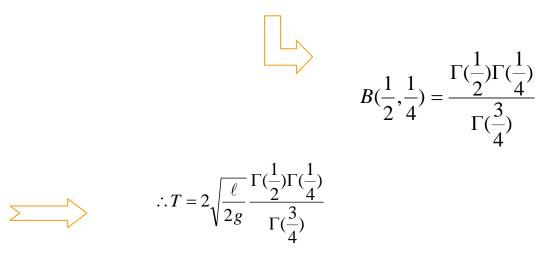
$$\int_{0}^{\pi/2} (\cos\theta)^{-\frac{1}{2}} d\theta = \sqrt{\frac{2g}{\ell}} \int_{0}^{T/4} dt$$

$$T = 4\sqrt{\frac{\ell}{2g}} \int_{0}^{\pi/2} (\cos\theta)^{-\frac{1}{2}} d\theta$$

Recalling that
$$B(p,q) = 2\int_{0}^{\frac{\pi}{2}} (\sin\theta)^{2p-1} (\cos\theta)^{2q-1} d\theta$$
 and

Comparing with the integral in the last form of T, we should have

 $2p-1 = 0 \Rightarrow p = \frac{1}{2}$ and $2q-1 = \frac{1}{2} \Rightarrow q = \frac{1}{4}$. Thus we need to evaluate B ($\frac{1}{2}$, $\frac{1}{4}$)



(This last answer represents an exact form for T).