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The diffusion or heat flow equation 
 

The heat flow in a slab or bar problem: 

 

Problem 1: 

Consider the flow of heat through a slab of thickness l with 

insulated walls such that the heat flow will be just in the x-axis. 

Suppose the bar has initially a steady-state temperature 

distribution with the x= 0 wall at 0 and the x = l wall at 100 . From 

t = 0 on, let the x = l wall (as well as the x= 0 wall) be held at 0. 

Find the temperature at any x (in the slab) at any later time. 

Solution: 

This is a one dimensional space dependent (along x-axis) problem 

with time dependent. The temperature distribution function u (x, t) 

is the non-steady temperature in a region with no heat sources. 

This problem will b solved using the heat flow PD Equation: 
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2 is the characteristic constant of the material through which heat 

is flowing. 

Assume a solution to this PDF of the form: 

u = F(x, y, z)T(t)  

F is the three dimensional space dependent part of u which will be 

reduced to F(x) in our case. 

T is the time-dependent part of u. 

Substitute the assumed solution into the PDE to get: 
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(This is the PDE as separated to a space and time parts). 

The space part of DE is set equal to -k2 and we have 
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Also we will have the time part (DE) is equal to -k2  such that: 
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The latter DE has the solution of type  
tkeT
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[Note: -k2 was chosen to meet the physics of the problem. As time t 

increases the temperature of the body may decrease to zero]. 

 

Since the space part of our problem is restricted to one dimension 

(x-direction), the space part of DE becomes 02

2

2
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 and its 

assumed solution is: u = F(x) T (t). 

The initial conditions (I.C's): Implies that t = 0, such that 

     u(x, 0) = u0(x)  

     u0(0) = 0 

     u0 (  ) = 100 

The Boundary conditions (B.C's): 

      u (0, t) = u (  , t) = 0 

 The initial steady-state temperature distribution u0(x) must be 

found at first. 

Here u0(x) satisfies Laplace's equation; i.e. 00

2  u  
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In 1-D: 0
2
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The solution to this DE is u0 = ax + b  where a and b are constants 

which can be found from the given initial conditions. 

Since at x = 0  u0 (0) = 0  and x =    u0 (  ) = 100,  

then for x = 0  b = 0 and for x =   


100
a  

 

 

 

From t = 0 on, u(x, t) satisfies the heat flow DE, such that,  

u = F(x) T (t), where the space part 02

2
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 has the solution:  

kxBkxAxF cossin)(  .  

Here A and B are constants needed to be determined. 

Since B.C requires that at x = 0, u (0, t) = 0 this implies that B = 0. 

The solution to the heat flow DE becomes: 
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The B.C at x =   gives u (  , t) = 0 and this implies that 0sin k  

 


n
k  . 


t

n

nn e
xn

Atxu
2)(

)sin(),( 




 

  

The linear combination of n solutions is the suitable solution to this 

problem, i.e. 
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At t = 0, we found that u(x, 0) = xxu

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)(0   . When we substitute 

this into the last solution we get 
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This last result will allow us to obtain the coefficients An from the 

Fourier sine series for x


100
 on (0,  ), as follows: 
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Using the identity   vduuvudv  

u = v, du = dx, 
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The final solution is: 
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Exercises: 

1) Suppose that the final temperatures of the faces in the 

previous problem are two different constant values (different 

from zero). 

 [Hint: If uf is the linear function representing the correct final 

steady state, then the solution will be   
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Then for t = 0,  
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2) Suppose that the faces of the slab in the previous problem 

are insulated where no heat flows in or out of the slab. This 

will be true if normal derivative 
n

u




 of the temperature is zero 

at the boundary (Neumann condition), i.e. 0

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 at x = 0 and 

0
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u
 at x =  . This means that the appropriate solution may 

be kxetxu tk cos),(
22  (solve problem 3.7). 


