RI Badran Partial Differential Equations: An application Mathematical Physics

The diffusion or heat flow equation

The heat flow in a slab or bar problem:

Problem 1:
Consider the flow of heat through a slab of thickness | with
insulated walls such that the heat flow will be just in the x-axis.
Suppose the bar has initially a steady-state temperature
distribution with the x= 0 wall at 0° and the x = | wall at 100° . From
t =0 on, let the x = | wall (as well as the x= 0 wall) be held at 0°.
Find the temperature at any x (in the slab) at any later time.
Solution:
This is a one dimensional space dependent (along x-axis) problem
with time dependent. The temperature distribution function u (x, t)
is the non-steady temperature in a region with no heat sources.
This problem will b solved using the heat flow PD Equation:
Viu = iza_u
a’® ot
o’ is the characteristic constant of the material through which heat
is flowing.
Assume a solution to this PDF of the form:
u=F(Xyvy,2)T(t)
F is the three dimensional space dependent part of u which will be
reduced to F(x) in our case.
T is the time-dependent part of u.
Substitute the assumed solution into the PDE to get:
1 _dT

TVIF = —F—
a dt
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VZF 1 dT

F  o°T dt

(This is the PDE as separated to a space and time parts).

=

The space part of DE is set equal to -k* and we have
V?F B
F
Also we will have the time part (DE) is equal to -k* such that:
1 dT dT

@k G k2T
T dt =t ¢

k> = VEF+k?F=0

—k%a%t

The latter DE has the solution of type T =€

[Note: -k* was chosen to meet the physics of the problem. As time t

increases the temperature of the body may decrease to zero].

Since the space part of our problem is restricted to one dimension

2

F
e +k*F =0 and its

(x-direction), the space part of DE becomes
assumed solution is: u=F(x) T (t).
The initial conditions (I.C's): Implies that t = 0, such that

u(x, 0) = ug(x)

Uo(0) =0

Uo (¢) =100
The Boundary conditions (B.C's):

u@,t)=u(e,t)=0

The initial steady-state temperature distribution uy(x) must be

found at first.

Here uy(x) satisfies Laplace's equation; i.e. VZUO =0
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The solution to this DE is uy = ax + b where a and b are constants

which can be found from the given initial conditions.
Sinceatx=0=uy(0)=0 andx= ¢ = uy (¢) =100,

100

thenforx=0=b=0andforx= 7 :>a:7

—

100
X

uo(X) :7

From t = 0 on, u(x, t) satisfies the heat flow DE, such that,

2

d°’F , _
u=F(x) T (t), where the space part v, +k“F =0 has the solution:
F(x) = Asinkx+ Bcoskx .

Here A and B are constants needed to be determined.
Since B.C requires that at x =0, u (0, t) = 0 this implies that B = 0.
The solution to the heat flow DE becomes:
u(x,t) = Asin kxe
The B.C at x = ¢ gives u (7, t) = 0 and this implies that sink¢ =0

Nz
k=—
— v

nmx |
—(—)°t
g)

. Nax
= U, (x 1) = A sin(= )e
The linear combination of n solutions is the suitable solution to this

problem, i.e. u(x,t)=>"u, (x,t)
n=1
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z _nax,
— Ut =Y Asin=")
n=1 é
100 :
Att =0, we found that u(x, 0) = Uy (X) = 7X . When we substitute

100

= . Nax
this into the last solution we get —,~ X= Z A, 5'”(—6 )|
n=1

This last result will allow us to obtain the coefficients A, from the

100
Fourier sine series for 7X on (0, ¢), as follows:

2100 . .nax
= — XSIn
A E-([ / (z

200 ¢ . .nax
dx = —— | xsin(—=)dx
Jdx == J )
Using the identity JUdV =Uuv-— Ivdu

u=v, du = dx,

dv = sin(n—ﬂx)dx V= _ cos(%)
14 T V4
/X nax 0 N7zx
=—— — — —)d
A nﬂcos( ; )O+n E[COS( J )dx
200 (-
A = 200D
T n

The final solution is:

™\ _(Fy2 3™y
a0 = 220 sin®y - L e T i) £ Le T inC ) —e e
7 72 73 /
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Exercises:

1) Suppose that the final temperatures of the faces in the
previous problem are two different constant values (different
from zero).

[Hint: If u¢ is the linear function representing the correct final

steady state, then the solution will be

u(xt)=>b, sin(%)e‘(f’ tu,
n=1
© . nax
Then fort =0, u(x,0) = an Sln(7)+uf ].
n=1

2) Suppose that the faces of the slab in the previous problem

are insulated where no heat flows in or out of the slab. This

ou
will be true if normal derivative n of the temperature is zero

at the boundary (Neumann condition), i.e. g—i =0 atx=0and

M _y atx =¢. This means that the appropriate solution may

OX

be U(X,t) oc ™" coskx (solve problem 3.7).



