RI Badran Partial Differential Equations: An application Mathematical Physics

Steady-State Temperature in a Sphere

Laplace's equation in spherical coordinates

Problem 1:
Find the steady-state temperature inside a sphere of radius r =1
when the surface of the upper half is held at 100° and the surface
of the lower half at 0°.
Solution:

a) Since there is no source of heat is available inside the

sphere, the temperature u satisfies Laplace's equation.
b) The symmetry of the problem implies the use of spherical

coordinates.
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In spherical coordinates:
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Try a solution of type u(r,8,$) = R(r)0(0)d(¢)
Substitute this solution into the PDF and multiply both sides by

r’sin®@g
to get:
ROO
sin’ @ d( R) smei( ) d26D
R dr dr ® do dé? D dg?
1d°d ) . . . .
Pu t5d¢ =-m” (The solution to this DE is ® =Csing+ Dcos¢)

After substituting the latter DF into the PDF and dividing by sin6,
the PDF becomes:

__(zdR 1 _( _)_
R dr dr’° ®sing do sm@

Now this DF is separable. The radial part of this equation is set

equal to a constant k.

__(ZdR
R dr

[Note: It is more suitable to write k as the product of two

)=k

successive integers (i.e. k=/4(¢ +1))].

d , ,dR
— (r? =) =/(¢+DR
dr( dr) ( )
The last differential equation has the form:

2
2d5 2rd—R—£(£+1)R 0
dr dr

Assume a solution: R = r" and substitute it into the DE to get:
n(n-1) r" + 2nr" - ¢(¢/ +1) r"=0

Equating the coefficients of r" in this equation
n?+n- ¢(¢+1)=0
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Thus n has two roots:
n=/¢ and n=—-(/+1)
The general solution to the radial equation is a linear combination
of two solutions, i.e. R=Ar" +Br "
Remainder of DF:

1
sing d6?

[This is the associated Legendre DE which hives the common

solution of associated Legendre polynomial, i.e. ® = P," (cos6)

(see problem 10.2 in chapter 12).

Thus the general solution (u = RO®) becomes:
u=(Ar’ +Br"*)(Csinmg+ Dcosmg)P," (cos9)
Notes:

1) Since we are interested to find the temperature inside the
sphere, we have to consider B = 0, because rt goes to
infinity at the origin (r = 0).

2) The problem has azimuthal symmetry i.e. u is independent of
¢ (as ¢ changes u is constant). This implies that u = D cos m¢
with m =0 and cos m¢.

= u=D [This can be justified for the given B.C where the top

of the sphere is at 100° and the bottom of the sphere at 0°].

Form =0
u, = A'r’ cosmgP," (cos &)

[Note: The spherical harmonic Y," (€, ¢) is related to the

associated Legendre polynomial can be expressed

2z (¢ —m)! m
as:Y," (¢ ¢)\/2£ T rm)! =P,"(cosd)cosmg ],
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Here, in this problem we have m = 0 and the solution is reduced

to:U, = A'r'P"(cos 9)

:UZZUK.
¢

And U=>_ Ar'P,(cos6)

(=0
The coefficients A, can be determined using the given

temperatures when r = 1.

100 o<e<%
u(r=1,6?):{ 0 %<e<ﬁ

u(r=1,0) = ;A;PK(X) , (where x = cos 6)

Also we have U(r =1,0) =100f (X), where

0 1<x<0
f(x):{

1 O<x<l1

S AP, (x) =100 f ()

(=0
A z“lj (X)P. (x)dx
1
= A =2n0o[p, (i
100 ¢ . 100 300 ¢ 300 700
= — = = — d e = t'
Thus A, ngx S A ngx 4andA3 5 €c

su@e) = 100[% P (cosé) + % P, (cos ) — % P,(cos@) +eee],

(Solve problem 7.13)



