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Steady-State Temperature in a Sphere 
 

Laplace's equation in spherical coordinates 

 

Problem 1: 

Find the steady-state temperature inside a sphere of radius r = 1 

when the surface of the upper half is held at 100 and the surface 

of the lower half at 0. 

Solution: 

a) Since there is no source of heat is available inside the 

sphere, the temperature u satisfies Laplace's equation. 

b) The symmetry of the problem implies the use of spherical 

coordinates. 
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In spherical coordinates: 

    11 h     rh 2     sin3 rh   

 

rx  1

                    
 2x

                        
 3x

 





































































uu

r

u
r

rr
u

sin

1
sinsin

sin

1 2

2

2

   

But  

  02  u  

 



RI Badran              Partial Differential Equations: An application           Mathematical Physics 

 

  0
sin

1
sin

sin

11
2

2

222

2

2













































u

r

u

rr

u
r

rr  

 

Try a solution of type )()()(),,(   rRru  

Substitute this solution into the PDF and multiply both sides by 

R

r 22 sin
 to get: 
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  (The solution to this DE is  cossin DC  ) 

After substituting the latter DF into the PDF and dividing by sin
2, 

the PDF becomes: 
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Now this DF is separable. The radial part of this equation is set 

equal to a constant k. 
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[Note: It is more suitable to write k as the product of two 

successive integers (i.e. k= )1(  )]. 

 

 

The last differential equation has the form: 
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Assume a solution: R = r
n and substitute it into the DE to get: 
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 + 2nr
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Equating the coefficients of rn in this equation 
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Thus n has two roots: 

    n =    and  n = )1(    

The general solution to the radial equation is a linear combination 

of two solutions, i.e. 
1  BrArR  

Remainder of DF: 
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[This is the associated Legendre DE which hives the common 

solution of associated Legendre polynomial, i.e. )(cosmP   

(see problem 10.2 in chapter 12). 

Thus the general solution (u = R) becomes: 

)(cos)cossin)(( 1  mPmDmCBrAru 
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Notes: 

1) Since we are interested to find the temperature inside the 

sphere, we have to consider B = 0, because 
1r  goes to 

infinity at the origin (r = 0). 

2) The problem has azimuthal symmetry i.e. u is independent of 

 (as  changes u is constant). This implies that u = D cos m 

with m = 0 and cos m . 

 u = D   [This can be justified for the given B.C where the top 

of the sphere is at 100 and the bottom of the sphere at 0]. 

For m  0  
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[Note: The spherical harmonic ),( mY  is related to the 

associated Legendre polynomial can be expressed 
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Here, in this problem we have m = 0 and the solution is reduced 

to: )(cosmPrAu 

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uu . 
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The coefficients A  can be determined using the given 

temperatures when r = 1. 

     100          0<  < 
2


 

 ),1( ru         0         
2


<  <   

)(),1(
0

xPAru 







 
, (where x = cos ) 

Also we have )(100),1( xfru   , where 

               0             -1 < x < 0 

 f(x)=   

1            0 < x < 1 
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(Solve problem 7.13) 


