Steady-state temperature in a cylinder

Problem 3:

Find the steady-state temperature distribution $\ensuremath{\mathbf{u}}$ in a semi-infinite

solid cylinder of radius r = 1 if the base is held at 100° C and the

curved sides at 0° C.

Solution:

Boundary conditions (B.C's):

- a) $u \to 0$ at $z \to \infty$
- b) u = 0 for r = 1
- c) $u = 100^{\circ}$ C (at different θ around the base for z = 0)

B.C's imply that it is suitable to use cylindrical coordinates to solve the problem.

Lap lace's equation in cylindrical coordinates:

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

Separation of variables method:

Assume the solution $u(r, \theta, z) = R(r)\Theta(\theta)Z(z)$

Substitute this solution into the Lap lace's equation:

$$\frac{Z\Theta}{r}\frac{d}{dr}\left(r\frac{dR}{dr}\right) + \frac{RZ}{r^2}\frac{d^2\Theta}{d\theta^2} + R\Theta\frac{d^2Z}{dz^2} = 0$$

Divide by $R\Theta Z$

$$\frac{1}{Rr}\frac{d}{dr}\left(r\frac{dR}{dr}\right) + \frac{1}{\Theta r^2}\frac{d^2\Theta}{d\theta^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0$$
$$\therefore \frac{1}{Z}\frac{d^2Z}{dz^2} = k^2 \qquad (k > 0)$$

$$\therefore \frac{1}{Rr} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + \frac{1}{\Theta r^2} \frac{d^2 \Theta}{d\theta^2} = -k^2$$

[Hint: None of the terms on the left hand side of the equation

is a constant, because both terms contain r].

Note: For a term to be constant;

- a) It must be a function of one variable only.
- b) And that variable does not appear elsewhere in the equation.

Thus
$$\frac{d^2 Z}{dz^2} - k^2 Z = 0$$
$$Z = Ae^{kz} + Be^{-kz}$$

$$\therefore \frac{1}{Rr} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + \frac{1}{\Theta r^2} \frac{d^2 \Theta}{d\theta^2} + k^2 = 0$$

To make the separation of variables again to this equation:

Firstly multiply both sides by r^2

$$\frac{r}{R}\frac{d}{dr}\left(r\frac{dR}{dr}\right) + \frac{1}{\Theta}\frac{d^{2}\Theta}{d\theta^{2}} + k^{2}r^{2} = 0$$

Secondly, separate the Θ - equation.

The second term contains the variable θ only, so

$$\frac{1}{\Theta}\frac{d^2\Theta}{d\theta^2} = -n^2$$

[Note: $-n^2$ is chosen because

- a) Θ is periodic; where the variable θ is the same as $\theta + 2m\pi$
- b) There is one physical point and one temperature whatever the value of *m* is].

$$\therefore \frac{d^2 \Theta}{d\theta^2} + n^2 \Theta = 0$$

 $\therefore \Theta = C \sin n\theta + D \cos n\theta$

Finally, the *r* equation is

$$\frac{r}{R}\frac{d}{dr}(r\frac{dR}{dr}) - n^2 + k^2r^2 = 0$$

OR

$$r\frac{d}{dr}\left(r\frac{dR}{dr}\right) + (k^2r^2 - n^2)R = 0$$

Since **Bessel** differential equation is

$$x^{2}y'' + xy' + (x^{2} - p^{2})y = 0$$
 was rewritten
as $x(xy')' + (x^{2} - p^{2})y = 0$.

Recalling the concept of replacing *x* by *ax*

 $x(xy')' + (a^2x^2 - p^2)y = 0$

This has a solution $J_p(ax)$.

If we have a_m with (m = 1, 2, 3,...) as the zeros of $J_p(ax)$, then

 $\sqrt{x}J_{p}(a_{m}x)$ are orthogonal on (0, 1) interval.

Put x = r, $a_m = k_m$ and p = n.

Solutions are $J_n(k_m r)$ and not $N_n(k_m r)$ because the base of the

cylinder contains the origin (*i.e.* N_n ($k_m r$) \rightarrow infinity at r = 0).

$$\therefore R_n(r) = F_m J_n(k_m r)$$
For only one value of *n*, there are
 $(m=1,2,3,....)$ possible values of *k*.
These values of *k* are the zero of J_n
at the particular *n*.

B.C's:

u = 0 for r = 1

R(r) = 0 for r = 1

Also the B.C $u \rightarrow 0$ as $z \rightarrow \infty$ implies that A = 0

 $\therefore u_m = F_m(C_m \sin n\theta + D_m \cos n\theta) J_n(k_m r) B_m e^{-k_m z}$

The B.C u = 0 when r = 1 for all θ and z (where $\theta = \theta + 2m\pi$) gives

$$u = \sum_{m=1}^{\infty} u_m = \sum A'_m \cos n\theta J_n(k_m r) e^{-k_m r} + B'_m \sin n\theta J_n(k_m r) e^{-k_m r}, \text{ for a}$$

fixed value of *n*.

B.C: $u = 100^{\circ}$ C for different θ around the base.

This means that at the base of the cylinder *u* is constant as θ is changing. This means that we have to use n = 0 such that $\Theta =$ constant = D_m .

$$\therefore u = \sum_{m=1}^{\infty} A'_m J_0(k_m r) e^{-k_m Z}, \text{ where } A'_m = B_m F_m D_m.$$

We need to find the coefficient A'_{m} .

Use the **B.C** $u = 100^{\circ}$ C when z = 0

$$100 = \sum_{m=1}^{\infty} A'_m J_0(k_m r)$$
 (This is the Fourier- Bessel series).

The function $u(r, \theta, 0) = 100$ is expanded in a series of Bessel functions.

Multiply Both sides by $rJ_0(k_s r)$ (where $s = 1, 2, 3, \dots$ etc).

And integrate from r = 0 to r = 1 to get:

$$\int_{0}^{1} \sum_{m=1}^{\infty} A'_{m} r J_{0}(k_{s} r) J_{0}(k_{m} r) dr = \int_{\partial}^{1} 100 r J_{0}(k_{s} r) dr$$

All terms on L.H.S vanish except the term with m = s.

$$\mathbf{A'}_{s} \int_{\partial}^{1} r [J_{0}(k_{s}r)]^{2} dr = \int_{\partial}^{1} 100r J_{0}(k_{s}r) dr$$
$$\therefore \mathbf{A'}_{s} = \frac{100 \int_{\partial}^{1} r J_{0}(k_{s}r) dr}{\int_{\partial}^{1} r [J_{0}(k_{s}r)]^{2} dr}$$

To find Denominator:

Since
$$\int_{\partial}^{1} r J_{p}(ar) J_{p}(br) dr = \frac{1}{2} J_{p+1}^{2}(a)$$
 for $a = b$

 \Rightarrow Denominator becomes $\frac{1}{2}J_1^2(k_m)$

To find numerator:

Also since
$$\frac{d}{dx} [xJ_1(x)] = xJ_0(x)$$
.

 \therefore Put $x=R_m r$ to get:

$$\frac{1}{k_m}\frac{d}{dr}\left[k_mrJ_1(k_mr)\right]dr = k_mrJ_0(k_mr).$$

Integrate to get:

$$\Rightarrow \frac{1}{k_m} \int_0^1 \frac{d}{dr} [rJ_1(k_m r)] dr = k_m \int_0^1 rJ_0(k_m r) dr$$

L...H.S: $rJ_1(k_m r) \Big|_0^1 = J_1(k_m)$
 $\therefore \int_0^1 rJ_0(k_m r) dr = \frac{J_1(k_m)}{k_m}$

$$\therefore \text{ Numerator} = \frac{100J_1(k_m)}{k_m}$$

:.
$$A'_{s} = \frac{200J_{1}(k_{m})}{k_{m}J_{1}^{2}(k_{m})} = \frac{200}{k_{m}J_{1}(k_{m})}$$

We have to remember here that k_m is the zero of J_o and not J_1 .

So (a) Either we need to find the values of J_I (or $J'_o = -J_I$) (from

tables of Bessel functions) at the zeros of J_o .

Or,

(b) we can, at first, find the values of k_m (zeros of J_o) and then interpolate in a J_1 table to find the values of $J_1(k_m)$.

 \therefore The final solution becomes:

$$u = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{200}{k_m J_1(k_m)} J_o(k_m r) e^{-k_m r}$$

Exercise:

Suppose that the given temperature of the base of the cylinder on the previous example is $f(r, \theta)$. Find the solution in such case. Answer:

$$u = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} J_n(k_{mn}r)(C_{mn}\sin n\theta + D_{mn}\cos n\theta)e^{-k_{mn}z}$$

At z = 0 we need $u = f(r, \theta)$.