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Steady-state temperature in a cylinder 

Problem 3: 

 Find the steady-state temperature distribution u in a semi-infinite 

solid cylinder of radius r = 1 if the base is held at 100 C and the 

curved sides at 0 C. 

Solution:              

Boundary conditions (B.C's):  

a) u  0   at  z   

b) u = 0     for  r = 1 

c) u = 100 C (at different  around the base for z = 0)  

 

 

B.C's imply that it is suitable to use cylindrical coordinates to solve 

the problem. 

r=1 

u=100C 
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u = 0C 
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Lap lace's equation in cylindrical coordinates: 
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Separation of variables method:  

Assume the solution  u (r,, z) = )()()( zZrR   

Substitute this solution into the Lap lace's equation: 
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Divide by ZR  
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Hint: None of the terms on the left hand side of the equation 

is a constant, because both terms contain r. 

Note: For a term to be constant;  

a) It must be a function of one variable only. 

b) And that variable does not appear elsewhere in the equation. 
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To make the separation of variables again to this equation:  

Firstly multiply both sides by r
2 
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Secondly, separate the - equation. 

The second term contains the variable   only, so  
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[Note: -n
2
 is chosen because  

a)  is periodic; where the variable  is the same as  + 2m 

b) There is one physical point and one temperature whatever 

the value of m is]. 
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 nDnC cossin   

Finally, the r equation is 
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Since Bessel differential equation is 

0)( 222  ypxyxyx  was rewritten 

as 0)()( 22  ypxyxx . 

Recalling the concept of replacing x by ax  

0)()( 222  ypxayxx  

This has a solution Jp (ax). 

If we have am with (m = 1, 2, 3,...) as the zeros of Jp (ax), then 

)( xaJx mp  are orthogonal on (0, 1) interval. 

Put x = r,   am = km  and p = n. 

Solutions are Jn (km r) and not  Nn (km r) because the base of the 

cylinder contains the origin (i.e. Nn (kmr) infinity at r = 0). 

Rn(r) = Fm Jn (kmr) 

 

B.C's:  

u = 0   for r = 1 

R(r) = 0 for r = 1 

Also the B.C u0 as z  implies that A = 0 

um = Fm(Cm sin n + Dm cos n) Jn(kmr)
zk

m
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The B.C u = 0 when r = 1 for all  and z (where  = +2m) gives 

For only one value of n, there are 

(m= 1,2,3,.....) possible values of k. 

These values of k are the zero of Jn 

at the particular n. 
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B.C: u = 100C for different  around the base.  

This means that at the base of the cylinder u is constant as  is 

changing. This means that we have to use n = 0 such that  = 

constant = Dm. 
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 , where    mmmm DFBA  . 

We need to find the coefficient Am. 

Use the B.C u = 100C when z = 0 

100 = )(0

1

rkJA m

m
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



   (This is the Fourier- Bessel series). 

The function u (r,, 0) = 100 is expanded in a series of Bessel 

functions. 

Multiply Both sides by rJ0 ( ks r) (where s = 1, 2, 3,.....etc). 

And integrate from r = 0 to r = 1 to get: 
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 100 r J0(ksr) dr  

All terms on L.H.S vanish except the term with m= s. 
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To find Denominator: 
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We have to remember here that km is the zero of Jo and not J1.  

So (a) Either we need to find the values of J1 (or J' o =- J1) (from 

tables of Bessel functions) at the zeros of Jo.  

Or,  

(b) we can, at first, find the values of km (zeros of Jo) and then 

interpolate in a J1 table to find the values of J1(km). 

 The final solution becomes: 
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Exercise: 

Suppose that the given temperature of the base of the cylinder on 

the previous example is f (r, ). Find the solution in such case. 

Answer: 
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At z = 0 we need u = f (r,). 


