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Bessel's Differential Equation: 
 

Recalling the DE 02  yny which has a sinusoidal 

solution (i.e. sin nx and cos nx) and knowing that these 
solutions can be treated as power series, we can find a 
solution to the Bessel's DE which is written as: 

0)( 222  ypxyxyx . The solution is 

represented by a series. This series very much look like a 
damped sine or cosine.  It is called a Bessel function. 
 
To solve the Bessel' DE, we apply the Frobenius method by 

assuming a series solution of the form 





0n

nm

nxay
. 

Substitute this solution into the DE equation and after some 
mathematical steps you may find that the indicial equation is  

022  pm  where m= p. Also you may get a1=0 and hence 

all odd a's are zero as well. The recursion relation can be 
found as 
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 Case (1): m= p (seeking the first solution of Bessel DE) 
 
We get the solution 
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 This can be rewritten as: 
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The Bessel function has the factorial form  
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This is because  
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Since (p + n)! = (p + n + 1), and n! = (n + 1), the other form is 
rewritten as 
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Case (2): m= -p (seeking the second solution of Bessel 
DE){sec. 13}  
 
The solution in the factorial form is 
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Comments: 
 
i) For integer p: 
a. You can show that J-p(x)=(-1)pJp(x). Here J-p (x) is not 

independent solution. 
b. It is obvious that we have a problem with J-p (x) when x=0  

because this second solution goes to infinity. While the 
 first solution still exist because it is finite. 

c. When p= 2, the terms in the denominator with n= 0, 1 go to 
infinity (because The Gamma of a negative integer is 
infinity), and these terms do not contribute to the sum. 
Such case does not exist for a positive p. 

 
ii) For nonintegral p: 

J-p (x) and Jp (x) are two independent solutions and a linear 
 combination of them is a general solution. This linear 
 combination is called Neumann function (termed by Np) or 
 Weber function (termed by Yp). However this function is 
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 valid for integral or nonintegral p and is also called the 
 Bessel function of second kind: 
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Important note: 
It must be noted that this expression is an indeterminate form 

(0/0) for integral p. However for x  0 it has a limit, which is the 
correct second solution for integral p. 
 
The best general solution may be written as 

)()( xBNxAJy pp  , where A and B are arbitrary constants. At 

x = 0 all N's are  and the only solution is the Bessel 
function of first kind Jp (x). 
 
Some properties of Bessel function: 
 
From the factorial form of Jp (x) you may get: 
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From these tow expressions it follows that )(
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Recursion relations for Bessel functions: 
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Note: Similar relations also hold for Np(x). [Try to prove such 
relations]. 
 
 
Orthogonality and Normalization of Bessel function: 
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where a and b are called zero's of Jp(x). 
 
 


