Element	$a(\overset{\circ}{A})$	Element	$a(\overset{{}_\circ}{A})$	
Ar	5.26(4.2K)	Ne	4.43(4.2K)	
Ag	4.09	Ni	3.52	
Са	5.58	Pb	4.95	
Cu	3.61	Th	5.08	

Table 1: Examples of fcc elemental (monatomic) crystal structures

Table 2: Examples of bcc elemental (monatomic) crystal structures

Element	$a(\overset{\circ}{A})$	Element	$a(\overset{{}_\circ}{A})$	
Ва	5.02	Li	3.49(78K)	
K	5.23(5K)	Na	4.23(5K)	
Cr	2.88	Мо	3.15	
Fe	2.87	V	3.02	

Questions:

- 1) How many lattice points are in a unit cell of each of the fcc and bcc Bravais lattices?
- 2) What is the coordination number of each of fcc and bcc structures?
- 3) Find the volume of primitive cell in each of the fcc and bcc structures.
- 4) What is the value of the distance of nearest neighbor for each of the fcc and bcc structures?

[Note: There is two important factors that specifies the most densely crystal structure; these are, (a) the largest PF (b) the highest coordination number].

Packing Fraction (PF) for cubic crystal structures:

Example: Copper crystallizes in a fcc structure.

- a) What is the total number of atoms in this structure?
- b) Find the PF of this structure.

Figure 14: A cross-ection of half-face of the cubic fcc conventional cell.

Solution:

- a) The total number of atoms= $(1/8 \times 8 + 1/2 \times 6)$ = 4 atoms
- b) Since $4r = a\sqrt{2}$, thus the distance of nearest neighbor = $\frac{a}{\sqrt{2}}$

, [because 2r is the nearest neighbor].

$$PF = \frac{v_{atoms}}{V_{cell}} = \frac{4(\frac{4}{3}\pi r^3)}{a^3}$$

we found that $r = \frac{a}{2\sqrt{2}}$

$$\therefore PF = \frac{16\pi}{3(16\sqrt{2})} = 0.74$$

	SC	bcc	fcc
Lattice points per unit cell	1	2	4
Lattice points per unit volume	1	2	4
	$\overline{a^3}$	$\overline{a^3}$	$\overline{a^3}$
Number of nearest neighbors	6	8	12
Nearest neighbor distance	а	0.86 <i>a</i>	0.707 <i>a</i>
Number of second neighbors	12	6	6
Second neighbor distance	1.41 <i>a</i>	а	а
Volume of conventional cell	a^3	a^{3}	a^{3}
Volume of primitive cell	a^3	a^3	a^3
		$\overline{2}$	4
Packing fraction	0.52	0.68	0.74

Table 3: Properties of cubic crystal structures

Simple hexagonal lattice (sh):

The primitive vectors that form a simple hexagonal Bravais

lattice are,
$$\vec{a}_1 = a\hat{x}$$
, $\vec{a}_2 = \frac{a}{2}(\hat{x} + \sqrt{3}\hat{y})$ and $\vec{a}_3 = c\hat{z}$, as shown

in figure 15. The vectors \vec{a}_1 and \vec{a}_2 give us the triangular lattice in the x-y plane, while *c* represents the altitude; this is because a third atom stacks the planes a distance *c* above another i.e. c=a=2r.

In the conventional *sh* unit cell there are three atoms which contribute as follows:

- 1. Since there are 12 atoms at the corners that are equally shared between 6 unit cells; thus they contribute a total of two atoms.
- 2. The atoms in the centers of the top and bottom of the cell are each shared between two unit cells. They contribute a single atom to the cell, [see figure 16].

Figure 15: The simple hexagonal (sh) Bravais lattice

Figure 16: The base of simple hexagonal conventional cell

Example: Find the PF of the simple hexagonal Bravais lattice.

Solution:

The volume of hexagonal unit cell =

The area of the base (hexagon) \times Altitude (*c*) Area of hexagon = 6 \times area of dashed triangle (in figure 16)

$$= 6(\frac{1}{2}ha) = \frac{3\sqrt{3}}{2}a^2$$

$$\therefore V_{cell} = \frac{3\sqrt{3}}{2} ca^2$$

we know that c = a = 2r

$$\therefore PF = \frac{3(\frac{4}{3}\pi r^{3})}{\frac{3\sqrt{3}}{2}ca^{2}} = 0.60$$