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Simple procedure for finding Miller indices of a plane: 

 Establish the coordinate axes along the edges of the unit cell 

 Note where the plane intersects the axes. 

 Divide each intercept by the unit cell length in along the 
respective coordinate axis. 

 Record the normalized intercepts in x, y, z order. 

 Compute the reciprocal of each intercept. 

 Multiply the intercepts by the smallest overall constants that 
yield whole numbers. (See figure 33). 

 
Representation of a plane and a family of equivalent planes: 

A certain plane with Miller indices h, k,    is represented by 

parentheses as (h, k,  ).[e.g. the planes (100), ( 1 00), (110), (111), 

(2 2 1) and (222)]. (See figure 34) 
[Note: A bar is placed over the number to indicate the negative 

intercept]. 

For a cubic lattice we may have a set of planes which are 

equivalent to each other; e.g. (001), (010), (100), (00 1 ), (0 1 0) and 

 
Figure 33: The Miller indices (h k l) for a plane 

intersecting the crystal axes at 1, 2 and 3. 
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The normalized intercept values are 1, 2 
and 3, 

The reciprocals are 1, 1/2 and 1/3. 

The multiplier to convert to whole 
number is 6. 

The Miller indices (h k l) for 
this plane (632) 
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( 1 00), as shown in figure 35. This six equivalent faces of a cube 

are collectively designated as {100} where any of the individual set 

of these six indices will be the representative to the whole set if this 

set of indices is enclosed in braces {  }. 

 
 

 
 
 
 
 
 
 
 

Figure 34: 
a) The Miller indices (h k l) 

for this plane (2 )12  
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b) The Miller indices (h k l) 

for this plane (100) 
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Simple procedure for finding Miller indices of a vector (or a 

direction): 

 Establish the coordinate axes along the edges of the unit 

cell. 

 Draw a vector in the direction of interest. 

 Decompose the vector into components by projecting it onto 

the coordinate axes. 

 Record the components in x, y, z order. 

 Multiply the components by the smallest overall constant that 

yields whole numbers. 

 Miller indices of a vector are enclosed in brackets [   ]. 

 A plane has the same Miller indices as its normal vector. 

 A family of equivalent vectors is enclosed in angle brackets  

 <   >. 

 

Again for a cubic lattice we may have a set of vectors which are 

equivalent to each other, e.g. [001], [010], [100], [00 1 ], [0 1 0] and 

[ 1 00]. This six equivalent vectors perpendicular to the faces of a 

cube are collectively designated as <100> where any of the 

individual set of these six indices will the representative to the 

whole set if this set of indices is enclosed in braces <  >. 

Notes:  

1) In cubic lattices a direction [h k  ] is perpendicular to the 

plane (h k  ). This is convenient in analyzing lattices with 

cubic unit cells, but it should be remembered that it is not 

necessarily true in the case of non-cubic systems. 

2) In most cases, directions and planes are indexed in terms of 

conventional rather than primitive lattice vectors. 
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The angle between two crystallographic directions for a cubic 

lattice: 

When two crystallographic directions denoted by [h1 k1 1  ] and [ h2 

k2 2  ] or a plane (h1 k1 1  ) and another plane (h2 k2 2 ), the angle 

between them can be obtained from the relation: 
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Important Note: Different crystal planes have different atomic 

structures which lead to different chemical and electrical properties 

of these surfaces. 

 

 

Figure 35: A family of lattice planes in a simple cubic lattice 

z 

y 

x 

(010) 

(001) 

(0 1 0) 

z 

y 

x 

(00 1 ) 

( 1 00) 

a) The faces with Miller indices 

     (001), (010) and (0 1 0) 

b) The faces with Miller indices 

    ( 1 00) and (00 1 ) 
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Examples: Cubic lattice 

 

 

                            

 

 

 

 

Note: Actually (020) plane has half the spacing as (010) planes 
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Linear and Planar density 

• Linear Density 

– Number of atoms per length whose centers lie on the 

direction vector for a specific crystallographic direction. 

vectorldirectionaofLength

vectoraladirectiononcenteredatomsofNumber
DensityLinear






• Planar Density 

– Number of atoms per unit area that are centered on a 

particular crystallographic plane. 

planetheofArea

aplaneoncenteredatomsofNumber
DensityPlanar




  

Why do we care about linear and planar densities? 

– Properties, in general, depend on linear and planar 

density. 

• Examples: 

1. Electrical conductivity depends on planar density 
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2. Speed of sound along directions 

– Slip (deformation in metals) depends on linear and 

planar density 

– Slip occurs on planes that have the greatest density of 

atoms in direction with highest density  


