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Example: Find the Laurent expansion of f (z) = zfor
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1
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 for z   1. 
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Replacing z by 
z

1
  in previous example  
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As seen, here, there are different series expansions in different 

regions of the complex plane. 

 

Example: Consider the Laurent  
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Identify the convergence of this series by finding the radii of the 

circles of convergence. 

Solution: 

Consider the series of the positive powers (i.e. the "a" series). 

The ratio test tells us that this series converges for 
2

z
 1, that 

is, for z  2. This indicates that this series converges inside a 

circle C2 , as shown in the figure, which may be a point.  
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Applying the ratio test on the series of negative powers (i.e. the 

"b" series) will give a convergence at 1
1


z
 , that is z  1. This 

means that this series converges outside a circle C1 which may 

have a radius of infinity. 

 

 

 

 

 

 

 

 

 

Example: Given the function
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a) Identify any possible singular points in this function. 

b) Specify the circles of convergence about z0 =0. 

c) Find the Laurent series expansion for the different possible 

regions. 

 

Solution: 

a) There are three singular points: at z = 0, z = 2 and z = -1. 

b) There are two circles C1 and C2 about z0 =0. Thus we expect 

three Laurent series about z0 =0, namely,  

(1) one series in the region R1 ( 10  z )  

(2) another series in the region R2 ( 21  z ) and  

(3) the third series in the region ( 2z ). 
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c) Let us apply the method of partial fractions to the given 

function. 

Rewrite the function as 
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Solve this equation for A and B to get: 

A (1 + z) + B (2 - z) = 3 

     A = 1, B = 1 
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(1) Laurent series for 10  z  

Expand the two terms inside the parentheses as follows: 
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Substitute the expanded terms into the function 
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series in the region 10  z  as: 
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(2) Laurent series for 21  z  

Expand ......
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Substitute the expanded terms into the function to get: 
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(3) Laurent series for 2z  

The terms 
1)1(  z and 

1)2(  z can be rearranged as 

follows:  
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Thus by expanding these latter terms to get: 
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