

Motion in Two Dimensions

Prepared By

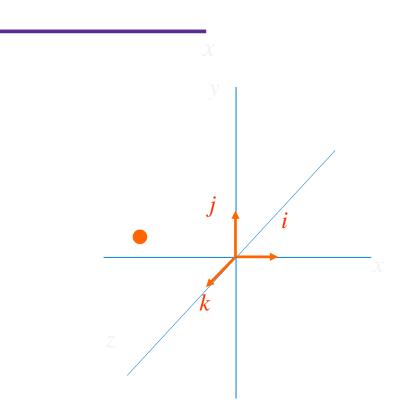
Prof. Rashad Badran

Motion in Two Dimensions- Kinematics

- Displacement and position in 2-D
- □ Average and instantaneous velocity in 2-D
- □ Average and instantaneous acceleration in 2-D
- □ Two dimensional motion with a constant acceleration
- Projectile motion
- □ Circular motion
- □ Relative velocity*

Motion in Two Dimensions - Kinematics

- > Kinematic variables in one dimension
 - Position: x(t) m
 - Velocity: v(t) m/s
 - Acceleration: $a(t) \text{ m/s}^2$
- Kinematic variables in two dimensions
 - Position: $\vec{r}(t) = x\hat{i} + y\hat{j}$ m
 - Velocity: $\vec{v}(t) = v_x \hat{i} + v_y \hat{j}$ m/s
- Acceleration: $\vec{a}(t) = a_x \hat{i} + a_y \hat{j}$ m/s² > Kinematic variables in three dimensions
 - Position: $\vec{r}(t) = x\hat{i} + y\hat{j} + z\hat{k}$ m
 - Velocity: $\vec{v}(t) = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$ m/s
 - Acceleration: $\vec{a}(t) = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ m/s²
- All are vectors: have directions and magnitudes



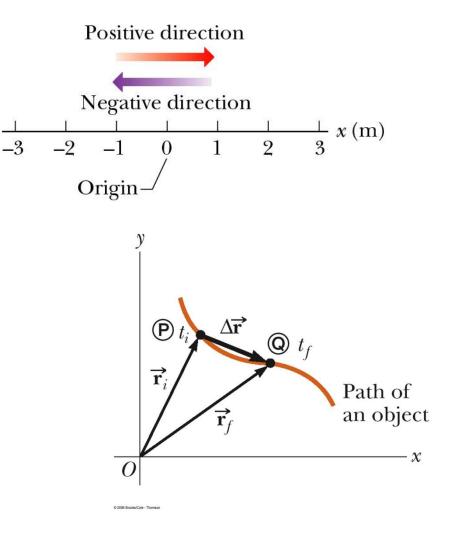
Position and Displacement

In one dimension

$$\Delta x = x_2(t_2) - x_1(t_1)$$

- $x_1(t_1) = -3.0 \text{ m}, x_2(t_2) = +1.0 \text{ m}$ $\Delta x = +1.0 \text{ m} + 3.0 \text{ m} = +4.0 \text{ m}$
- In two dimensions
 - Position: the position of an object is described by its position vector $\vec{r}(t)$ --always points to particle from origin.

• Displacement:
$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$
$$\Delta \vec{r} = (x_2\hat{i} + y_2\hat{j}) - (x_1\hat{i} + y_1\hat{j})$$
$$= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j}$$
$$= \Delta x\hat{i} + \Delta y\hat{j}$$



Average & Instantaneous Velocity

 $\Lambda \vec{r}$

Average velocity

$$\vec{v}_{avg} \equiv \frac{\Delta r}{\Delta t}$$

$$\vec{v}_{avg} \equiv \frac{\Delta r}{\Delta t}$$

$$\vec{i} + \frac{\Delta y}{\Delta t} \hat{j} = v_{avg,x} \hat{i} + v_{avg,y} \hat{j}$$

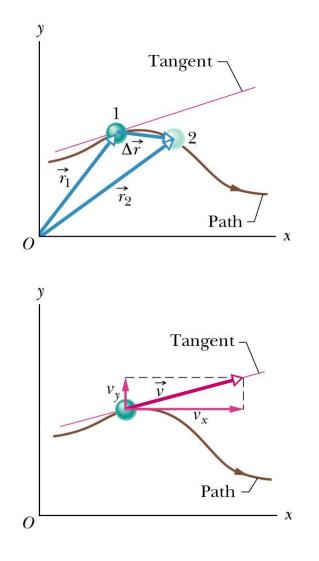
Instantaneous velocity

$$\vec{v} \equiv \lim_{t \to 0} \vec{v}_{avg} = \lim_{t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

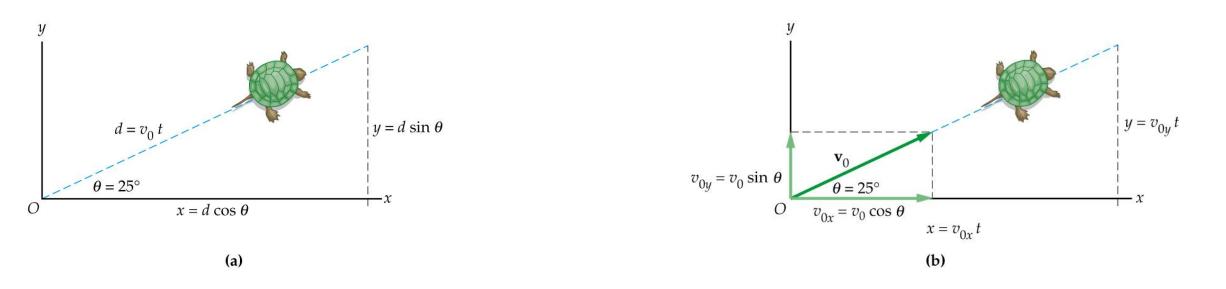
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}$$

where $\vec{r}(t) = x\hat{i} + y\hat{j}$

 \square *v* is tangent to the path in x-y graph;



Motion of a Turtle



A turtle starts at the origin and moves with the speed of $v_0=10$ cm/s in the direction of 25° to the horizontal.

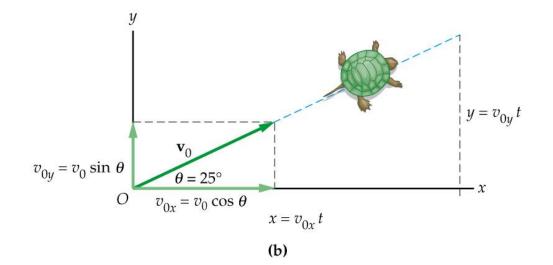
(a) Find the coordinates of a turtle 10 seconds later.

(b) How far did the turtle walk in 10 seconds?

Motion of a Turtle

Notice, you can solve the equations independently for the horizontal (x) and vertical (y) components of motion and then combine them!

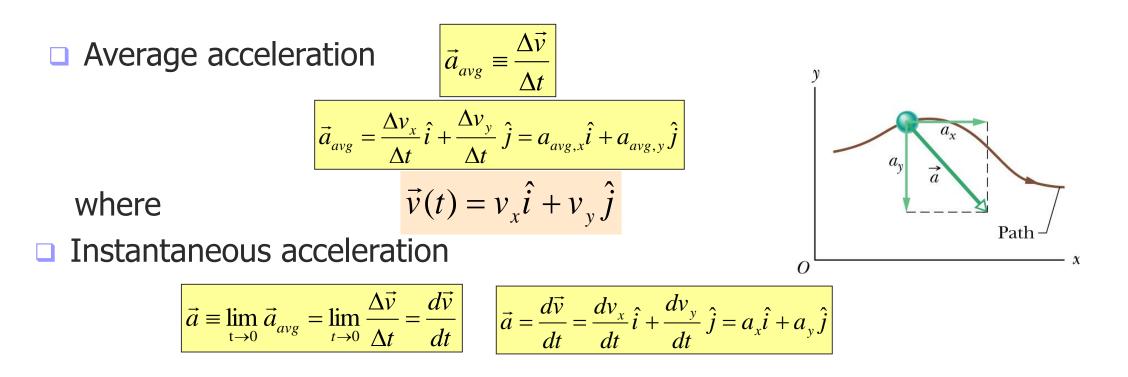
$$\vec{v}_0 = \vec{v}_{ox} + \vec{v}_{oy}$$



x components: $v_{0x} = v_0 \cos 25^\circ = 9.06 \text{ cm/s}$ $\Delta x = v_{0x}t = 90.6 \text{ cm}$ y components: $v_{0y} = v_0 \sin 25^\circ = 4.23 \text{ cm/s}$ $\Delta y = v_{0y}t = 42.3 \text{ cm}$

□ Distance from the origin: $d = \sqrt{\Delta x^2 + \Delta y^2} = 100.0 \text{ cm}$

Average & Instantaneous Acceleration



- □ The magnitude of the velocity (the speed) can change
- The direction of the velocity can change, even though the magnitude is constant
- Both the magnitude and the direction can change

Summary for Motion in Two Dimensions

 $\vec{r}(t) = x\hat{i} + y\hat{j}$ Position Average velocity $\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x}{\Delta t}\hat{i} + \frac{\Delta y}{\Delta t}\hat{j} = v_{avg,x}\hat{i} + v_{avg,y}\hat{j}$ $v_x \equiv \frac{dx}{dt}$ Instantaneous velocity $\vec{v}(t) = \lim_{t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}$ $a_x \equiv \frac{dv_x}{dx} = \frac{d^2x}{dx}$ Acceleration $a_v \equiv$ dt $\vec{a}(t) = \lim_{t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} = a_x\hat{i} + a_y\hat{j}$

 $\vec{r}(t)$, $\vec{v}(t)$, and $\vec{a}(t)$ are not necessarily same direction.

A particle is moving in x-y plane where its x- motion is x = (18 t) m and its ymotions is $y = (4 \text{ t} - 4.9 \text{ t}^2) \text{ m}$. (a) Write a vector position expression as a function of time using unit vector notation. (b) Find the average velocity in the time interval t = 0to t = 2 s. (c) Write a vector velocity expression as a function of time. (d) Find the average acceleration from t=1 s to t = 3 s. (e) What is the acceleration of the particle.

(a) Substitute $\mathbf{x} = (18 \text{ t}) \text{ m}$ and $\mathbf{y} = (4 \text{ t} - 4.9 \text{ t}^2) \text{ m}$ into the position vector expression $\vec{r}(t) = x\hat{i} + y\hat{j}$ to get:

$$\vec{r} = (18t)\hat{i} + (4t - 4.9t^2)\hat{j}$$
(b)
$$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x}{\Delta t}\hat{i} + \frac{\Delta y}{\Delta t}\hat{j} = v_{avg,x}\hat{i} + v_{avg,y}\hat{j}$$
At $t_i = 0$ the initial position is : $\vec{r}_i = 0$
At $t_f = 2$ s, the final position is : $\vec{r}_f = [(18)(2)]\hat{i} + [4(2) - 4.9(2)^2]\hat{j}$
or, $\vec{r}_f = 36\hat{i} - 11.6\hat{j}$

Thus $\Delta x = 36$ m and $\Delta y = -11.6$ m

Thus, the average velocity vector is

$$\vec{v}_{avg} = \frac{36m}{2s}\hat{i} - \frac{11.6m}{2s}\hat{j} = (18\hat{i} - 5.8\hat{j})m/s$$

Solution:

(c) Use the definition of the velocity vector : $\vec{v}(t) = \frac{d\vec{r}}{dt} = v_x \hat{i} + v_y \hat{j}$ Where, $v_x \equiv \frac{dx}{dt}$ $v_y \equiv \frac{dy}{dt}$ and, $\vec{r} = (18t)\hat{i} + (4t - 4.9t^2)\hat{j}$ The derivative of the x- and y components give: $v_x = 18$ and $v_y = 4 - 9.8$ t Thus, the velocity vector is $\vec{v}(t) = 18\hat{i} + (4 - 9.8t)\hat{j}$ $\vec{a}_{avg} = \frac{\Delta v_x}{\Delta t}\hat{i} + \frac{\Delta v_y}{\Delta t}\hat{j} = a_{avg,x}\hat{i} + a_{avg,y}\hat{j}$ (d) Use the definition of the average acceleration: At $t_i = 1$ s the initial velocity is : $\vec{v}_i = 18\hat{i} - 5.8\hat{j}$ At $t_f = 3$ s the final velocity is : $\vec{v}_f = 18\hat{i} - 25.4\hat{j}$ Thus $\Delta v_x = 0$ and $\Delta v_y = -19.6$ m/s $\vec{a}_{avg} = 0\hat{i} + \frac{(-19.6m/s)}{2}\hat{j}$ \implies $\vec{a}_{avg} = (-9.8\hat{j})m/s^2$

Solution:

Where, $a_x \equiv \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$, $a_y \equiv \frac{dv_y}{dt} = \frac{d^2y}{dt^2}$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} = a_x\hat{i} + a_y$$
$$\vec{v}(t) = 18\hat{i} + (4 - 9.8t)\hat{j}$$

The derivative of the x- and y components give: $a_x = 0$ and $a_y = -9.8$ m/s²

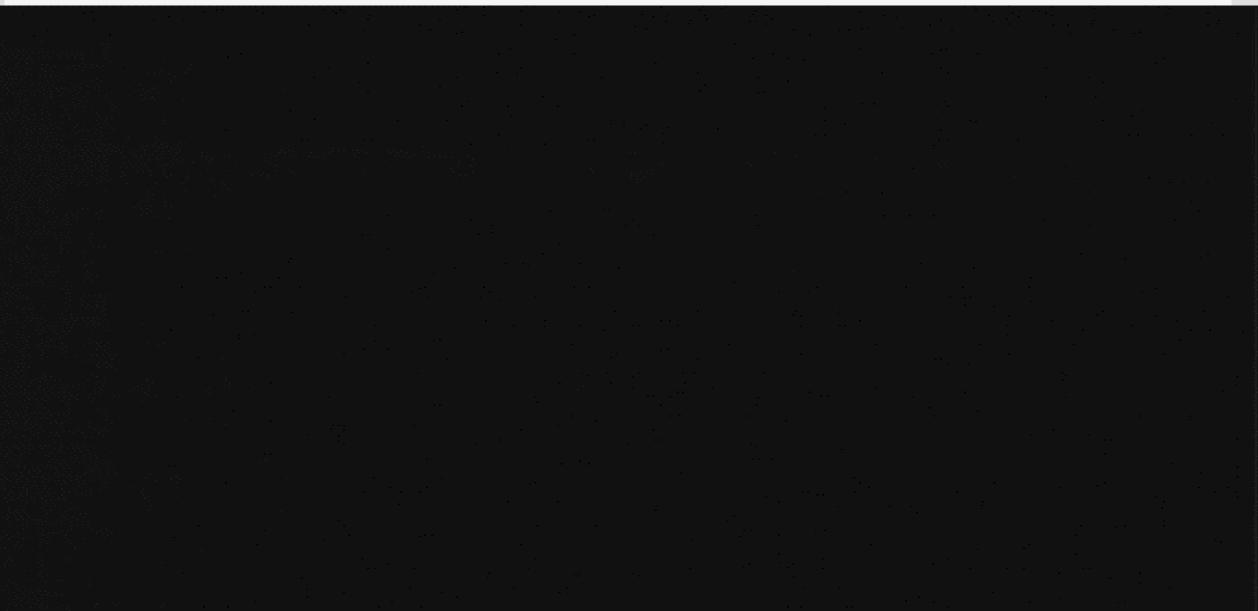
Thus, the acceleration vector is

$$\vec{a} = (-9.8\,\hat{j})m/s^2$$

and,

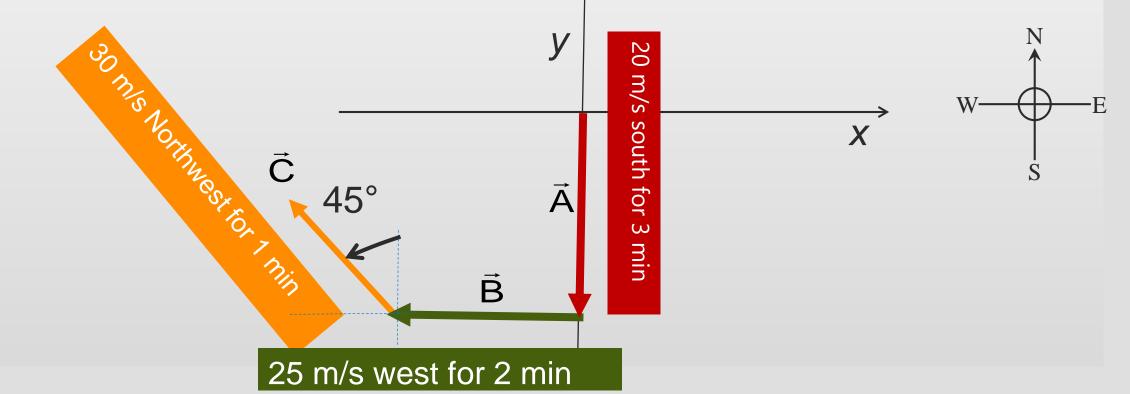
Note: The average acceleration is equal to the instantenous acceleration

How do two different one dimensional motions⁵, Prof. Rashad Badran form a 2-D motion?



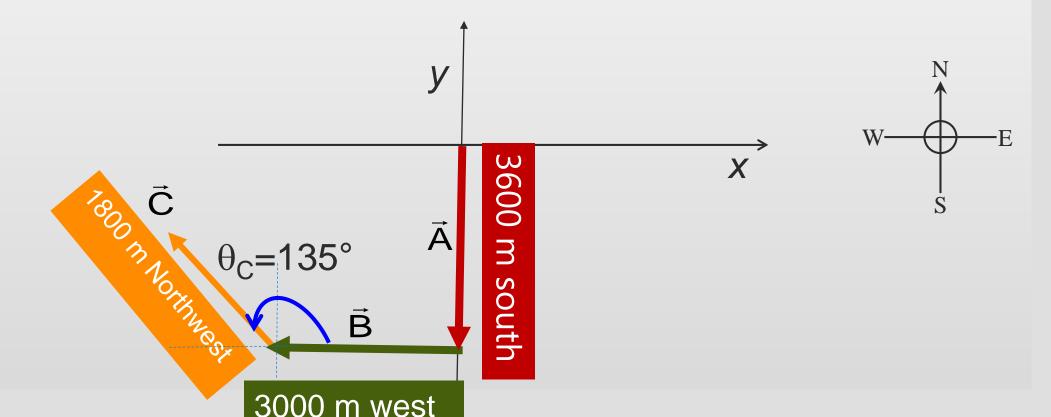
Example:

A person drives his car south at 20 m/s for 3 min, then turns west and travels at 25 m/s for 2 min, and finally travels northwest at 30 m/s for one min. For this 6-min trip, find (a) the total vector displacement, (b) the average velocity, and (c) the average speed. [Hint: Let the positive x axis point east]



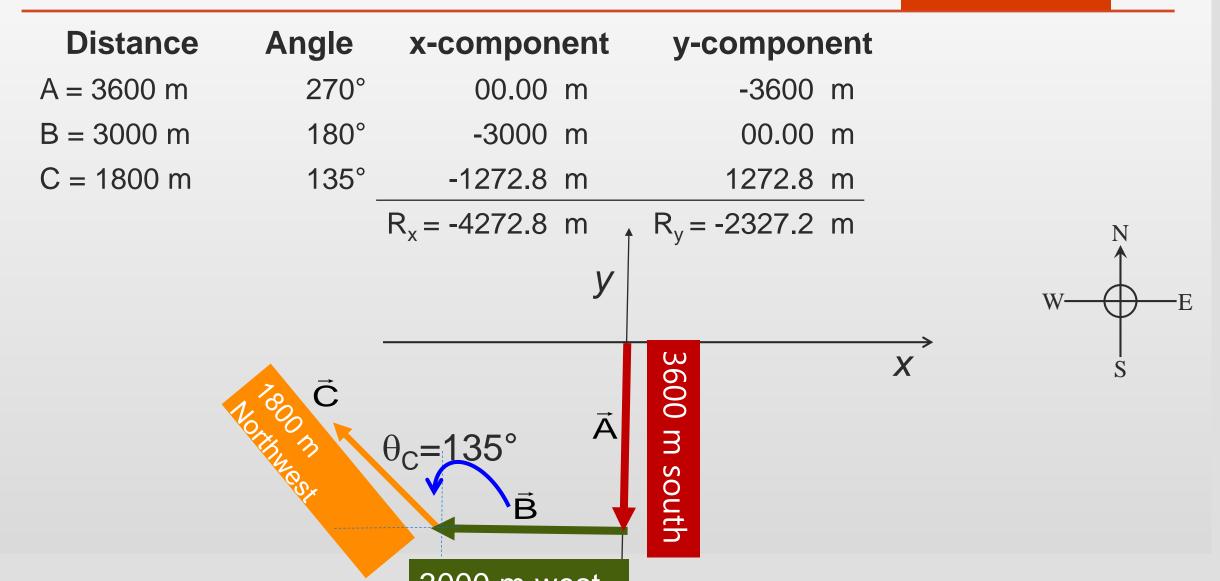
Solution:

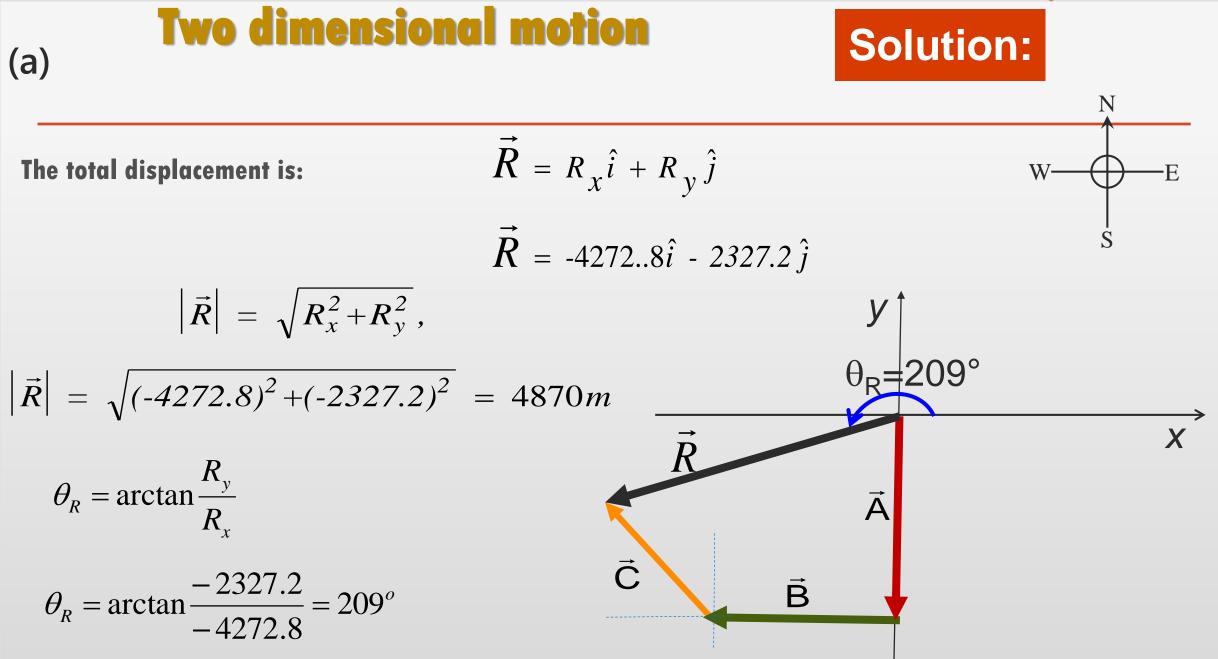
Magnitude of first displacement A= $(20 \text{ m/s}) \times (3 \text{min}) \times 60 \text{ s/min} = 3600 \text{ m}$ Magnitude of second displacement B= $(25 \text{ m/s}) \times (2 \text{ min}) \times 60 \text{ s/min} = 3000 \text{ m}$ Magnitude of third displacement C= $(30 \text{ m/s}) \times (1 \text{min}) \times 60 \text{ s/min} = 1800 \text{ m}$.

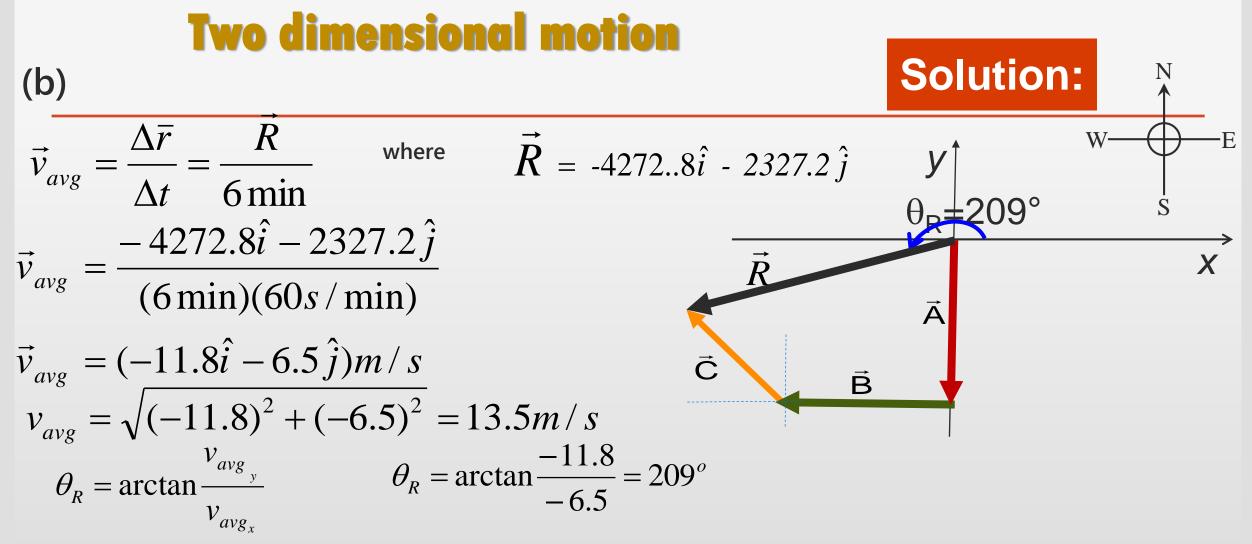


(a)

Solution:







Or the magnitude of average velocity can be directly obtained as follows

$$v_{avg} = \frac{\left|\vec{R}\right|}{360s} = \frac{4870m}{360s} = 13.5m/s$$

Motion in Two Dimensions with a Constant Acceleration

Motions in both dimensions are independent components

Constant acceleration equations

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

 $\vec{v} = (v_{0x} + a_x t)\hat{i} + (v_{0y} + a_y t)\hat{j}$
 $\vec{v} = (v_{0x} + a_x t)\hat{i} + (v_{0y} + a_y t)\hat{j}$
Here, $\vec{v}_0 = v_{0x}\hat{i} + v_{0y}\hat{j}$
 $\vec{a} = a_x\hat{i} + a_y\hat{j}$
 $\vec{r} = x\hat{i} + y\hat{j}$
 $\vec{r} = x\hat{i} + y\hat{j}$
 $\vec{r} = x\hat{i} + y\hat{j}$
 $\vec{r} = x\hat{i} + y\hat{j}$

• Constant acceleration equations hold in each dimension (i.e. a_x and a_y are constants

x – Motion	y-Motion
$v_x = v_{0x} + a_x t$	$v_y = v_{0y} + a_y t$
$x - x_0 = v_{0x}t + \frac{1}{2}a_xt^2$	$y - y_0 = v_{0y}t + \frac{1}{2}a_yt^2$
$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$	$v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$

Hints for solving problems

- Define coordinate system. Make sketch showing axes, origin.
- □ List known quantities. Find v_{xi} , v_{yi} , a_x , a_y , etc. Show initial conditions on sketch.
- □ List equations of motion to see which ones to use.
- \Box Time *t* is the same for *x* and *y* directions.

 $x_i = x_o = x(t = 0), y_i = y_o = y(t = 0), v_{xi} = v_{ox} = v_x(t = 0), v_{yi} = v_{oy} = v_y(t = 0).$

 \Box Have an axis point along the direction of a if it is constant.

$$v_{x} = v_{0x} + a_{x}t$$

$$v_{y} = v_{0y} + a_{y}t$$

$$x - x_{0} = v_{0x}t + \frac{1}{2}a_{x}t^{2}$$

$$y - y_{0} = v_{0y}t + \frac{1}{2}a_{y}t^{2}$$

$$v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0})$$

$$v_{y}^{2} = v_{0y}^{2} + 2a_{y}(y - y_{0})$$

Example:

A fish swimming in a horizontal plane has velocity $\vec{v}_i = (4\hat{i} + 1\hat{j})m/s$ at a point in the ocean where the position relative to a certain rock is $\vec{r}_i = (10\hat{i} - 4\hat{j})m$. After the fish swims constant acceleration for 20 s, its velocity is $\vec{v} = (20\hat{i} - 5\hat{j})m/s$. (a) What are the components of the acceleration of the fish? (b) What is the direction of its acceleration with respect to unit vector \hat{i} ? (c) If the fish maintains constant_y acceleration, where is it at t= 25 s and in what direction is it moving?

Answer: (a)
$$\vec{a} = (0.8\hat{i} - 0.3\hat{j})m/s^2$$

(b) 339°
(c) $\vec{r} = (360\hat{i} - 72.7\hat{j})m$, -11.4°

$$\vec{v}_i = (4\hat{i} + 1\hat{j})m/s$$
$$\vec{r}_i = (10\hat{i} - 4\hat{j})m$$

(a)
$$\vec{r}_i = (10\hat{i} - 4\hat{j})m$$
 $\vec{v}_i = (4\hat{i} + 1\hat{j})m/s$ $\vec{v}_f = (20\hat{i} - 5\hat{j})m/s$ at t= 20 s
 $a_x = ?$ $a_y = ?$
 $a_x = (v_{xf} - v_{xi})/t = (20 - 4)m/s/20 \text{ s} = 0.8 \text{ m/s}^2$
 $a_y = (v_{yf} - v_{yi})/t = (-5 - 1)m/s/20 \text{ s} = -0.3 \text{ m/s}^2$
(b) $\theta_a = \arctan(a_y/a_x) = \arctan(-0.3/0.8) = 339^\circ$
(c) At t = 25 s $x_f - x_i = v_{xi}t + 0.5 a_x t^2$
 $\Rightarrow x_f = 10m + (4m/s)(25s) + 0.5(0.8m/s^2)(25)^2 = 360 \text{ m}$
 $y_f - y_i = v_{yi}t + 0.5 a_y t^2$
 $\Rightarrow y_f = -4m + (1m/s)(25s) - 0.5(0.3m/s^2)(25)^2 = -72.7 \text{ m}$
 $\theta_r = \arctan(y/x) = \arctan(-72.7/360) = -11.4^\circ$

By Prof. Rashad Badran

Applications for Two Dimensional Motion

Projectile Motion

Circular Motion

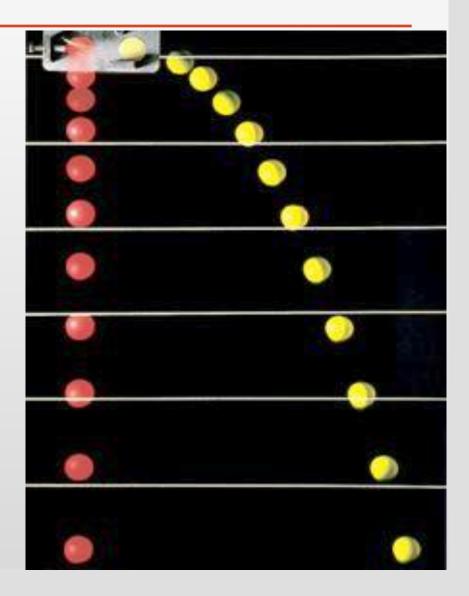
Relative Motion

- 2-D problem and define a coordinate system: x- horizontal, y- vertical (up +)
- □ Try to pick $x_o = o$, $y_o = o$ at t = o
- Horizontal motion + Vertical motion
- □ Horizontal motion: $a_x = o$, constant velocity
- Vertical motion: $a_y = -g = -9.8 \text{ m/s}^2$, $\mathbf{V}_{oy} = \mathbf{O}$ Equations:

Horizontal $v_x = v_{0x} + a_x t$ $x - x_0 = v_{0x}t + \frac{1}{2}a_x t^2$ $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$

Vertical

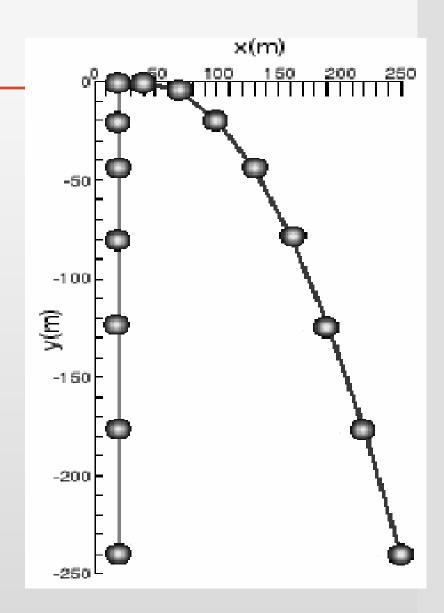
 $v_{y} = v_{0y} + a_{y}t$ $y - y_{0} = v_{0y}t + \frac{1}{2}a_{y}t^{2}$ $v_{y}^{2} = v_{0y}^{2} + 2a_{y}(y - y_{0})$



x and y motions happen independently, so we can treat them separately

HorizontalVertical $v_x = v_{0x}$ $v_y = v_{0y} - gt$ $x = x_0 + v_{0x}t$ $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$

- Try to pick $x_o = o$, $y_o = o$ at t = o
- Horizontal motion + Vertical motion
- □ Horizontal: $a_x = o$, constant velocity motion
- Vertical : $a_v = -g = -9.8 \text{ m/s}^2$
- \Box x and y are connected by time t
- \Box *y*(*x*) is a parabola



□ 2-D problem and define a coordinate system.

- Horizontal: $a_x = o$ and vertical: $a_y = -g$.
- Try to pick $x_o = o$, $y_o = o$ at t = 0.
- Velocity initial conditions:
 - v_o can have *x*, *y* components.
 - v_{ox} is constant usually.
 - v_{ov} changes continuously.
- Equations:

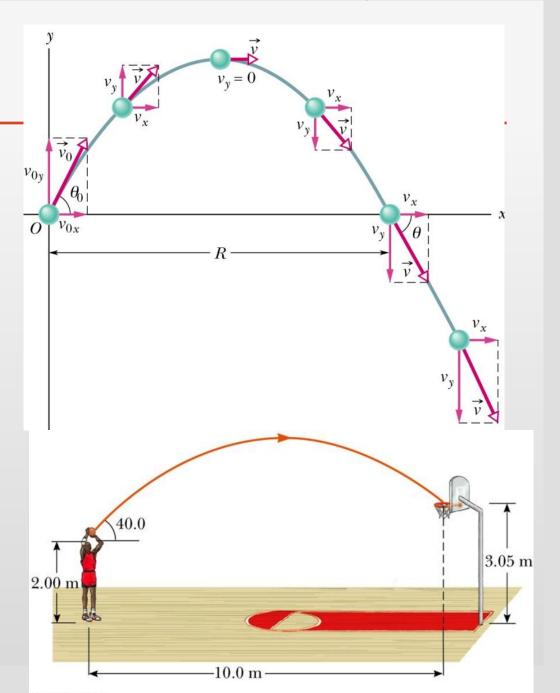
Horizontal

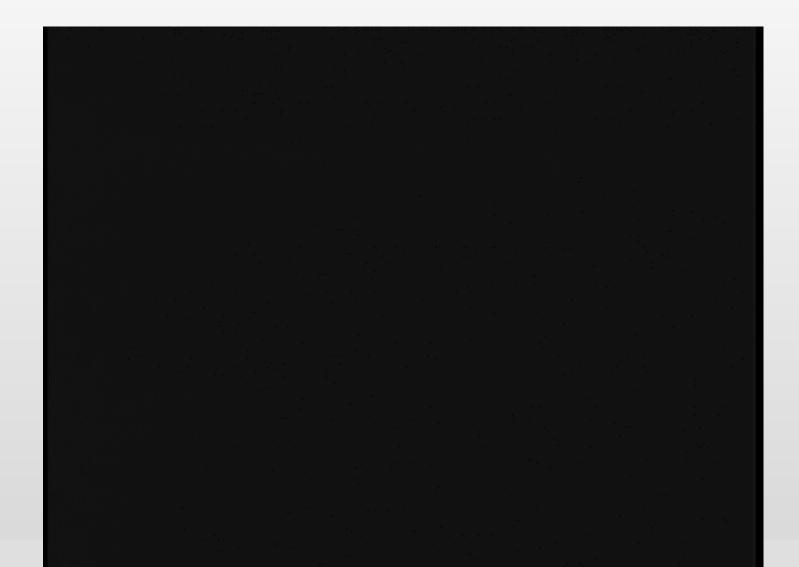
Vertical

-gt $vt - \frac{1}{2}gt^2$

$$v_x = v_{0x}$$

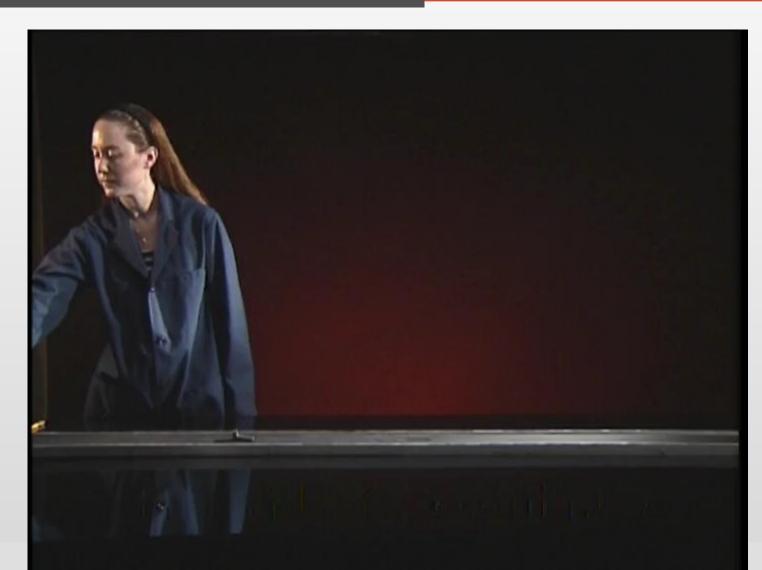
 $x = x_0 + v_{0x}t$
 $v_y = v_{0y}$
 $y = y_0 + v_0$





By Prof. Rashad Badran

Projectile Motion



Symmetrical Trajectory of Projectile Motion

- □ Initial conditions (t = 0): $x_o = 0$, $y_o = 0$
- \Box $v_{ox} = v_o \cos\theta_o$ and $v_{oy} = v_o \sin\theta_o$
- Horizontal motion:

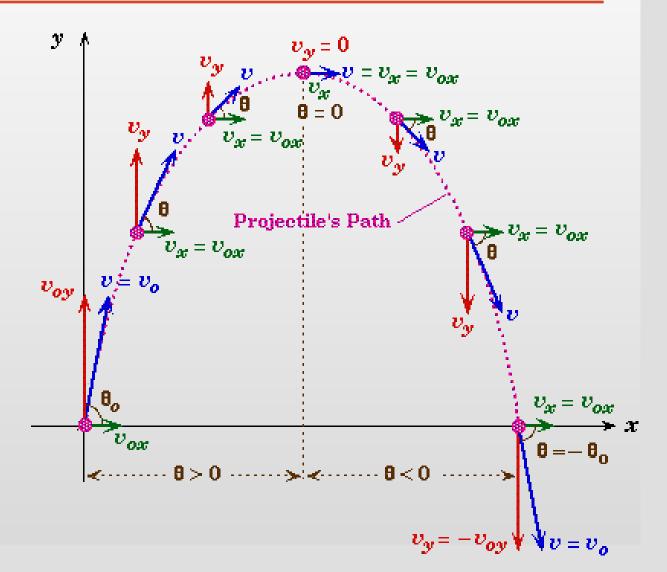
$$x = 0 + v_{0x}t \implies t = \frac{x}{v_{0x}}$$

Vertical motion:

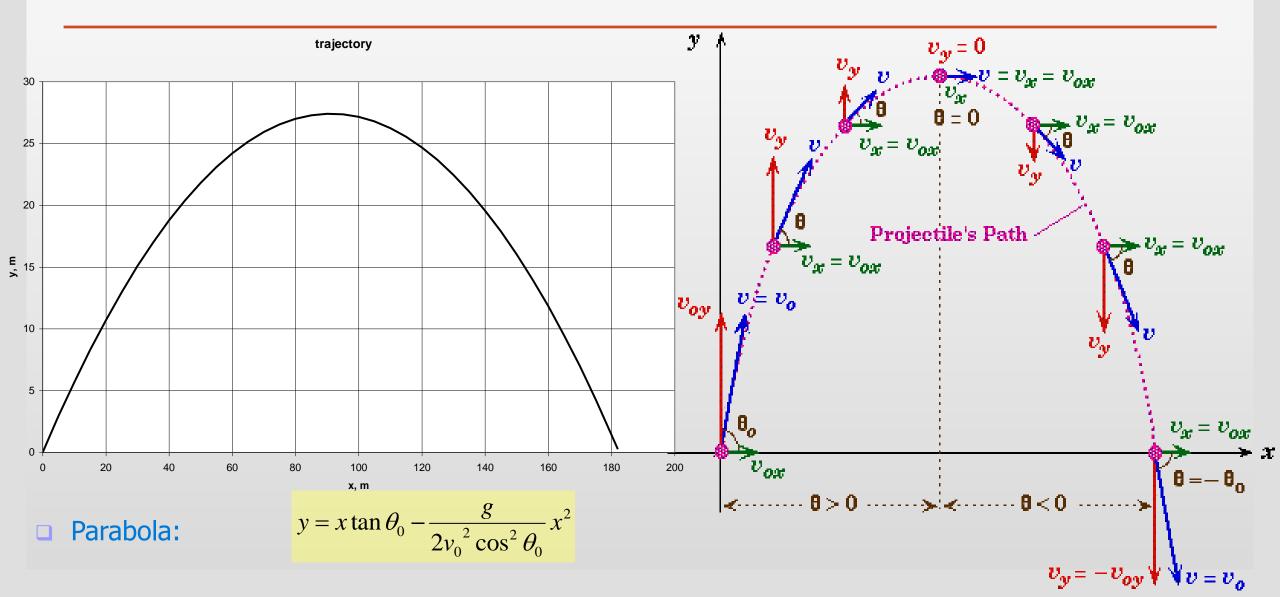
$$y = 0 + v_{0y}t - \frac{1}{2}gt^{2}$$
$$y = v_{0y}\left(\frac{x}{v_{0x}}\right) - \frac{g}{2}\left(\frac{x}{v_{0x}}\right)^{2}$$

$$y = x \tan \theta_0 - \frac{g}{2v_0^2 \cos^2 \theta_0} x^2$$
Parabola:

• $\theta_0 = 0$ and $\theta_0 = 90$?



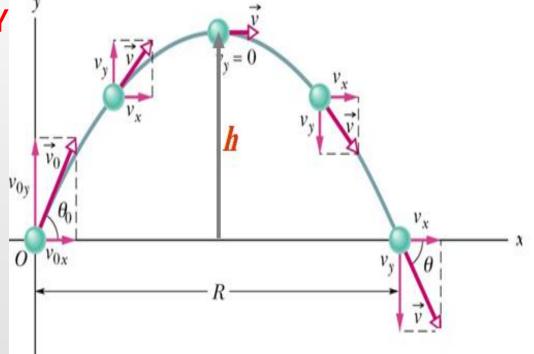
Equation of a symmetric Trajectory of Projectile Motion



What are horizontal range *R* and maximum height *h*?

For a projectile of symmetrical trajectory ONLY

□ Initial conditions (t = 0): $x_0 = 0$, $y_0 = 0$, $v_{ox} = v_o \cos\theta_o$ and $v_{oy} = v_o \sin\theta_o$, then $0 = 0 + v_{0y}t - \frac{1}{2}gt^2$ $b = 0 + v_{0y}t - \frac{1}{2}gt^{2}$ $x = 0 + v_{0x}t$ $t = \frac{2v_{0y}}{g} = \frac{2v_{0}\sin\theta_{0}}{g}$ $R = x - x_{0} = v_{0x}t = \frac{2v_{0}\cos\theta_{0}v_{0}\sin\theta_{0}}{g} = \frac{v_{0}^{2}\sin 2\theta_{0}}{g}$ $h = y - y_{0} = v_{0y}t_{h} - \frac{1}{2}gt_{h}^{2} = v_{0y}\frac{t}{2} - \frac{g}{2}\left(\frac{t}{2}\right)^{2}$ $h = \frac{v_0^2 \sin^2 \theta_0}{2g}$ $v_y = v_{0y} - gt = v_{0y} - g \frac{2v_{0y}}{g} = -v_{0y}$

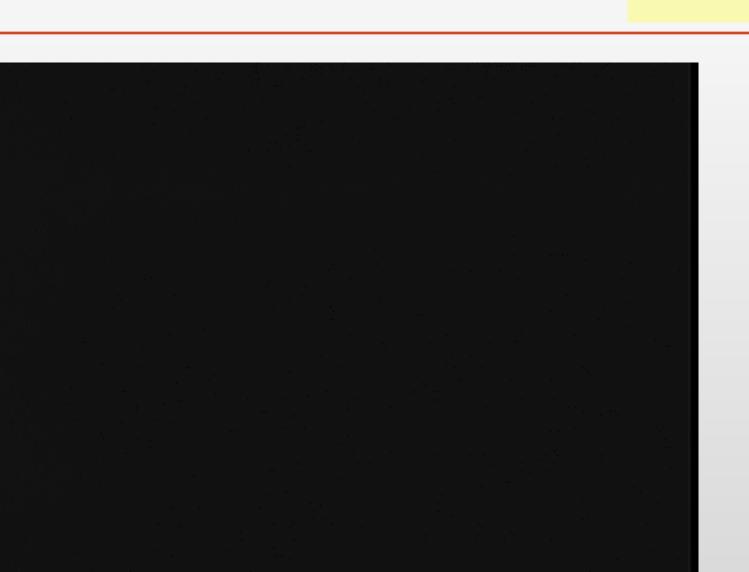


Horizontal
$$v_x = v_{0x}$$
Vertical
 $v_y = v_{0y} - gt$ $x = x_0 + v_{0x}t$ $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$

 \mathcal{B}_{y} Prof. Rashad Badran

g

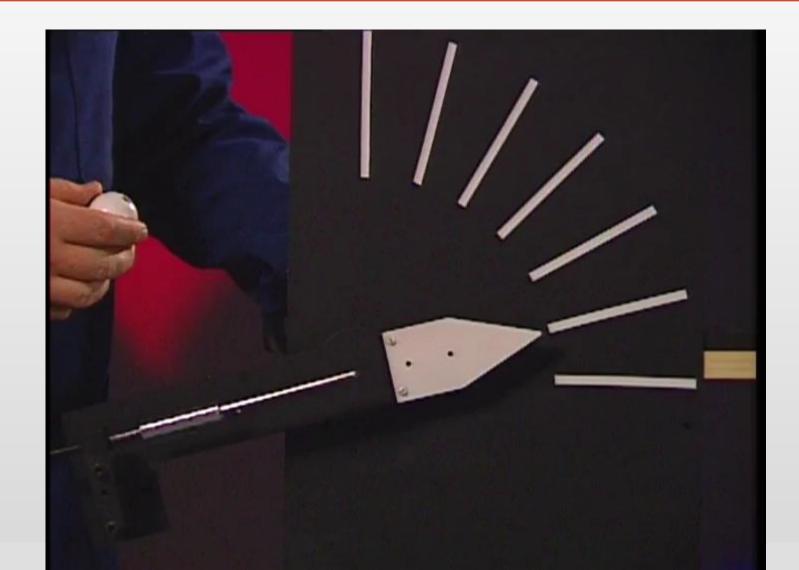
Projectile Motion at Various Initial Angles $R = \frac{v_0^2 \sin 2\theta_0}{2}$



 \mathcal{B}_{y} Prof. Rashad Badran

Projectile Motion at Various Initial Angles R

$$R = \frac{v_0^2 \sin 2\theta_o}{g}$$



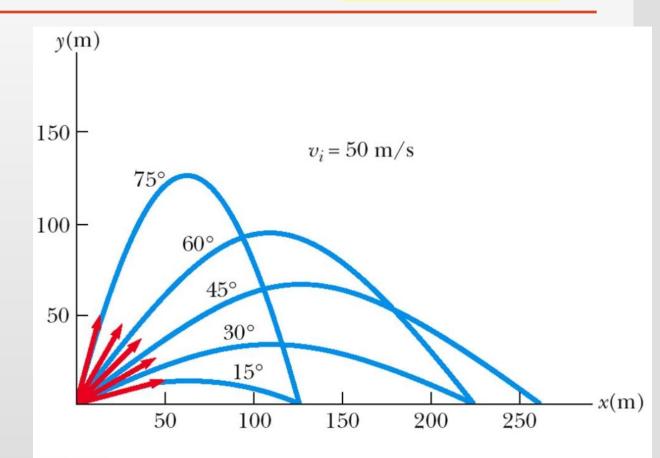
By Prof. Rashad Badran

 $R = \frac{v_0^2}{1000} \sin 2\theta_0$

g

Projectile Motion at Various Initial Angles

- Complementary values of the initial angle result in the same range
 - The heights will be different
- The maximum range occurs at a projection angle of 45°



© 2006 Brooks/Cole - Thomson

Example:

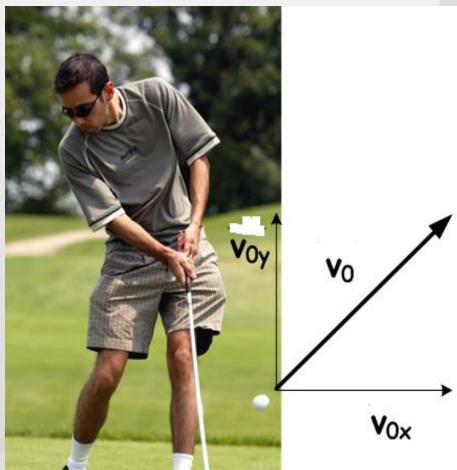
The golfer shown in the picture has launched his ball with an initial velocity of 45 m/s, 31° above the horizontal. (a) What is the total time the ball will be in the air?

(b) How high above the ground will the ball reach at its highest point?

(c) How far will the ball "carry" over level ground?

(d) Write the equation of trajectory

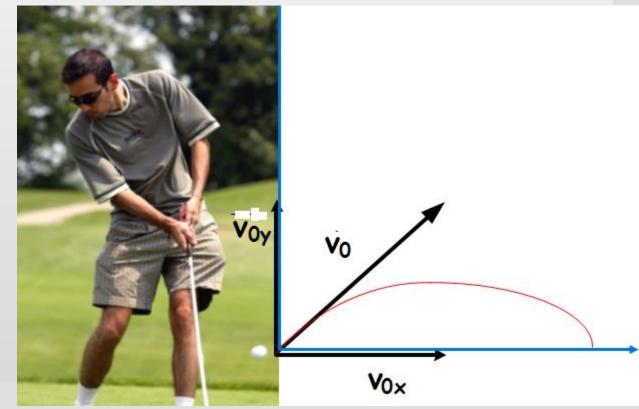
Hint: Take g=9.8 m/s²



(a) $v_0 = 45$ m/s, $\theta_0 = 31^\circ$ above the horizontal.

Resolve the ball's initial velocity into horizontal and vertical components. $v_{0x} = v_0 \cos \theta_0 = (45m/s)(0.857)$

 $v_{0x} = 38.57 m / s$ $v_{0y} = v_0 \sin \theta_0 = (45m / s)(0.515)$ $v_{0y} = 23.17m / s$ Note: Remember that v_{ox} will remain constant during the whole trip but that v_{oy} is not going to remain constant



(a) During the time the ball takes to rise vertically, stop vertically, and fall vertically back to the ground, while the ball moves horizontally with constant velocity.

We must determine just how long that time of flight is.

$$v_{y} = v_{0y} - g\left(\frac{1}{2}t\right) = v_{0}\sin\theta_{0} - g\left(\frac{1}{2}t\right) = 0$$

Solving for *t*, the <u>total</u> time of flight:

$$v_0 \sin \theta_0 - g\left(\frac{1}{2}t\right) = 0 \implies \frac{g}{2}t = v_0 \sin \theta_0$$

$$t = \frac{2v_0 \sin \theta_0}{g} = \frac{2(45 \text{ m/s})(\sin 31^\circ)}{9.8 \text{ m/s}^2} = 4.730 \text{ s}$$

Note: The substitution of t/2 in above equation considers the rising part of the trajectory where the speed at maximum height is zero.

(b) To calculate this maximum height directly from the third kinematic equation:

$$y = v_{0y}t_h - \frac{1}{2}gt_h^2$$

 $v_{0y} = 23.17m/s$, as given ($v_o = 45m/s$ and $\theta_o = 31^\circ$)

 $t_h = \frac{t}{2} = \frac{4.73s}{2} = 2.35s$, where t time of flight as obtained from (a)

Put these values into the equation we get:

y = (23.17)(2.35)
$$-\frac{1}{2}(9.8 \text{ m/s}^2)(2.35 \text{ s})^2 = 27.1 \text{ m}$$

Note: The time we used was half the time-of-flight, *t*.

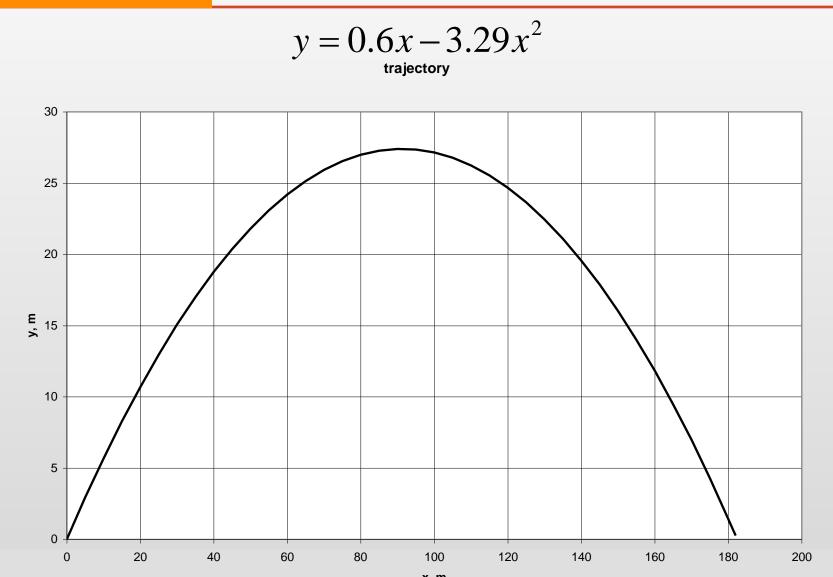
(c) To calculate the horizontal distance, you should remember that the acceleration is zero in horizontal direction and the initial velocity is constant along the whole distance. It was obtained as $v_{0x} = 38.57 m/s$

Use the equation:
$$x = v_0 \cos \theta_0 \cdot t$$

Such that
$$x = (45 \text{ m/s})(\cos 31^\circ)(4.730 \text{ s}) = 182 \text{ m}$$

(d) To find the equation of trajectory, use the derived equation

$$y = x \tan \theta_0 - \frac{gx^2}{2v_0^2 \cos^2 \theta_0}$$
$$y = 0.6x - 3.29x^2$$

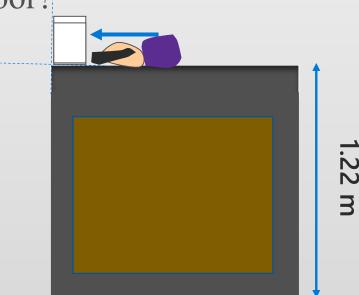


In a kitchen a girl slides a mug down the counter. The height of the counter is 1.22 m.

The mug slides of the counter and strikes the floor 1.4 m from the base of the counter.

(a) With what velocity did the mug leave the counter?

(b) What was the mug's velocity just before it hits the floor?

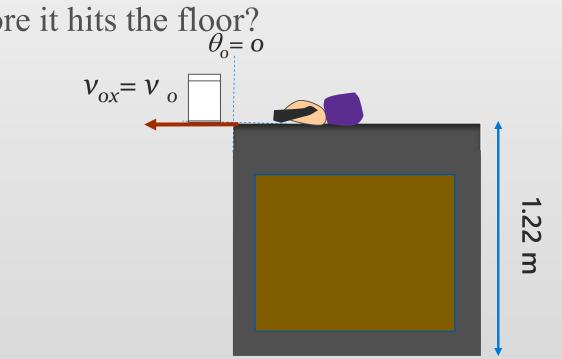


In a kitchen a girl slides a mug down the counter. The height of the counter is 1.22 m.

The mug slides of the counter and strikes the floor 1.4 m from the base of the counter.

(a) With what velocity did the mug leave the counter?

(b) What was the mug's velocity just before it hits the floor? $\theta_o = 0$

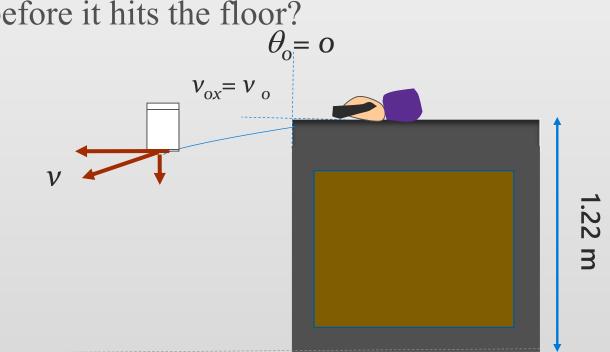


In a kitchen a girl slides a mug down the counter. The height of the counter is 1.22 m.

The mug slides of the counter and strikes the floor 1.4 m from the base of the counter.

(a) With what velocity did the mug leave the counter?

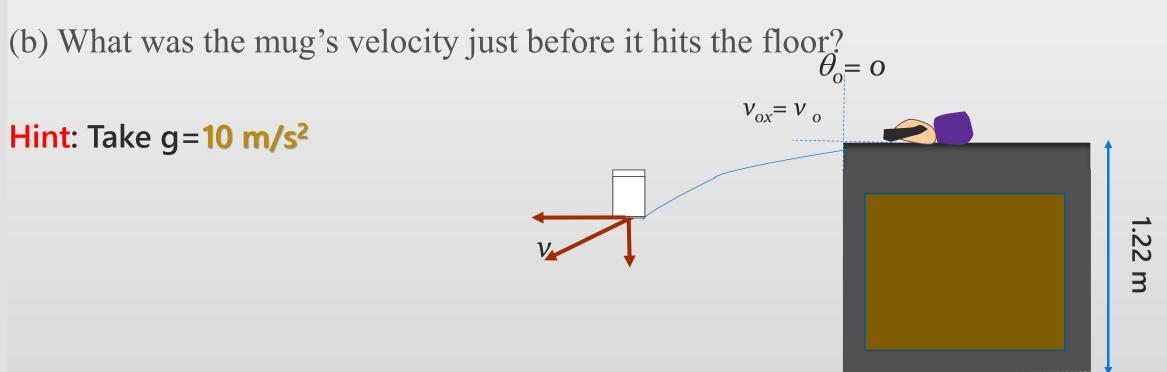
(b) What was the mug's velocity just before it hits the floor?



In a kitchen a girl slides a mug down the counter. The height of the counter is 1.22 m.

The mug slides of the counter and strikes the floor 1.4 m from the base of the counter.

(a) With what velocity did the mug leave the counter?



In a kitchen a girl slides a mug down the counter. The height of the counter is 1.22 m.

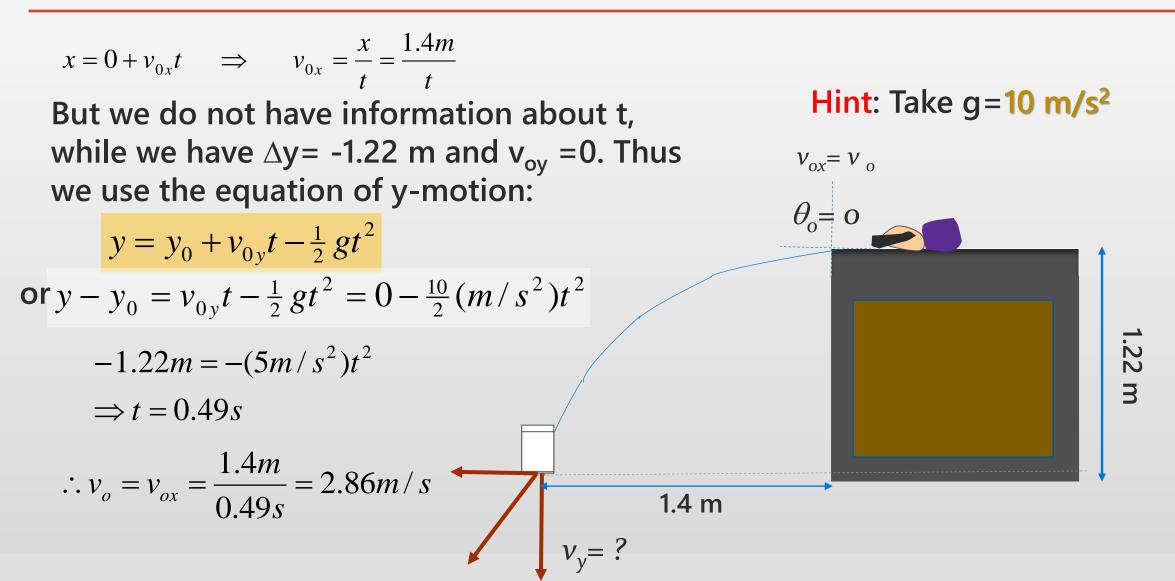
The mug slides of the counter and strikes the floor 1.4 m from the base of the counter.

(a) With what velocity did the mug leave the counter?

(b) What was the mug's velocity just before it hits the floor? $\theta_0 = 0$

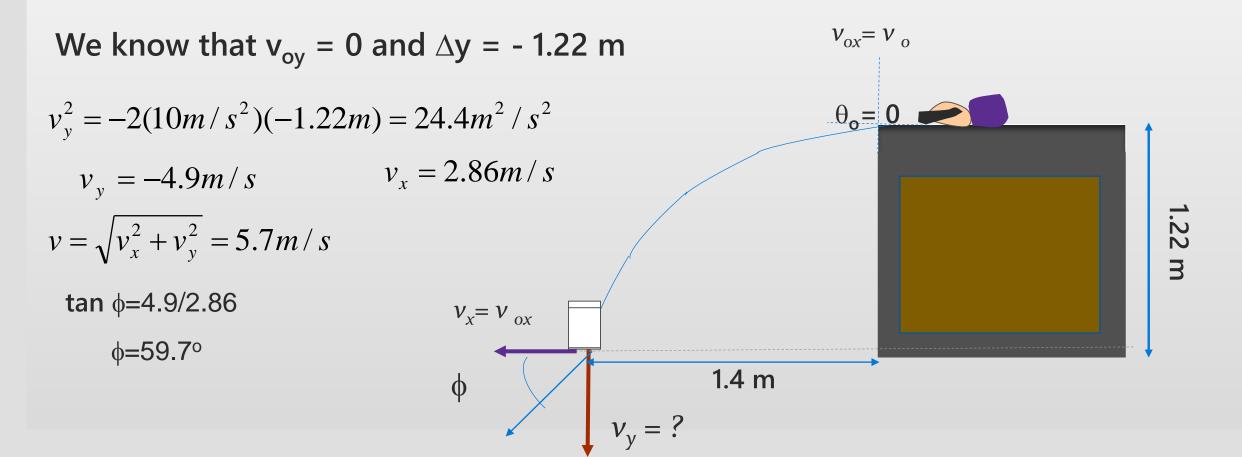
Hint: Take g=10 m/s² $v_{ox} = v_{o}$

(a) To find the velocity of the mug when it left the counter:



(b) To find the mug's velocity just before it hits the floor:

$$v_{y}^{2} = v_{0y}^{2} - 2g(y - y_{0})$$



 53^{o}

0

3

Example:

Colution

A projectile is fired in such a way that its horizontal range is equal three times its maximum height. What is the angle of projection?

Given
$$R = 3h_{max}$$
 where,

$$h = \frac{v_0^2 \sin^2 \theta_0}{2g} \text{ and } R = \frac{v_0^2 \sin 2\theta_o}{g}$$

$$\Rightarrow \frac{v_o^2 \sin 2\theta_o}{g} = 3(\frac{v_o^2 \sin^2 \theta_o}{2g})$$
Use the trigonometric identity $\sin(\theta_1 + \theta_2) = \sin \theta_1 \cos \theta_2 + \sin \theta_2 \cos \theta_1$
For $\theta_1 = \theta_2 = \theta_0 \Rightarrow$ $\sin(2\theta_0) = 2\sin \theta_0 \cos \theta_0$

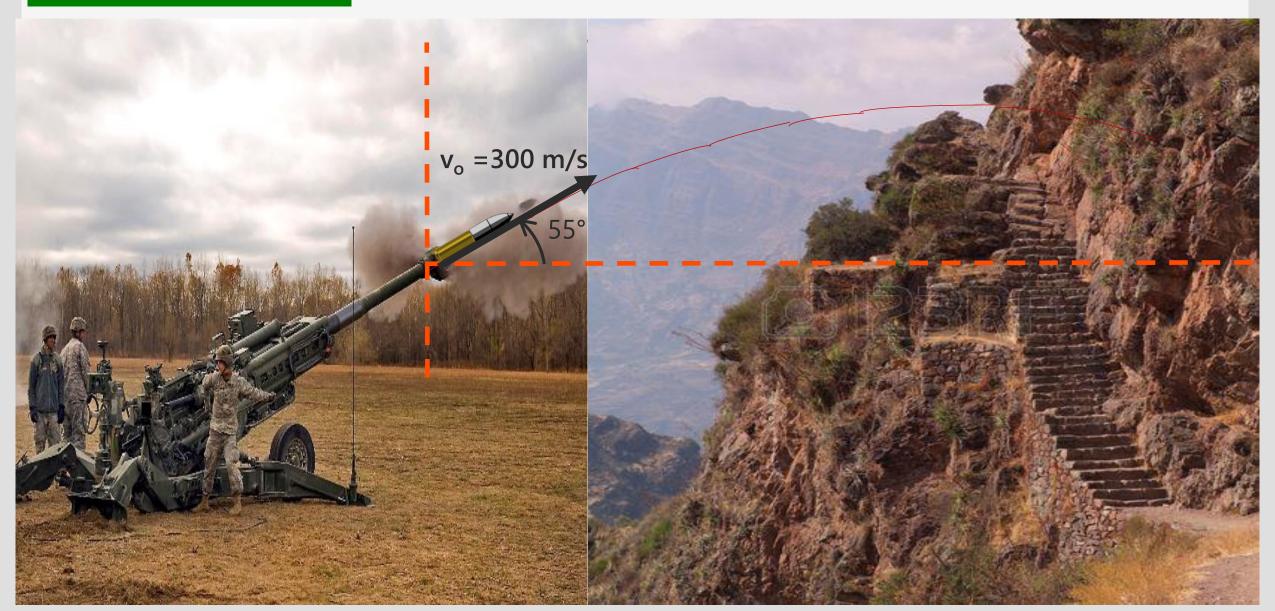
$$\frac{v_o^2(2\sin \theta_0 \cos \theta_0)}{g} = 3(\frac{v_o^2 \sin^2 \theta_0}{2g}) \longrightarrow \tan \theta_0 = \frac{4}{3} \Rightarrow \theta_0 = \tan^{-1}(\frac{4}{3}) =$$

To start an avalanche on a mountain slope, an artillery shell is fired with an initial velocity of 300m/s at 55° above the horizontal. It explodes on the mountainside 42 s after firing.

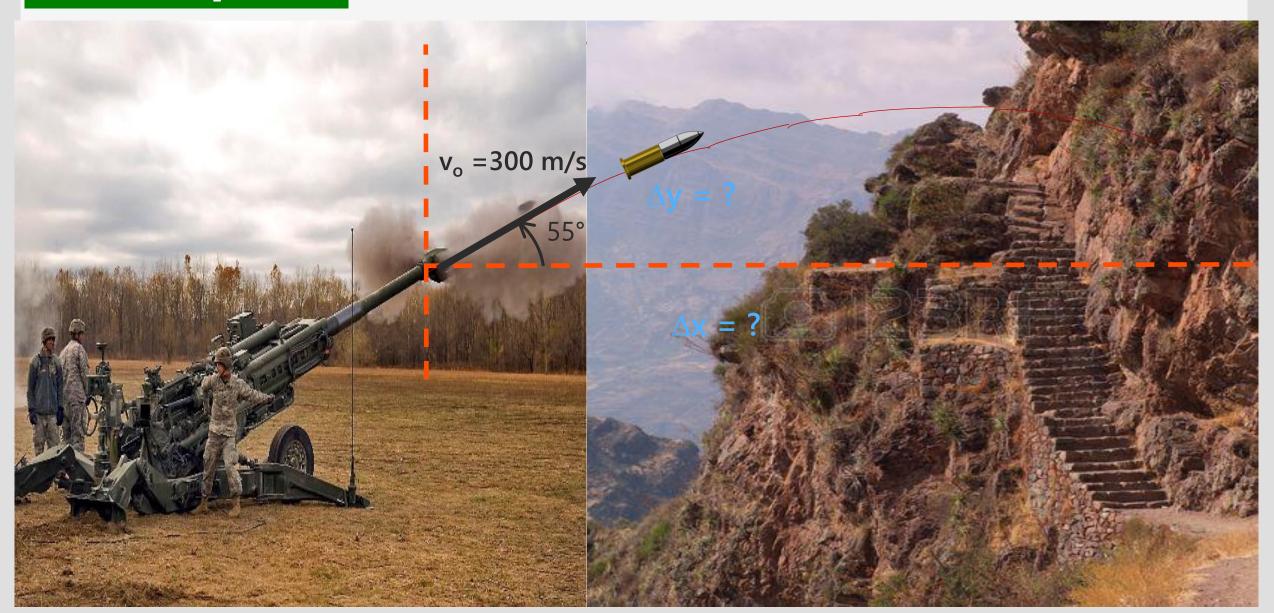
What are the *x* and *y* coordinates of the shell where it explodes relative to its firing point?

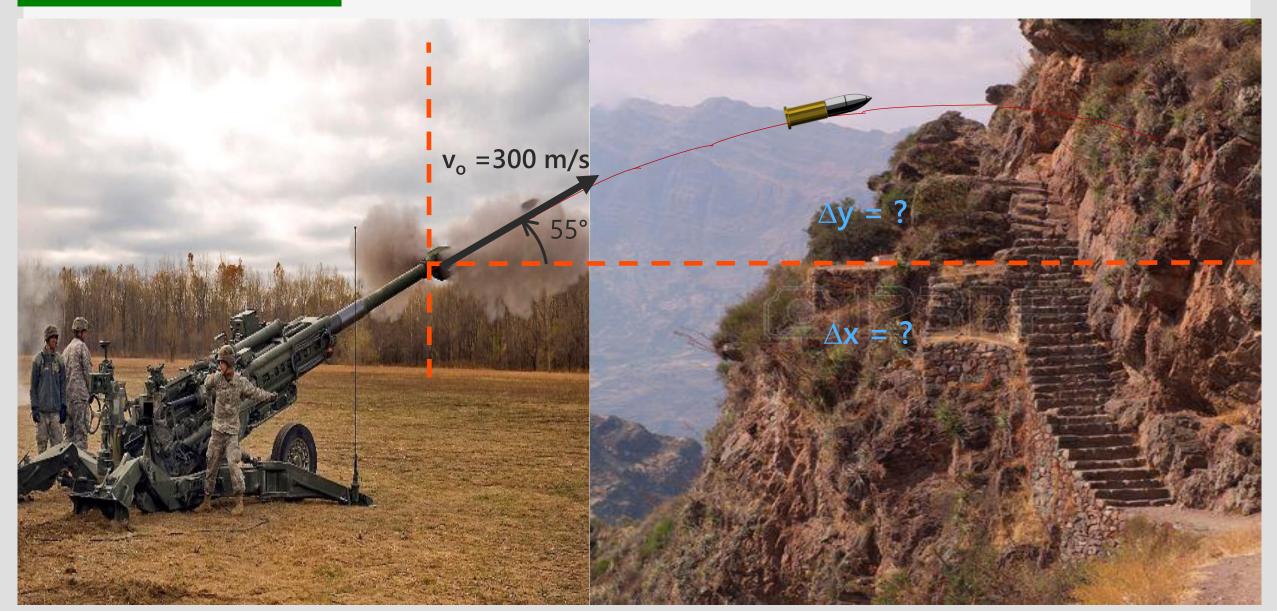
```
Hint: Take g=10 m/s<sup>2</sup>
```

By Prof. Rashad Badran

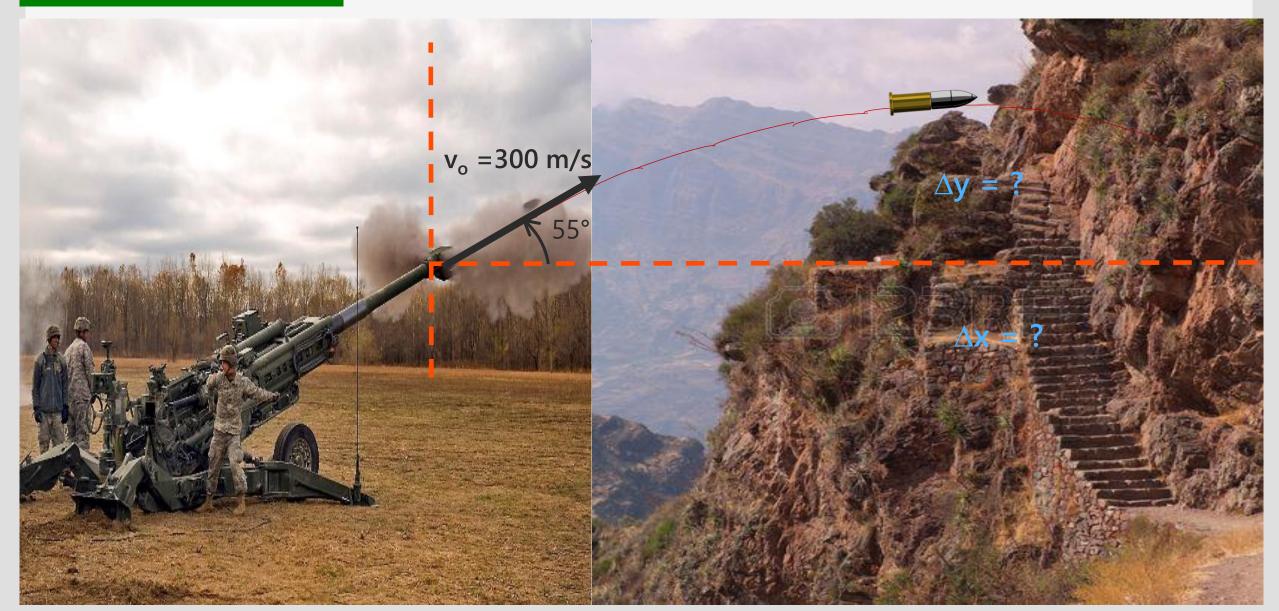


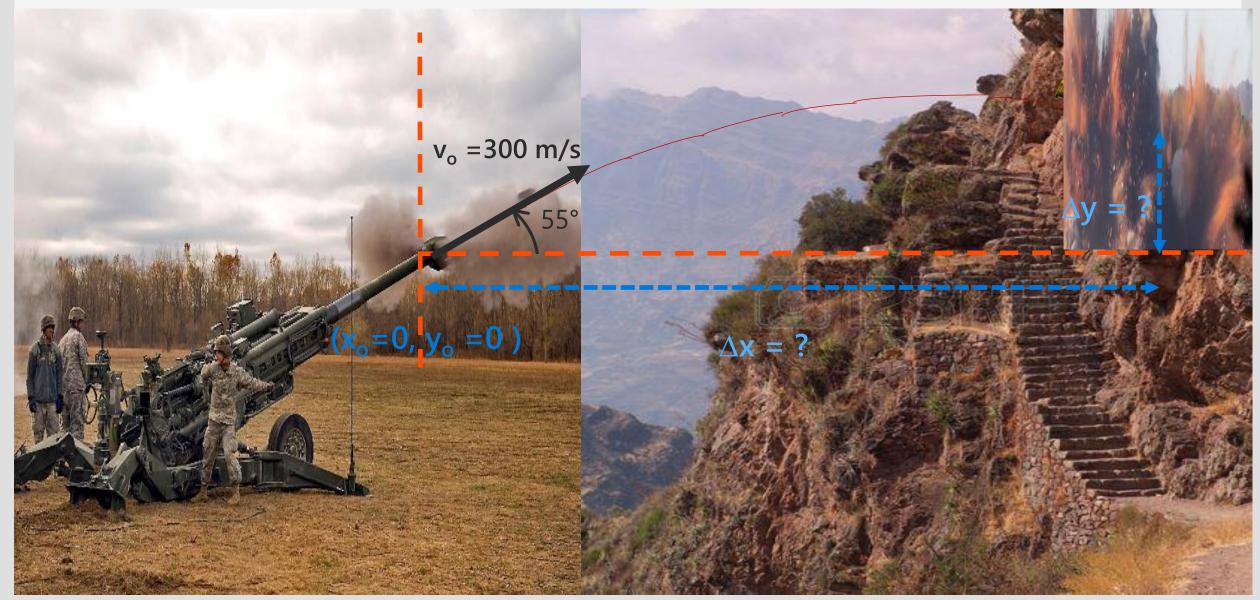
By Prof. Rashad Badran



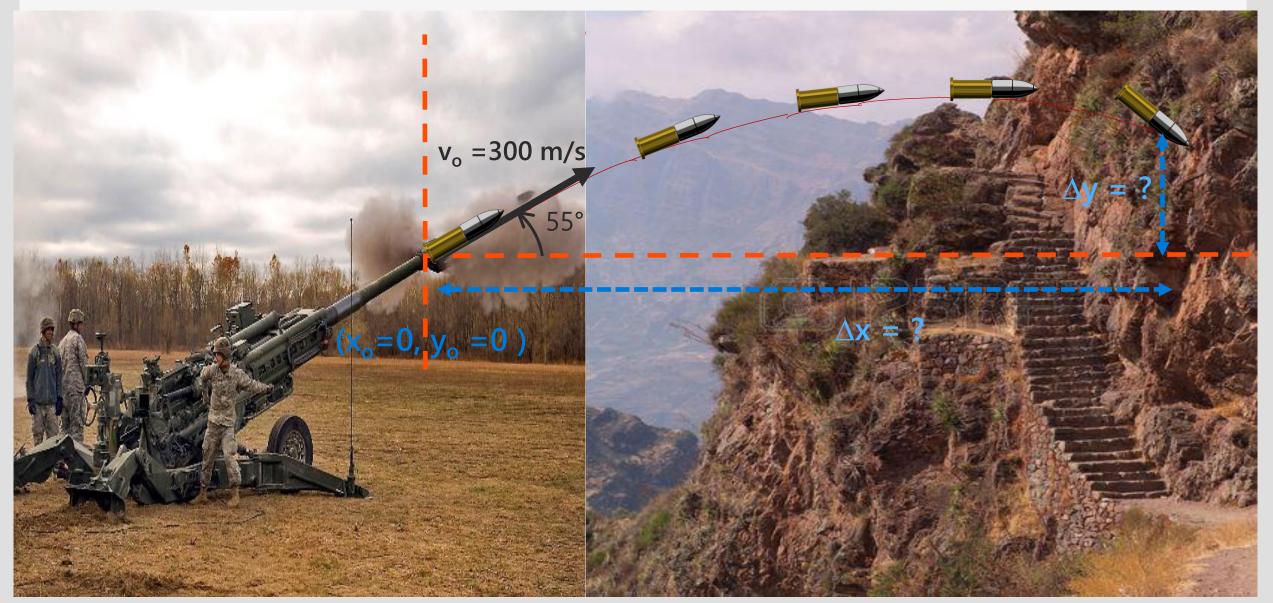


By Prof. Rashad Badran





t=42 s



Firing point at $(x_o = o, y_o = o)$ Time of flight t = 42 s

x-motion: $v_{ox} = v_o \cos \theta_o = (300 \text{ m/s})\cos 55^\circ = 172 \text{ m/s}$

y-motion: $v_{oy} = v_o \sin \theta_o = (300 \text{ m/s}) \sin 55^\circ = 245.7 \text{ m/s}$

x-motion: $\Delta x = v_{ox} t = (172 \text{ m/s})(42 \text{ s}) = 7224 \text{ m}$

y-motion: $\Delta y = v_{oy} t - 0.5 g t^2 = (245.7 \text{m/s})(42 \text{ s}) - 0.5 (10)(42)^2 = 1501.3 \text{ m}$

A ball is tossed from an upper-story window of a building. The ball is given an initial velocity of 8 m/s at an angle of 20° below horizontal. It strikes the ground 3 s later.

- (a) How far horizontally from the base of the building does the ball strike the ground?
- (b) Find the height from which the ball was thrown?
- (c) How long does it take the ball to reach a point 10 m below the level of launching?

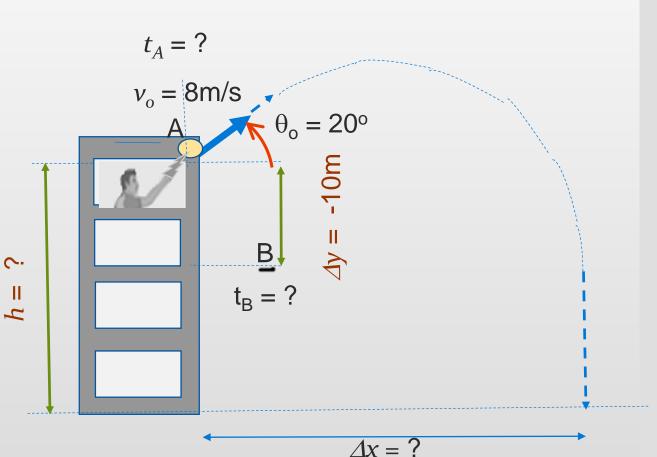
Hint: Take g=10 m/s²

(a) The horizontal distance from the base of the building can be obtained using $\Delta x = v_{ox} t_C$ $t_A = 0$ $v_{0x} = v_0 \cos \theta_0 = (8 \text{m/s}) \cos 20^\circ = 7.5 \text{ m/s}$ $\theta_{o} = 20^{\circ}$ $\therefore \Delta x = (7.5 \text{ m/s})(3 \text{ s}) \qquad \Rightarrow \Delta x = 22.5 \text{ m}$ 10m $v_{o} =$ (b) The height of the building can be found as **~**. **follows:** $\Delta y = v_{ov} t_C - 0.5 g t_c^2$ Ш Ш \sum R $v_{ov} = v_o \sin \theta_o = -$ (8m/s) sin 20° = - 2.74 m/s $t_{B} = ?$ $\Delta y = v_{ov} t_c - 0.5 g t_c^2 = (-2.74 \text{ m/s})(3 \text{ s}) - 0.5 (10 \text{ m/s}^2)(3 \text{ s})^2$ С \Rightarrow h = 53.2 m ⊿y =- 53.2 m $t_{\rm C} = 3 \, \rm s$ $\Delta x = ?$ (c) The time it takes to be 10 m below throwers level is: $t_{R} = 0.79 s$ $-10 \text{ m} = = (-2.74 \text{ m/s})t_{B} - 0.5 (10 \text{ m/s}^{2})t_{B}^{2}$

Exercise

Hint: Take g=10 m/s²

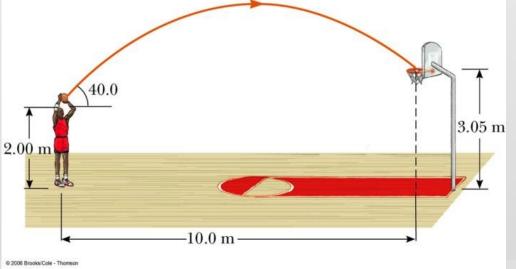
- A ball is tossed from an upper-story window of a building. The ball is given an initial velocity of 8 m/s at an angle of 20° above horizontal. It strikes the ground 4 s later.
- (a) How far horizontally from the base of the building does the ball strike the ground?
- (b) Find the height from which the ball was thrown?
- (c) How long does it take the ball to reach a point 10 m below the level of launching?Answer: (a) 30 m, (b) 69 m, (c) 1.7 s



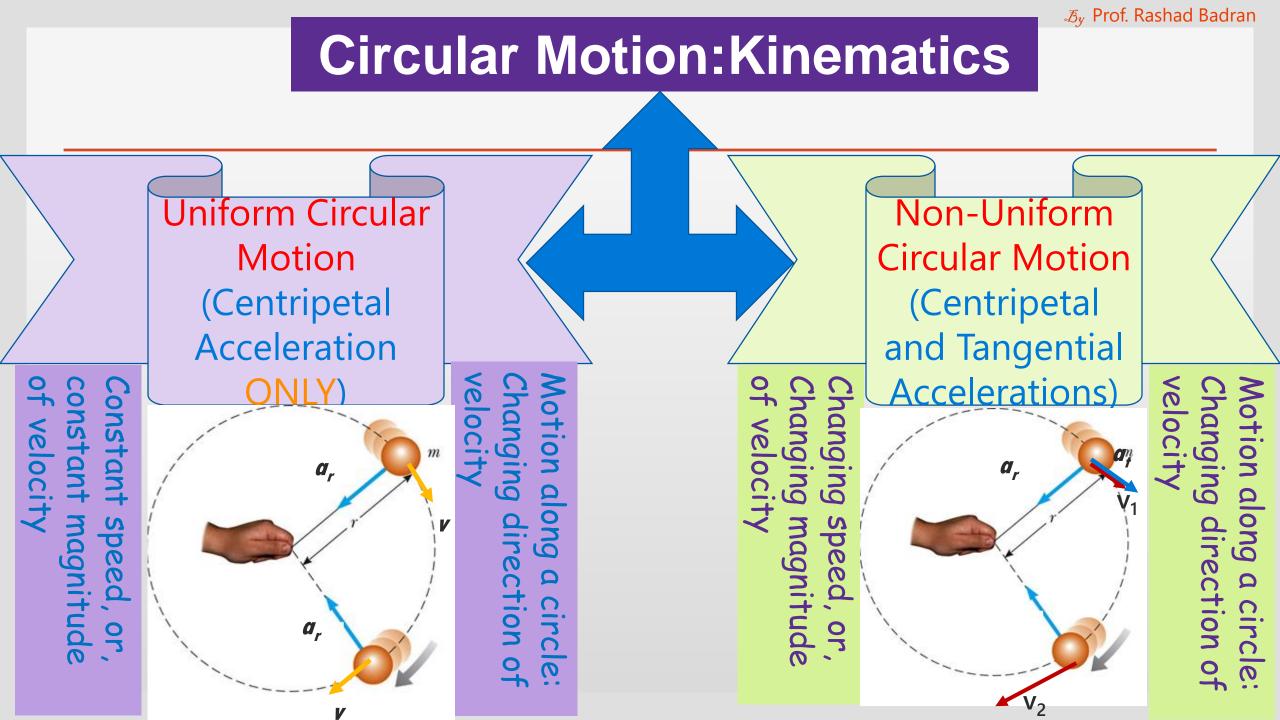
Exercise

A basketball player is standing on the floor 10 m from the basket as shown. The height of the basket is 3.05 m, and he shoots the ball at a 40° angle with the horizontal from a height of 2 m.

- (a) What is the acceleration of the basketball at the highest point in its trajectory?
- (b) At what speed must the player throw the basketball so that the ball goes through the hoop without striking the backboard?



Answer: (a) -10 m/s², (b) 10.77m/s

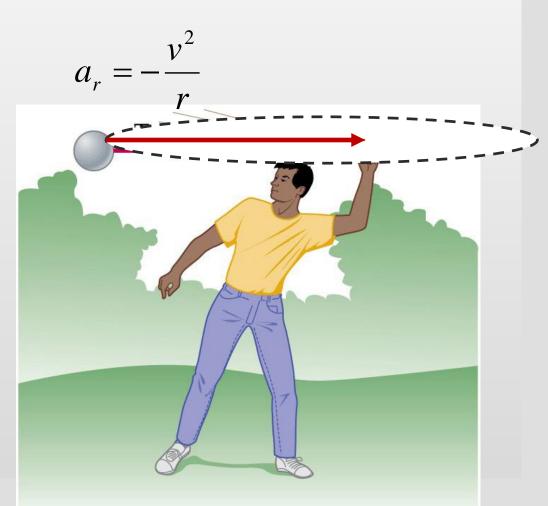


By Prof. Rashad Badran

Uniform Circular Motion

Object moving along a curved path with constant speed

- Magnitude of velocity: same
- Direction of velocity: changing
- Velocity: changing
- Acceleration is NOT zero!
- Net force acting on the object is NOT zero
- "Centripetal force"

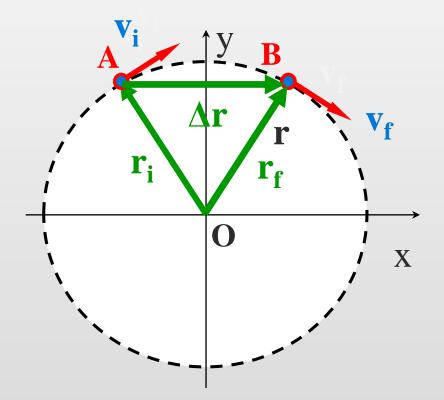


 \mathcal{B}_{y} Prof. Rashad Badran

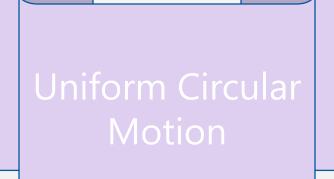
Uniform Circular Motion

Centripetal acceleration

$$\frac{\Delta v}{v} = \frac{\Delta r}{r} \quad so, \quad \Delta v = \frac{v\Delta}{r}$$
$$\frac{\Delta v}{\Delta t} = \frac{\Delta r}{\Delta t} \frac{v}{r} = \frac{v^2}{r}$$
$$a_r = \frac{\Delta v}{\Delta t} = \frac{v^2}{r}$$



Direction: Centripetal

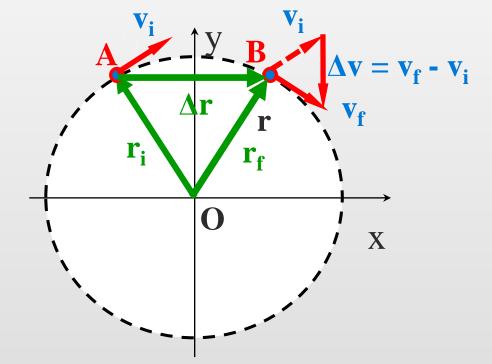


Centripetal acceleration

$$\frac{\Delta v}{v} = \frac{\Delta r}{r} \quad \text{so,} \quad \Delta v = \frac{v\Delta}{r}$$
$$\frac{\Delta v}{\Delta t} = \frac{\Delta r}{\Delta t} \frac{v}{r} = \frac{v^2}{r}$$
$$a_r = \frac{\Delta v}{\Delta t} = \frac{v^2}{r}$$

Direction: Centripetal

 v_i is perpendicular to r_i and v_f is also perpendicular to r_f but $r_i = r_f = r$. The angle between r_i and r_f is same as the angle between v_i and v_f . Thus red triangle is similar to green triangle



Notes: Triangles are similar when corresponding angles are congruent and corresponding sides are all in the same proportion

By Prof. Rashad Badran

Uniform Circular Motion

□Velocity:

Magnitude: constant v

The direction of the velocity is tangent to the circle

Acceleration:

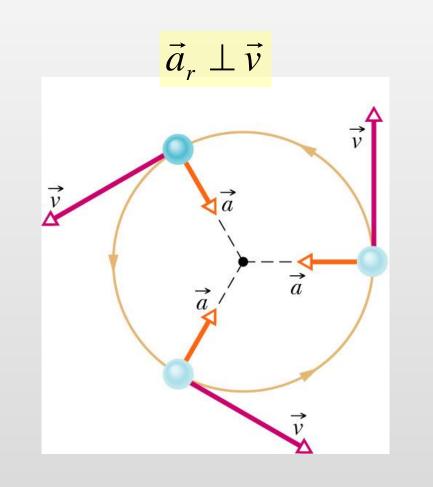
 $a_r = -\frac{v^2}{r}$

Magnitude:

*Directed toward the center of the circle of motion as indicated by a minus Period: $T = \frac{2\pi r}{T}$

Period:

Time interval required for one complete
v
revolution of the particle



The wheel of a car has a radius of r = 0.29m and is being rotated at 830 revolutions per minute (rpm) on a tire-balancing machine. Determine the speed (in m/s) at which the outer edge of the wheel is moving.

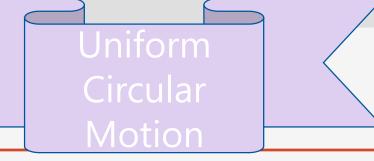
The speed v can be obtained directly from $T = \frac{2\pi r}{v}$, but first the period T is needed. It must be expressed in seconds.

830 revolutions in one minute

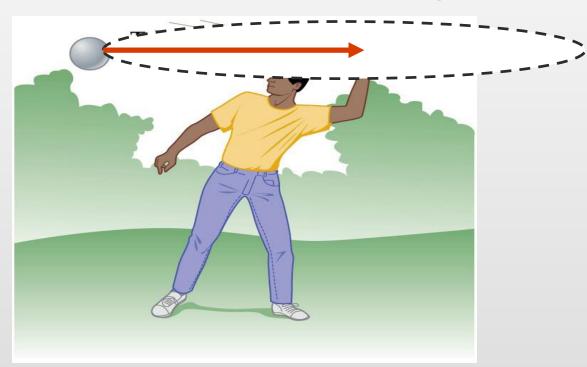
$$\frac{1}{830 \ revolutions / \min} = 1.2 \times 10^{-3} \min / revolution$$

T=1.2 ×10⁻³ min, which corresponds to 0.072s

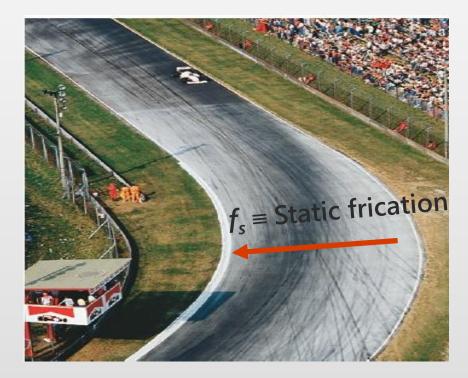
$$v = \frac{2\pi r}{T} = \frac{2\pi (0.29m)}{0.072s} = 25m/s$$



T≡ Tension in a rope



For the mass attached to a rope, when the rope is cut the circular motion vanishes and the object tends to go in a straight line



On Highway curves, If the frictional force is insufficient, the car will tend to move more nearly in a straight line, as the skid marks show. Non-Uniform Circular Motion (Centripetal and Tangential Accelerations)

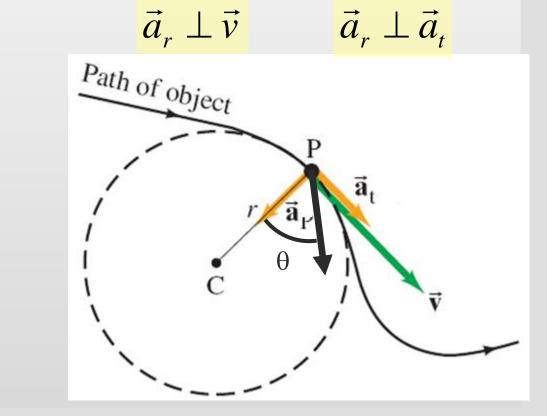
This concept can be used for an object moving along any curved path, as any small segment of the path will be approximately circular.

$$\vec{a} = a_r \hat{r} + a_t \hat{\theta}$$

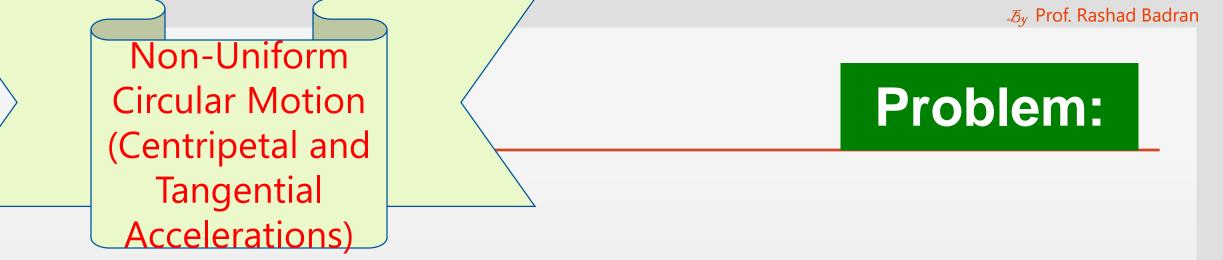
$$a_t = \frac{dv}{dt}$$
 $a_r = -\frac{v^2}{r}$

$$\left|\vec{a}\right| = \sqrt{a_r^2 + a_t^2}$$

$$\theta = \arctan \frac{a_t}{a_r}$$



 \mathcal{A}_{t}



The total acceleration of a particle moving clockwise in a circle of radius 2.5 m at a certain instant of time, is shown in the figure. For that instant, find $a_r = ?$

12.5 m

v = ?

 $a = 15m/s^{2}$

(a) The radial acceleration of the particle,

(b) the speed of the particle, and

(c) Its tangential acceleration

Non-Uniform Circular Motion (Centripetal and Tangential Accelerations)

Solution

 a_t

 $a \neq 15m/s^2$

 a_r

12.5 r

 $\mathcal{B}_{\mathcal{Y}}$ Prof. Rashad Badran

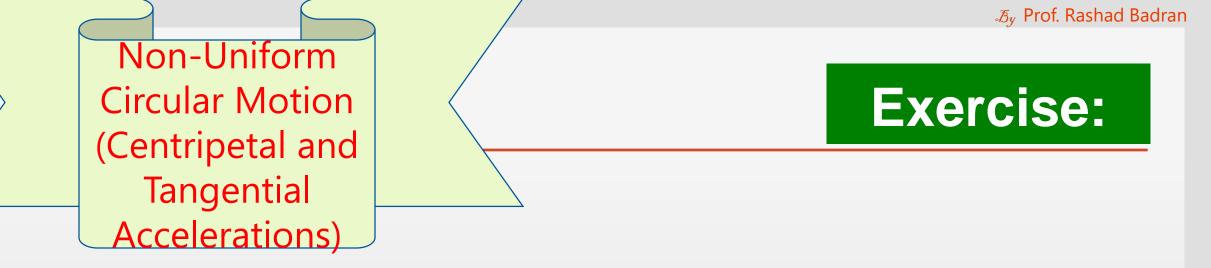
(a) To find the radial acceleration of the particle

$$a_r = a \cos 30^\circ = (15 \text{ m/s}^2)(0.866) = -13 \text{ m/s}^2$$

(b) To find the speed of the particle $a_r = \frac{v^2}{r}$ $v^2 = ra_r = (2.5m)(13m/s^2) \Rightarrow v = 5.7m/s$

(c) To find the tangential acceleration

$$a_t = a \sin 30^\circ = (15 \text{ m/s}^2)(0.5) = 7.5 \text{ m/s}^2$$



A train slows down as it rounds a sharp horizontal turn, going from 90 km/h to 50 km/h in the 15 s it takes to round the bend. The radius of the curve is 150 m. Compute the acceleration at the moment the train speed reaches 50km/h. Assume the train continues to slow down at this time at the same rate.

Answer: 1.48 m/s² and 29.9° backward

By Prof. Rashad Badran

Non-Uniform Circular Motion (Centripetal and Tangential Accelerations)

Exercise:

 \mathcal{B}_{y} Prof. Rashad Badran

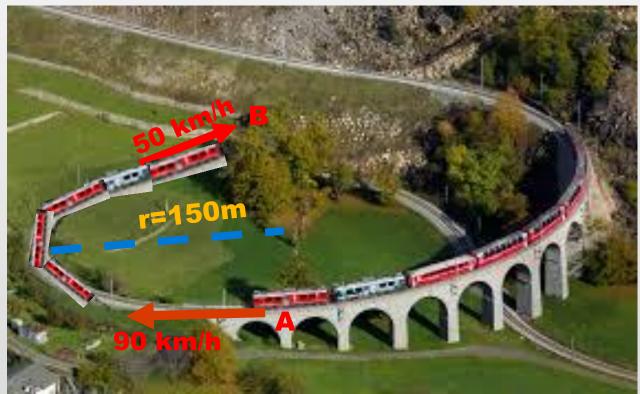
Exercise:

Non-Uniform **Circular Motion** (Centripetal and Tangential Accelerations)

By Prof. Rashad Badran

Non-Uniform Circular Motion (Centripetal and Tangential Accelerations)

Exercise:



t _{A→B} =15 s

Non-Uniform Circular Motion (Centripetal and Tangential Accelerations) \mathcal{B}_{y} Prof. Rashad Badran

$$v_{A} = (90km/h)(10^{3} \frac{m}{km})(\frac{1h}{3600s}) = 25m/s$$
$$v_{B} = (50km/h)(10^{3} \frac{m}{km})(\frac{1h}{3600s}) = 13.9m/s$$

$$a_r = \frac{v^2}{r} = \frac{(13.9m/s)^2}{150m} = 1.29m/s^2$$

$$a_{t} = a_{avg} = \frac{v_{B} - v_{A}}{t_{B} - t_{A}} = \frac{(13.9 - 25)m/s}{15s} = -0.74m/s^{2}$$
$$|\vec{a}| = \sqrt{a_{r}^{2} + a_{t}^{2}} = \sqrt{(12.9)^{2} + (-0.74)^{2}} = 1.48m/s^{2}$$

$$a_{t}$$
 a_{t} a_{r} a

$$\theta_a = \arctan \frac{a_t}{a_r} = \arctan \frac{-0.74}{1.29} = -29.9^{\circ}$$

Note: The negative sign indicates that the direction of total acceleration is opposite to train motion