Best Simultaneous Approximation in Orlicz Spaces

M. Khandaqji and Sh. Al-Sharif

Received 18 July 2006; Revised 14 January 2007; Accepted 17 April 2007

Recommended by Ricardo Estrada

Let \(X \) be a Banach space and let \(L^\Phi(I,X) \) denote the space of Orlicz \(X \)-valued integrable functions on the unit interval \(I \) equipped with the Luxemburg norm. In this paper, we present a distance formula \(\text{dist}_\Phi(f_1, f_2, L^\Phi(I,G)) \), where \(G \) is a closed subspace of \(X \), and \(f_1, f_2 \in L^\Phi(I,X) \). Moreover, some related results concerning best simultaneous approximation in \(L^\Phi(I,X) \) are presented.

Copyright © 2007 M. Khandaqji and Sh. Al-Sharif. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A function \(\Phi : (-\infty, \infty) \rightarrow [0, \infty) \) is called an Orlicz function if it satisfies the following conditions:

1. \(\Phi \) is even, continuous, convex, and \(\Phi(0) = 0 \);
2. \(\Phi(x) > 0 \) for all \(x \neq 0 \);
3. \(\lim_{x \to 0} \Phi(x)/x = 0 \) and \(\lim_{x \to \infty} \Phi(x)/x = \infty \).

We say that a function \(\Phi \) satisfies the \(\Delta_2 \) condition if there are constants \(k > 1 \) and \(x_0 > 0 \) such that \(\Phi(2x) \leq k\Phi(x) \) for \(x > x_0 \). Examples of Orlicz functions that satisfy the \(\Delta_2 \) conditions are widely available such as \(\Phi(x) = |x|^p \), \(1 \leq p < \infty \), and \(\Phi(x) = (1 + |x|)\log(1 + |x|) - |x| \). In fact, Orlicz functions are considered to be a subclass of Young functions defined in [1].

Let \(X \) be a Banach space and let \((I,\mu)\) be a measure space. For an Orlicz function \(\Phi \), let \(L^\Phi(I,X) \) be the Orlicz-Bochner function space that consists of strongly measurable functions \(f : I \rightarrow X \) with \(\int_I \Phi(\alpha \|f\|)d\mu(t) < \infty \) for some \(\alpha > 0 \). It is known that \(L^\Phi(I,X) \) is a Banach space under the Luxemburg norm.
\[\|f\|_{\Phi} = \inf\left\{ k > 0, \int_I \Phi\left(\frac{1}{k} \|f\| \right) d\mu(t) \leq 1 \right\}. \quad (1.1)\]

It should be remarked that if \(\Phi(x) = |x|^p\), \(1 \leq p < \infty\), the space \(L^{\Phi}(I, X)\) is simply the \(p\)-Lebesgue Bochner function space \(L^p(I, X)\) with \(\|f\|_p = \left(\int_I \|f\|^p \, d\mu(t) \right)^{1/p}\) \(1 \leq p < \infty\).

On the other hand, if \(\Phi(x) = (1 + |x|) \log(1 + |x|) - |x|\), then the space \(L^{\Phi}(I, X)\) is the well-known Zygmund space, \(L \log L^+\). For excellent monographs on \(L^{\Phi}(I, X)\), we refer the readers to [1–3].

For a function \(F = (f_1, f_2) \in (L^{\Phi}(I, X))^2\), we define \(\|F\|\) by

\[\|F\| = \|f_1(\cdot)\| + \|f_2(\cdot)\|_{\Phi}. \quad (1.3)\]

In this paper, for a given closed subspace \(G\) of \(X\) and \(F = (f_1, f_2) \in (L^{\Phi}(I, X))^2\), we show the existence of a pair \(G_0 = (g_0, g_0) \in (L^{\Phi}(I, G))^2\) such that

\[\|F - G_0\| = \inf_{g \in G} \|F - (g, g)\|. \quad (1.4)\]

If such a function \(g\) exists, it is called a best simultaneous approximation of \(F = (f_1, f_2)\). The problem of best simultaneous approximation can be viewed as a special case of vector-valued approximation. Recent results in this area are due to Pinkus [4], where he considered the problem when a finite-dimensional subspace is a unicity space. Characterization results for linear problems were given in [5] based on the derivation of an expression for the directional derivative, and these results generalize the earlier results presented in [6]. Results on best simultaneous approximation in general Banach spaces may be found in [7, 8]. Related results on \(L^p(I, X)\), \(1 \leq p < \infty\), are given in [9]. In [9], it is shown that if \(G\) is a reflexive subspace of a Banach space \(X\), then \(L^p(I, G)\) is simultaneously proximinal in \(L^p(I, X)\). If \(L^{\Phi}(I, X) = L^1(I, X)\), Abu-Sarhan and Khalil [10] proved that if \(G\) is a reflexive subspace of the Banach space \(X\) or \(G\) is a 1-summand subspace of \(X\), then \(L^1(I, G)\) is simultaneously proximinal in \(L^1(I, X)\).

It is the aim of this work to prove a distance formula \(\text{dist}_{\Phi}(f_1, f_2, L^{\Phi}(I, G))\), where \(f_1, f_2 \in L^{\Phi}(I, X)\), similar to that of best approximation. This will allow us to generalize some recent results on \(L^1(I, X)\) to \(L^{\Phi}(I, X)\).

Throughout this paper, \(X\) is a Banach space, \(\Phi\) is an Orlicz function, and \(L^{\Phi}(I, X)\) is the Orlicz-Bochner function space equipped with the Luxemburg norm.

2. Distance formula

Let \(G\) be a closed subspace of \(X\). For \(x, y \in X\), define

\[\text{dist}(x, y, G) = \inf_{z \in G} \|x - z\| + \|y - z\|. \quad (2.1)\]
For $f_1, f_2 \in L^\Phi(I,X)$, we define $\text{dist}_\Phi(f_1, f_2, L^\Phi(I,G))$ by
\begin{equation}
\text{dist}_\Phi(f_1, f_2, L^\Phi(I,G)) = \inf_{g \in L^\Phi(I,G)} \|(f_1, f_2) - (g,g)\|
= \inf_{g \in L^\Phi(I,G)} \|\|f_1(\cdot) - g(\cdot)\| + \|f_2(\cdot) - g(\cdot)\|\|_\Phi. \tag{2.2}
\end{equation}

Our main result is the following.

Theorem 2.1. Let G be a subspace of the Banach space X and let Φ be an Orlicz function that satisfies the Δ_2 condition. If $f_1, f_2 \in L^\Phi(I,X)$, then the function $\text{dist}(f_1(\cdot), f_2(\cdot), G)$ belongs to $L^\Phi(I)$ and
\begin{equation}
\|\text{dist}(f_1(\cdot), f_2(\cdot), G)\|_\Phi = \text{dist}_\Phi(f_1, f_2, L^\Phi(I,G)). \tag{2.3}
\end{equation}

Proof. Let $f_1, f_2 \in L^\Phi(I,X)$. Then there exist two sequences $(f_{n,1})$, $(f_{n,2})$ of simple functions in $L^\Phi(I,X)$ such that
\begin{equation}
\|f_{n,1}(t) - f_1(t)\| \longrightarrow 0, \quad \|f_{n,2}(t) - f_2(t)\| \longrightarrow 0, \quad \text{as } n \longrightarrow \infty \tag{2.4}
\end{equation}
for almost all t in I. The continuity of $\text{dist}(x,y,G)$ implies that
\begin{equation}
|\text{dist}(f_{n,1}(t), f_{n,2}(t), G) - \text{dist}(f_1(t), f_2(t), G) | \longrightarrow 0, \quad \text{as } n \longrightarrow \infty. \tag{2.5}
\end{equation}

Set $H_n(t) = \text{dist}(f_{n,1}(t), f_{n,2}(t), G)$. Then each H_n is a measurable function. Thus $\text{dist}(f_1(\cdot), f_2(\cdot), G)$ is measurable and
\begin{equation}
\text{dist}(f_1(t), f_2(t), G) \leq \|f_1(t) - z\| + \|f_2(t) - z\| \tag{2.6}
\end{equation}
for all z in G. Therefore,
\begin{equation}
\text{dist}(f_1(t), f_2(t), G) \leq \|f_1(t) - g(t)\| + \|f_2(t) - g(t)\| \tag{2.7}
\end{equation}
for all $g \in L^\Phi(I,G)$. Thus
\begin{equation}
\|\text{dist}(f_1(\cdot), f_2(\cdot), G)\|_\Phi \leq \|\|f_1(\cdot) - g(\cdot)\| + \|f_2(\cdot) - g(\cdot)\|\|_\Phi \tag{2.8}
\end{equation}
for all $g \in L^\Phi(I,G)$. Hence $\text{dist}(f_1(\cdot), f_2(\cdot), G) \in L^\Phi(I)$ and
\begin{equation}
\|\text{dist}(f_1(\cdot), f_2(\cdot), G)\|_\Phi \leq \text{dist}_\Phi(f_1, f_2, L^\Phi(I,G)). \tag{2.9}
\end{equation}

Fix $\epsilon > 0$. Since the set of simple functions are dense in $L^\Phi(I,X)$, there exist simple functions f_i^* in $L^\Phi(I,X)$ such that $\|f_i - f_i^*\|_\Phi \leq \epsilon/6$ for $i = 1,2$. Assume that $f_i^*(t) = \sum_{k=1}^n x_k^i \chi_{A_k}(t)$ with A_k’s are measurable sets, $x_k^i \in X$, $k = 1,2,\ldots,n$, $i = 1,2$, $A_k \cap A_j = \phi$, $k \neq j$, and $\bigcup_{k=1}^n A_k = I$. We can assume that $\mu(A_k) > 0$ and $\Phi(1) \leq 1$. For each $k = 1,2,\ldots,n$, let $y_k \in G$ be such that
\begin{equation}
\|x_k^1 - y_k\| + \|x_k^2 - y_k\| \leq \text{dist}(x_k^1, x_k^2, G) + \frac{\epsilon}{3}. \tag{2.10}
\end{equation}
Set $g(t) = \sum_{k=1}^{n} y_k \chi_{A_k}(t)$ and

$$F(t) = \text{dist}(f_1(t), f_2(t), G) + \|f_1(t) - f_1^*(t)\| + \|f_2(t) - f_2^*(t)\| + \frac{\epsilon}{3}. \tag{2.11}$$

Then

$$\int_{I} \Phi \left(\frac{||f_1^*(t) - g(t)|| + ||f_2^*(t) - g(t)||}{\|F\|_\Phi} \right) d\mu(t)$$

$$= \sum_{k=1}^{n} \int_{A_k} \Phi \left(\frac{||x_k^1 - y_k|| + ||x_k^2 - y_k||}{\|F\|_\Phi} \right) d\mu(t)$$

$$= \sum_{k=1}^{n} \int_{A_k} \Phi \left(\frac{\text{dist}(x_k^1, x_k^2, G) + \epsilon/3}{\|F\|_\Phi} \right) d\mu(t)$$

$$< \sum_{k=1}^{n} \int_{A_k} \Phi \left(\frac{\text{dist}(f_1^*(t), f_2^*(t), G) + \epsilon/3}{\|F\|_\Phi} \right) d\mu(t)$$

$$\leq \int_{I} \Phi \left(\frac{||f_1(t) - f_1^*(t)|| + ||f_2(t) - f_2^*(t)|| + \text{dist}(f_1(t), f_2(t), G) + \epsilon/3}{\|F\|_\Phi} \right) d\mu(t)$$

$$= \int_{I} \Phi \left(\frac{F(t)}{\|F\|_\Phi} \right) d\mu(t) \leq 1. \tag{2.12}$$

Consequently,

$$|||f_1^*(\cdot) - g(\cdot)|| + ||f_2^*(\cdot) - g(\cdot)||_\Phi \leq \left\| \left\| f_1(\cdot) - f_1^*(\cdot) \right\| + \left\| f_2(\cdot) - f_2^*(\cdot) \right\| \right\|_\Phi + \text{dist}(f_1(\cdot), f_2(\cdot), G) + \frac{\epsilon}{3}. \tag{2.13}$$

Notice that

$$\text{dist}_\Phi (f_1, f_2, L^\Phi(I, G)) \leq \text{dist}_\Phi (f_1^*, f_2^*, L^\Phi(I, G)) + \|f_1 - f_1^*\|_\Phi + \|f_2 - f_2^*\|_\Phi$$

$$< \frac{\epsilon}{3} + \left\| \left\| f_1^*(\cdot) - g(\cdot) \right\| + \left\| f_2^*(\cdot) - g(\cdot) \right\| \right\|_\Phi$$

$$\leq \frac{\epsilon}{3} + \left\| \text{dist}(f_1(\cdot), f_2(\cdot), G) + \left\| f_1(\cdot) - f_1^*(\cdot) \right\| \right\|_\Phi$$

$$\leq \frac{2\epsilon}{3} + \| \text{dist}(f_1(\cdot), f_2(\cdot), G) \|_\Phi$$

$$+ \|f_1(\cdot) - f_1^*(\cdot)\|_\Phi + \|f_2(\cdot) - f_2^*(\cdot)\|_\Phi$$

$$\leq \epsilon + \| \text{dist}(f_1(\cdot), f_2(\cdot), G) \|_\Phi,$$
which (since ϵ is arbitrary) implies that
\[\text{dist}_\Phi(f_1, f_2, L^\Phi(I, G)) \leq \|\text{dist}(f_1(\cdot), f_2(\cdot), G)\|_\Phi. \] (2.15)

Hence by (2.9) and (2.15) the proof is complete. \hfill \square

A direct consequence of Theorem 2.1 is the following result.

Theorem 2.2. Let G be a closed subspace of the Banach space X and let Φ be an Orlicz function that satisfies the Δ_2 condition. For $g \in L^\Phi(I, G)$ to be a best simultaneous approximation of a pair of elements (f_1, f_2) in $L^\Phi(I, G)$, it is necessary and sufficient that $g(t)$ is a best simultaneous approximation of $(f_1(t), f_2(t))$ in G for almost all $t \in I$.

3. Proximinality of $L^\Phi(I, G)$ in $L^\Phi(I, X)$

A closed subspace G of X is called 1-summand in X if there exists a closed subspace Y such that $X = G \bigoplus_1 Y$, that is, any element $x \in X$ can be written as $x = g + y$, $g \in G$, $y \in Y$, and $\|x\| = \|g\| + \|y\|$. It is known that a 1-summand subspace G of X is proximinal in X, and $L^1(I, G)$ is proximinal in $L^1(I, X)$, [11].

Our first result in this section is the following.

Theorem 3.1. If G is simultaneously proximinal in X, then every pair of simple functions admits a best simultaneous approximation in $L^\Phi(I, G)$.

Proof. Let f_1, f_2 be two simple functions in $L^\Phi(I, X)$. Then f_1, f_2 can be written as $f_1(s) = \sum_{k=1}^{n} u_k^1 \chi_k(s)$, $f_2(s) = \sum_{k=1}^{n} u_k^2 \chi_k(s)$, where I_k’s are disjoint measurable subsets of I satisfying $\bigcup_{k=1}^{n} I_k = I$, and χ_k is the characteristic function of I_k. Since f_1 and f_2 represent classes of functions, we may assume that $\mu(I_k) > 0$ for each $1 \leq k \leq n$. By assumption, we know that for each $1 \leq k \leq n$ there exists a best simultaneous approximation w_k in G of the pair of elements $(u_k^1, u_k^2) \in X^2$ such that
\[\text{dist}(u_k^1, u_k^2, G) = \|u_k^1 - w_k\| + \|u_k^2 - w_k\|. \] (3.1)

Set $g = \sum_{k=1}^{n} w_k \chi_k(s)$. Then, for any $\alpha > 0$ and $h \in L^\Phi(I, G)$, we obtain that
\begin{align*}
\int_I \Phi\left(\frac{\|f_1(t) - h(t)\| + \|f_2(t) - h(t)\|}{\alpha}\right) d\mu(t) &\geq \sum_{k=1}^{n} \int_{I_k} \Phi\left(\frac{\|u_k^1 - h(t)\| + \|u_k^2 - h(t)\|}{\alpha}\right) d\mu(t) \\
&\geq \sum_{k=1}^{n} \int_{I_k} \Phi\left(\frac{\|u_k^1 - w_k\| + \|u_k^2 - w_k\|}{\alpha}\right) d\mu(t) \\
&= \int_I \Phi\left(\frac{\|f_1(t) - g(t)\| + \|f_2(t) - g(t)\|}{\alpha}\right) d\mu(t).
\end{align*}
(3.2)

Taking the infimum over all such α’s, we have that
\[\|\|f_1(\cdot) - h(\cdot)\| + \|f_2(t) - h(\cdot)\||_\Phi \geq \|\|f_1(\cdot) - g(\cdot)\| + \|f_2(t) - g(\cdot)\||_\Phi \] (3.3)
for all \(h \in L^\Phi(I, G) \). Hence
\[
\text{dist}_\Phi(f_1, f_2, L^\Phi(I, G)) = \| \| f_1(\cdot) - g(\cdot) \| + \| f_2(\cdot) - g(\cdot) \| \|_\Phi \\
\geq \| \| f_1(\cdot) - h(\cdot) \| + \| f_2(\cdot) - h(\cdot) \| \|_\Phi.
\] (3.4)

Now we prove the following 2-dimensional analogous of [12, Theorem 4].

Theorem 3.2. Let \(G \) be a closed subspace of the Banach space \(X \) and let \(\Phi \) be an Orlicz function that satisfies the \(\Delta_2 \) condition. If \(L^1(I, G) \) is simultaneously proximinal in \(L^1(I, X) \), then \(L^\Phi(I, G) \) is simultaneously proximinal in \(L^\Phi(I, X) \).

Proof. Let \(f_1, f_2 \in L^\Phi(I, X) \). Then \(f_1, f_2 \in L^1(I, X) \); see [13]. By assumption, there exists \(g \in L^1(I, G) \) such that
\[
\| \| f_1(\cdot) - g(\cdot) \| + \| f_2(\cdot) - g(\cdot) \| \|_1 \leq \| \| f_1(\cdot) - h(\cdot) \| + \| f_2(\cdot) - h(\cdot) \| \|_1
\] (3.5)
for every \(h \in L^1(I, G) \). By Theorem 2.2 [10],
\[
\| f_1(t) - g(t) \| + \| f_2(t) - g(t) \| \leq \| f_1(t) - h(t) \| + \| f_2(t) - h(t) \|
\] (3.6)
for almost all \(t \in I \). But \(0 \in G \). Thus
\[
\| f_1(t) - g(t) \| + \| f_2(t) - g(t) \| \leq \| f_1(t) \| + \| f_2(t) \|
\] (3.7)
or
\[
\| g(t) \| \leq \| f_1(t) \| + \| f_2(t) \|.
\] (3.8)
Hence \(g \in L^\Phi(I, G) \) and
\[
\| \| f_1(\cdot) - g(\cdot) \| + \| f_2(\cdot) - g(\cdot) \| \|_\Phi \leq \| \| f_1(\cdot) - h(\cdot) \| + \| f_2(\cdot) - h(\cdot) \| \|_\Phi
\] (3.9)
for all \(h \in L^1(I, G) \). \(\Box \)

Theorem 3.3. Let \(G \) be a 1-summand subspace of the Banach space \(X \). Then \(L^\Phi(I, G) \) is simultaneously proximinal in \(L^\Phi(I, X) \).

The proof follows from Theorem 3.2 and [10, Theorem 2.4].

Theorem 3.4. Let \(G \) be a reflexive subspace of the Banach space \(X \). Then \(L^\Phi(I, G) \) is simultaneously proximinal in \(L^\Phi(I, X) \).

The proof follows from Theorem 3.2 and [10, Theorem 3.2].

References

M. Khandaqji and Sh. Al-Sharif

M. Khandaqji: Mathematics Department, Hashimia University, P.O. Box 150459, 13115 Zarqa, Jordan
Email address: mkhan@hu.edu.jo

Sh. Al-Sharif: Mathematics Department, Yarmouk University, 21163 Irbed, Jordan
Email address: sharifa@yu.edu.jo
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br
Special Issue on Models, Methods, and Applications of Dynamics and Control in Engineering Sciences: State of the Art

Call for Papers

Since the current literature on dynamics and control is scattered over a range of journals, books, chapters of books, and a large number of conference proceedings, which are often difficult to obtain, the goal of this special issue of MPE is to present papers, containing complete reviews on dynamics models, available in the current literature, to classify them, and to discuss their applications and limitations. In this special issue, the authors could recommend appropriate models and control criteria for various applications on engineering and sciences and suggest directions for further works. It is also open for critical reviews, open problems, and future developments. Discussions on MEMS and NEMS are also encouraged.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>August 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>November 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>February 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Jose Manoel Balthazar, Department of Statistics, Applied Mathematics and Computation, State University of São Paulo at Rio Claro, P.O. Box 178, Rio Claro 13500-230, SP, Brazil; jmbaltha@rc.unesp.br

Stefano Lenci, Istituto di Scienza e Tecnica delle Costruzioni, Università Politecnica delle Marche, via Brecce Bianche, Monte D’Ago, Ancona 60131, Italy; lenci@univpm.it

Yuri Vladimirovich Mikhlin, Department of Applied Mathematics, Kharkov Polytechnical Institute, National Technical University, Kharkov 61002, Ukraine; muv@kpi.kharkov.ua

Guest Editors

Paulo Batista Gonçalves, Civil Engineering Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22453-900 Rio de Janeiro, RJ, Brazil; paulo@puc-rio.br
Special Issue on
Nonlinear Vibrations, Stability Analysis and Control

Call for Papers

Important advances in mathematics, physics, biology, and engineering science have shown the importance of the analysis of instabilities and strongly coupled dynamical behavior. New investigation tools enable us to better understand the dynamical behavior of more complex structures. However, the increasing interest in mechanical structures with extreme performances has propelled the scientific community toward the search for solution of hard problems exhibiting strong nonlinearities. As a consequence, there is an increasing demand both for nonlinear structural components and for advanced multidisciplinary and multiscale mathematical models and methods. In dealing with the phenomena involving a great number of coupled oscillators, the classical linear dynamic methods have to be replaced by new specific mathematical tools.

This special issue aims to assess the current state of nonlinear structural models in vibration analysis, to review and improve the already known methods for analysis of nonlinear and oscillating systems at a macroscopic scale, and to highlight also some of the new techniques which have been applied to complex structures.

We are looking for original high-quality research papers on topics of interest related to specific mathematical models and methods for nonlinear and strongly coupled (correlated) oscillating systems and for distributed-parameter structures that include but are not limited to the following main topics:

- Vibration analysis of distributed-parameter and multi-body systems, parametric models
- Global methods, wavelet methods, and fractal analysis for spatially and temporally coupled oscillators
- Nonlinear time series methods for dynamic systems
- Control of nonlinear vibrations and bifurcations, control of chaos in vibrating systems. Transient chaos. Chaotic oscillators. Bifurcations
- Micro- and nanovibrating structural systems

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>January 1, 2010</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>April 1, 2010</td>
</tr>
<tr>
<td>Publication Date</td>
<td>July 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Carlo Cattani, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy; ccattani@unisa.it

Guest Editors

Alexander P. Seyranian, Moscow State Lomonosov University, Michurinsky pr. 1, 119192 Moscow, Russia; seyran@imec.msu.ru

Irena Trendafilova, Department of Mechanical Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; irina.trendafilova@strath.ac.uk