FULLY $\lambda(P)$-BASE IN A COMPLETE NUCLEAR SPACE

W. SHATANAWI and M. KHANDAQJI

(Received March 6, 2006)

Submitted by K. K. Azad

Abstract

We define a fully $\lambda(P)$-base of type $\lambda(P) - G_\infty$ and of type $\lambda(P) - G_1$. Also, we prove that if X is a complete nuclear space with fully $\lambda(P)$-base which is of type $\lambda(P) - G_\infty$ or of type $\lambda(P) - G_1$, then all fully $\lambda(P)$-bases are quasisimilar.

1. Basic Concepts

In the sequel X will denote an infinite dimensional complete locally convex space. By a seminorm on X, continuous seminorm will be meant.

Let $(x_n : f_n)$ be a Schauder base in X. A seminorm p on X is called (x_n)-normal, if $p(f_n(x)x_n) \leq p(x)$. A sequence (x_n) of vectors in X is called a basic sequence, if there is a closed subspace Y of X such that (x_n) is a base of Y, and (x_n) is a complemented basic sequence, if the subspace Y is complemented in X. Basic sequences (x_n) and (y_n) are similar, if the convergence of the series $\sum_n t_nx_n$ implies that of $\sum_n t_ny_n$ and vice versa. Basic sequences (x_n) and (y_n) are semisimilar, if there exist

2000 Mathematics Subject Classification: 46A45, 46A35.

Keywords and phrases: Köthe space, equicontinuous base, nuclear space.

© 2006 Pushpa Publishing House
scalars \(a_n \) making \((a_n x_n)\) and \((a_n y_n)\) similar. \((x_n)\) and \((y_n)\) are quasisimilar, if there are permutations \((r_n)\) and \((s_n)\) of positive integers such that \((x_{r_n})\) and \((y_{s_n})\) are similar.

A base \((x_n : f_n)\) in \(X\) is called equicontinuous, if for each seminorm \(p\) on \(X\) there is a seminorm \(q\) on \(X\) such that

\[
\sup_n |f_n(x)| p(x_n) \leq q(x)
\]

for all \(x \in X\).

A base \((x_n : f_n)\) in \(X\) is called an absolutely equicontinuous basis, if for each seminorm \(p\) on \(X\) there is a seminorm \(q\) on \(X\) with

\[
\sum_n |f_n(x)| p(x_n) \leq q(x),
\]

for all \(x \in X\).

A Köthe set \(P\) will be called a power set of infinite type [5] if it satisfies the following conditions:

1. For each \(a = (a_n) \in P\), \(0 < a_n \leq a_{n+1}\) for all \(n\).
2. For each \(a = (a_n) \in P\), there exists \(b = (b_n) \in P\) such that \(a_n^2 = O(b_n)\).

A Köthe set \(Q\) will be called a power set of finite type [5] if it satisfies the following conditions:

1. Each \(q = (q_n) \in Q\) is a positive non-increasing sequence.
2. For each \(q = (q_n) \in Q\) there exists \(p = (p_n) \in Q\) with \(\sqrt{q_n} = O(p_n)\).

The following results are well known.

Theorem 1.1 [4]. Every equicontinuous basis of a nuclear space \(X\) is absolutely equicontinuous.

Proposition 1.1 [1]. If \((y_n)\) is an equicontinuous basic sequence in a nuclear space \(X\), then for every semi-norm \(p\) on \(X\), there is a semi-norm \(q\) on \(X\) with \(p(x) \leq q(x)\) and \(\sum_{n=1}^{\infty} \frac{p(y_n)}{q(y_n)} < +\infty\).
Proposition 1.2 [1]. If X is a complete nuclear space with an equicontinuous basis (x_n) with coefficient functionals f_n, then X is isomorphic to a Köthe space $\lambda(P)$, where

$$P = \{(p_i(x_n)) : i \in I\}$$

and $\{p_i : i \in I\}$ is a complete system of seminorms on X.

Definition 1.1 [1]. A basic sequence (x_n) in a complete nuclear locally convex space X is called of type G_1 (resp. of type G_∞), if there is a complete system $\{p_i : i \in I\}$ of (x_n)-normal seminorms on the subspace $Y = \text{span}\{x_n\}$ such that the Köthe set

$$P = \{(p_i(x_n)) : i \in I\}$$

is a power set of finite type (resp. of infinite type).

Definition 1.2 [3]. A Schauder base $(x_n : f_n)$ for a locally convex space X is called

1. a semi-$\lambda(P)$-base, if for every seminorm p on X, the map $\psi_p : X \rightarrow \lambda(P)$ is well defined, where $\psi_p(x) = (p(x_n)f_n(x))$, $x \in X$.

2. a fully $\lambda(P)$-base, if it is a semi-$\lambda(P)$-base and for each a seminorm p on X, $\psi_p : X \rightarrow \lambda(P)$ is continuous.

The following results are well known.

Proposition 1.3 [3]. Let X be a complete locally convex space having a fully $\lambda(P)$-base $(x_n : f_n)$. Then X can be identified with a Köthe space $\lambda(P_0)$, where the Köthe set P_0 is given by

$$P_0 = \{(p(x_n)b_n) : p \text{ is a seminorm on } X, b \in P\}.$$

2. **Main Results**

Now, we introduce the following definitions in order to facilitate our subsequent arguments.
Definition 2.1. A sequence \((x_n)\) of vectors in a locally convex space \(X\) is called a **fully \(\lambda(P)\)-basic sequence**, if there is a closed subspace \(Y\) of \(X\) such that \((x_n : f_n)\) is a fully \(\lambda(P)\)-base of \(Y\), and \((x_n)\) is a **complemented \(\lambda(P)\)-basic sequence**, if the subspace \(Y\) is complemented in \(X\).

Definition 2.2. A fully \(\lambda(P)\)-base \((x_n : f_n)\) in a complete locally convex space \(X\) is called of **type \(\lambda(P)\) \(G_1\)** (resp. of **type \(\lambda(P)\) \(G_\infty\)**), if there is a complete system \(\{p_i : i \in I\}\) of \((x_n)\)-normal seminorms on the subspace \(Y = \overline{\text{span}\{x_n\}}\) such that the Köthe set
\[
P_0 = \{(p_i(x_n)b_n) : i \in I, b \in P\}
\]
is a power set of finite type (resp. of infinite type). Such a system of seminorms will be called **admissible**, where the set \(I\) is a partially ordered set which is directed upwards.

The following result is crucial in our work.

Proposition 2.1 [5]. Let \(\lambda(P)\) and \(\lambda(Q)\) be nuclear smooth sequence spaces of infinite and finite type, respectively. Then

1. \(\Delta(\lambda(P)) = \lambda'(P)\).
2. \(\Delta(\lambda(Q)) = \lambda(Q)\).

Let \(P'\) be any Köthe set with the following additional condition: For each \(a \in P'\), we have \(\inf\{a_n : n \in \mathbb{N}\} > 0\).

Proposition 2.2. Every fully \(\lambda(P')\)-base \((x_n : f_n)\) in a complete locally convex space \(X\) is a fully \(\ell_1\)-base.

Proof. Note that \(\ell_1\) is a Köthe space generated by the Köthe set \(P = \{(1, 1, \ldots), (2, 2, \ldots), \ldots\}\). Let \(p\) be any seminorm on \(X\). Then for \(m \in \mathbb{N}\) and \((t_n) \in P'\), we have
\[
\sum_n |f_n(x)|p(x_n)m \leq \frac{m}{\alpha} \sum_n |f_n(x)|p(x_n)t_n = \frac{m}{\alpha} p_\lambda(\psi_\lambda(x)),
\]
where \(\alpha = \inf\{t_n : n \in \mathbb{N}\}\). Since \((x_n : f_n)\) is a fully \(\lambda(P')\)-base, there is
a seminorm q on X such that $p_i(\psi_p(x)) \leq q(x)$. Therefore

$$\sum_n |f_n(x)|p(x_n)m \leq \frac{m}{a} q(x).$$

So $(x_n : f_n)$ is a fully ℓ_1-base.

Proposition 2.3. A Schauder base $(x_n : f_n)$ for a complete locally convex space X is an absolutely equicontinuous base if and only if its a fully ℓ_1-base.

Proof. (\Leftarrow) Clear.

(\Rightarrow) Assume that $(x_n : f_n)$ be an absolutely equicontinuous base for X. Then for each seminorm p on X, there is a seminorm q on X such that

$$\sum_n |f_n(x)|p(x_n) \leq q(x).$$

So for each $m \in N$ and for each seminorm p on X, there is a seminorm q on X such that

$$\sum_n |f_n(x)|p(x_n)m \leq mq(x).$$

Since ℓ_1 is a Köthe space generated by the Köthe set

$$P = \{(1,1,\ldots), (2,2,\ldots), (3,3,\ldots), \ldots\},$$

$\psi_p : X \to \ell_1$ is continuous. Therefore $(x_n : f_n)$ is a fully ℓ_1-base.

Proposition 2.4. If $(x_n : f_n)$ and $(y_n : g_n)$ are fully $\lambda(P')$-bases of a complete nuclear space X, both of type $\lambda(P') - G_1$ or of type $\lambda(P') - G_\infty$, then they are similar.

Proof. There are admissible systems of seminorms $\{p_i : i \in I\}$ and $\{q_i : i \in J\}$ on X such that

$$P_0 = \{(p_i(x_n)b_n) : i \in I, b \in P'\} \text{ and } Q_0 = \{(q_i(y_n)b_n) : i \in J, b \in P'\}$$

are power sets both of finite type or of infinite type. Then $\lambda(P_0) \cong X \cong \lambda(Q_0)$. Since X is complete it sufficient to show that $\lambda(P_0) = \lambda(Q_0)$. If $(x_n : f_n)$ and $(y_n : g_n)$ are of type $\lambda(P') - G_1$, then
\[\lambda(P_0) = \Delta(\lambda(P_0)) = \Delta(X) = \Delta(\lambda(Q_0)) = \lambda(Q_0). \]

If \((x_n : f_n)\) and \((y_n : g_n)\) are of type \(\lambda(P') - G_{\infty}\), then by Proposition 2.1,

\[\lambda'(P_0) = \Delta(\lambda'(P_0)) = \Delta(X) = \Delta(\lambda'(Q_0)) = \lambda'(Q_0). \]

So \(\lambda(P_0) = \lambda(Q_0)\). Therefore \((x_n : f_n)\) and \((y_n : g_n)\) are similar.

Proposition 2.5. If \((y_n : h_n)\) is a fully \(\lambda(P')\)-complemented basic sequence in a complete locally convex space \(X\), then there is a system \((g_n)\) of continuous linear functionals on \(X\), \((g_n)\) biorthogonal to \((y_n)\) such that for any seminorm \(p\) on \(X\) and any \(b = (b_n) \in P'\)

\[q_b(x) = \sup_{n} |g_n(x)| p(y_n) b_n, \]

is a seminorm on \(X\).

Proof. Let \(Y = \text{span}\{y_n\}\) be the closed subspace of \(X\) spanned by \((y_n)\), and let \(J : X \to Y\) be a continuous linear projection onto \(Y\). Then \(g_n = h_n J\) is in \(X'\), \(g_n(y_m) = \delta_{nm}\), where \(\delta_{nm} = 1\) if \(n = m\) and \(\delta_{nm} = 0\) if \(n \neq m\). For a seminorm \(p\) on \(X\) and \(b \in P'\), there is \(p'\) on \(Y\) such that

\[\sup_{n} |h_n(y)| p(y_n) b_n \leq p'(y) \text{ for all } y \in Y. \]

Let \(x \in X\) be given. Then

\[q(x) = \sup_{n} |g_n(x)| p(y_n) b_n \leq (p' J)x. \]

Since \(p' J\) is a seminorm on \(X\) and \(q(x) \leq (p' J)x\) for all \(x \in X\), \(q\) is also a seminorm on \(X\).

Proposition 2.6. If \((y_n : f_n)\) is a fully \(\lambda(P')\)-basic sequence in a complete nuclear space \(X\), then for every seminorm \(p\) on \(X\), there is a seminorm \(q\) on \(X\) with \(p(x) \leq q(x)\) and

\[\sum_{n} \frac{p(y_n)}{q(y_n)c_n} < +\infty \quad \forall c = (c_n) \in P'. \]

Proof. Follows from Propositions 2.2, 2.3 and 1.2.
The proof of the following result follows from the Grothendieck-Pietsch criterion for nuclearity.

Lemma 2.1. Suppose that X is a complete nuclear space with a fully $\lambda(P')$-base $(x_n : f_n)$ which is of type $\lambda(P') - G_1$ or of type $\lambda(P') - G_\infty$, then for every seminorm p on X and every $b = (b_n) \in P'$, there are a seminorm q on X, $c = (c_n) \in P'$ and a positive constant $\rho > 0$ such that

$$n^2 p(x_n) b_n \leq \rho q(x_n) c_n \quad \text{for all } n \in N.$$

Lemma 2.2. Suppose that X is a complete nuclear space with a fully $\lambda(P')$-basis $(x_n : f_n)$ which is of type $\lambda(P') - G_1$ or of type $\lambda(P') - G_\infty$, and $(y_n : g_n)$ is a fully $\lambda(P')$ complemented basic sequence in X. Then there are positive integers k_n with $\lim_n k_n = +\infty$ such that $f_{k_n}(y_n) \neq 0$ for all $n \in N$ and such that for any (x_n)-normal seminorm p on X and for any $b = (b_n) \in P'$, there are a seminorm q on X and $c = (c_n) \in P'$ such that

$$a_n p(x_{k_n}) \leq p(y_n) \quad \text{and} \quad p(y_n) b_n \leq a_n q(x_{k_n}) c_{k_n},$$

where $a_n = |f_{k_n}(y_n)|$, $n = 1, 2, \ldots$.

Proof. Let P be any (x_n)-normal seminorm on X and let $b = (b_n)$ be any sequence in P' be given. Then there is a sequence (g_n) in X' with $g_n(y_n) = \delta_{nm}$ such that

$$p(x_n) = \sup_x |g_n(x)| p(y_n) b_n$$

is a seminorm on X. Since g_n is linear, we have

$$1 = g_n(y_n) = \sum_{k=1}^{\infty} g_n(x_k) f_k(y_n).$$

Therefore

$$\sum_{k=1}^{\infty} |g_n(x_k)| |f_k(y_n)| \geq 1.$$

Let $\sigma = \sum k^{-2}$. Since $1 = \sigma^{-1} \sum k^{-2}$, we conclude that for each n
there is a positive integer \(k_n \) with

\[
\left| g_n(x_{k_n}) \right| \geq \sigma^{-1}k_n^{-2}.
\]

Let \(a_n = |f_{k_n}(y_n)| \). Then

\[
\left| g_n(x_{k_n}) \right| \geq \sigma^{-1}k_n^{-2}a_n^{-1} \quad \text{for all } n \in N. \tag{1}
\]

Let \(t_b = \inf\{b_n : n \in \mathbb{N}\} \). Since \(p' \) is a seminorm on \(X \) and \((b_n) \in P' \), by Lemma 2.1 and Proposition 2.6, there are a seminorm \(q \) on \(X \) and \(c = (c_n) \in P' \) such that \(p'(x_n) \leq t_b^{-1}p'(x_n)b_n \leq \sigma^{-1}n^{-2}q(x_n)c_n \) and

\[
\sum_n \frac{p(y_n)}{q(y_n)c_n} < +\infty.
\]

Therefore

\[
\left| g_n(x_{k_n}) \right| p(y_n)b_n \leq \sup_j \left| g_j(x_{k_n}) \right| p(y_j)b_j
\]

\[
= p'(x_{k_n}) \leq \sigma^{-1}k_n^{-2}q(x_{k_n})c_{k_n}. \tag{2}
\]

From equations (1) and (2) we have

\[
p(y_n)b_n \leq a_nq(x_{k_n})c_{k_n}. \tag{2.1}
\]

Since \(p \) is \((x_n)\) normal, we have \(a_n p(x_{k_n}) \leq p(y_n) \). Since \(q \) is a seminorm on \(X \) and \(c = (c_n) \in P' \), by inequality 2.1, there are a seminorm \(q' \) on \(X \) and \(c' \in P' \) such that

\[
q(y_n)c_n \leq a_nq'(x_{k_n})c'_{k_n},
\]

also since \(p(y_n) \geq a_n p(x_{k_n}) \), we have

\[
\frac{p(y_n)}{q(y_n)c_n} \geq \frac{p(x_{k_n})}{q'(x_{k_n})c'_{k_n}}.
\]

Hence

\[
\sum_n \frac{p(x_{k_n})}{q'(x_{k_n})c'_{k_n}} < +\infty.
\]
Hence, for any \(j \) for which \(p(x_j) \neq 0 \), the set \(\{ n : k_n = j \} \) must be finite. Since for each \(j \) we can find an \((x_n) \)-normal seminorm \(p \) on \(X \) for which \(p(x_j) \neq 0 \), all the sets \(\{ n : k_n = j \} \) are finite, that is, \(\lim_n k_n = +\infty \).

Theorem 2.1. Suppose that \(X \) is a complete nuclear space with a fully \(\lambda(P') \)-base \((x_n : f_n) \) of type \(\lambda(P') - G_1 \) or of type \(\lambda(P') - G_\infty \) and \((y_n : g_n) \) is a fully \(\lambda(P') \)-complemented basic sequence in \(X \). Then there are positive integers \(k_n \) with \(\lim_n k_n = \infty \), positive real numbers \(a_n \) and a complete system \(\{ q_i : i \in I \} \) of \((y_n) \)-normal seminorms on \(\overline{\text{span}\{y_n : n \in \mathbb{N}\}} \) such that \(q_i(a_n^{-1}y_n) = p_i(x_{k_n}) \), where \(\{ p_i : i \in I \} \) is an admissible system of seminorms on \(X \) for \((x_n) \).

Proof. Let \((k_n) \), \((a_n) \) be as in Lemma 2.2. We may assume that \(e = (1, 1, ...) \in P' \). So by Propositions 2.5 and 2.6, \(p_i(y) = \sup_n |g_n(y)|p_i(y_n) \), \(i \in I \) form a complete system for \(Y = \overline{\text{span}\{y_n : n \in \mathbb{N}\}} \). Let \(q_i(y) = \sup_n a_n |g_n(y)|q_i(x_{k_n}) \), \(i \in I \). Then by first inequality of Lemma 2.2, \(\{ q_i : i \in I \} \) is a complete system for \(Y \). Also \(q_i \) is \((y_n) \)-normal seminorm and \(q_i(a_n^{-1}y_n) = p_i(x_{k_n}) \).

In the rest of the present paper, we assume that \(P' \) satisfies the following additional conditions:

- \((r_1)\) If \(b \in P' \) and \(\pi \) is any permutation on \(\mathbb{N} \), then there are \(\rho > 0 \) and \(c \in P' \) such that \(b_n \leq \rho c_{\pi(n)} \) for all \(n \in \mathbb{N} \).
- \((r_2)\) If \(b \in P' \), and \((k_n) \) is a nondecreasing sequence, then \((b_{k_n}) \in P' \).
- \((r_3)\) If \(b \in P' \) and \((k_n) \) is subsequence of \((k) \), then there exists \(c = (c_n) \in P' \) such that \(b_n = O(c_{k_n}) \) for all \(k \in \mathbb{N} \).

Now, we have the following:

Corollary 2.1. Suppose that \(X \) is a complete nuclear space with a fully \(\lambda(P') \)-basis \((x_n : f_n) \) which is of type \(\lambda(P') - G_1 \) or of type \(\lambda(P') - G_\infty \). Then every fully \(\lambda(P') \)-complemented basic sequence
(\(y_n : g_n\)) in \(X\) is quasisimilar to a fully \(\lambda(P')\)-complemented basic sequence of the same type of \((x_n : f_n)\).

Proof. Let \(\{p_i : i \in I\}\) be an admissible system for \((x_n : f_n)\). Then by Theorem 2.1, there are positive integers \(k_n\) with \(\lim_n k_n = +\infty\), positive real numbers \((a_n)\) and a complete system of \((y_n)\)-normal seminorms \(\{q_i : i \in I\}\) on \(Y = \text{span}\{y_n\}\) such that \(q_i(a_n^{-1}y_n) = p_i(x_{k_n})\).

Since \(\lim_n k_n = +\infty\), there is a permutation \(\pi\) on \(N\) such that \(k_{\pi(n)}\) is non-decreasing. Let \(z_n = a_{\pi(n)}^{-1}y_{\pi(n)}\). Then \(q_i(z_n) = p_i(x_{k_{\pi(n)}})\). Since \((y_n)\) is a fully \(\lambda(P')\)-complemented basic sequence in \(X\) and \(P'\) satisfies condition \((r_1)\), \((z_n)\) is a fully \(\lambda(P')\)-complemented basic sequence in \(X\). Also, since \(\pi\) is a permutation on \(N\) such that \(k_{\pi(n)}\) is non-decreasing and \(P'\) satisfies conditions \((r_2)\) and \((r_3)\), the type of \((z_n)\) is of the same as the type of \((x_n)\). Also \(\sum_n t_n y_{\pi(n)}\) converges if and only if \(\sum_n a_{\pi(n)} f_n z_n\) converges, that is, \((y_n)\) and \((z_n)\) are quasisimilar.

Theorem 2.2. If \(X\) is a complete nuclear space with a fully \(\lambda(P')\)-base \((x_n : f_n)\) which is of type \(\lambda(P') - G_1\) or of type \(\lambda(P') - G_\omega\), then all fully \(\lambda(P')\)-bases in \(X\) are quasisimilar.

Proof. If \((w_n)\) is an arbitrary fully \(\lambda(P')\) basis in \(X\), then by Corollary 2.1, \((w_n)\) is quasisimilar to a fully \(\lambda(P')\)-base \((y_n)\) of \(X\) and the type of \((y_n)\) is the same of the type of \((x_n)\). So by Proposition 2.4, \((x_n)\) and \((y_n)\) are similar. Therefore \((x_n)\) and \((y_n)\) are quasisimilar.

The following result is consequence of our results.

Corollary 2.2 [1]. If \(X\) is a complete nuclear locally convex space with an equicontinuous basis \((x_n)\) which is of type \(G_1\) or of type \(G_\omega\), then all equicontinuous bases in \(X\) are quasisimilar.

Proof. If \((x_n)\) is an equicontinuous base of \(X\), then by Theorem 1.1, \((x_n)\) is an absolutely equicontinuous base, and hence its a fully \(\ell_1\) -base.
Therefore by Theorem 2.2, all fully ℓ_1-bases in X are quasisimilar. Therefore, by Proposition 2.3, all equicontinuous bases of X are quasisimilar.

Now, in order to show that our work is meaningful we give an example of a Köthe set P with $\lambda(P) \neq \ell_1$ and P satisfies conditions (r_1), (r_2) and (r_3).

Example 2.1. Let $P = \{(a_n) : (a_n) \text{ is positive sequence with } \inf\{a_n : n \in \mathbb{N}\} > 0\}$. Then

1. P satisfies conditions (r_1), (r_2) and (r_3).

2. $\lambda(P) = \varnothing \neq \ell_1$, where $\varnothing = \{(x_n) : x_n = 0 \text{ for all but finitely many}\}$.

Acknowledgement

Our sincerest thanks go to the Hashemite University for providing us some financial assistance during the preparation of this paper.

References

Department of Mathematics
The Hashemite University
Zarqa, Jordan
email: swasfi@hu.edu.jo
mkhan@hu.edu.jo