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7.3.1 Static and Kinetic Friction Coefficients

7.1 Prerequisite

7.2 Introduction

7.3 Theory

A great help to this assignment are the simulations.

Newton’s law tells us that when a force acts on a body it will accelerate (see
assignment ). If more than one force acts on the body we have
to make the sum of all the forces to know how it will be accelerating. A familiar
force is gravity. More complicated forces are friction forces, e.g. the drag on
an airplane, viscosity, etc. In this assignment we are going to study one case of
friction, called sliding or dry friction, which occurs when one solid body slides
on another.

A block with mass sits on an inclined plane. The plane makes an angle
with the horizontal. When this angle raises the block will start sliding at a
certain angle. We call the largest angle for which the block is not yet sliding
the angle . The forces acting on the block at rest are the weight of the block

, the normal force from the inclined plane on the block and the static
friction . For ideally frictionless surfaces is zero. The static friction is
the force that has to be overcome so the block would start moving. As soon as
the block starts sliding the kinetic friction will slow it down. The magnitude of
the frictonal force (static and kinetic) is proportional to the normal force and
reasonably independent of the speed with which the block slides down. These
laws are empirical. Have a look at the force diagram (figure 6) for the block.

Newton’s law tells us that a body is at rest if no force is acting on it, or if
the sum of all forces is zero. (See the assignment to find the
sum of the forces.) In this case we have:

+ + = 0 (22)
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Figure 6: Force diagram for the block

To handle this we have to resolve the forces into their and components. (See
assignment .). Let’s take the -axis along the plane and the

axis perpendicular to the plane. We obtain two equations: one with the
components:

sin = 0 (23)

and one with the components:

cos = 0 (24)

Experiment tells us that the magnitude of the static friction is propor-
tional to the normal force and is given by:

(25)

with being the coefficient of static friction and the magnitude of the normal
force. is a dimensionless number and depends on the two surfaces that slide
over each other. It is not exactly a constant but when the speed of motion is
not too big (so that not too much heat is produced by the friction) it is as good
as constant. When = , ( the angle above which the block starts sliding),
the static friction is maximum and

= (26)

When the angle is equal to we obtain for equation (24):

= cos (27)
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and in equation (23)
= sin (28)

Dividing equation (28) by (27) gives us:

= tan (29)

So, when we find the angle above which the block starts sliding we can
determine the coefficient of static friction.

In the same way, an angle of inclination will let us determine the kinetic
friction coefficient. At this angle the sum of the forces acting on the block
(normal, weight and kinetic friction) is zero. The block was sliding already, so
it keeps on sliding with constant speed. The magnitude of the kinetic friction

is given by:
= (30)

with the coefficient of kinetic friction. This coefficient is always smaller than
the coefficient of static friction. Once the block is moving the total force on
the block is:

= + + (31)

with the kinetic friction. If we change the inclination of the plane so the
block slides with a constant speed, we know = 0. Again we can write this
vector equation into two equations with its components:

perpendicular to the plane:

0 = cos (32)

along the plane:
0 = sin (33)

what gives us = = cos .

Gravity is a so-called force. If a block falls free from a height all
its potential energy will be transformed into kinetic energy when it reaches the
ground if gravity were the only force acting on the block (no friction). The total
energy (the sum of potential and kinetic energy) will be constant. If you let
the block slide down an inclined plane without friction from the same height,
its potential energy will, just the same way as in the free fall, be transformed
into kinetic energy and the total energy will be exactly the same. So, it doesn’t
matter which way you let the block go, as long as the begin and end point are
the same and only the conservative force (gravity in this case) is acting on the
block.
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If you let the block slide down on a incline with friction not all potential
energy will be transformed into kinetic energy because some is “lost” to heat.
The total energy (not taking into account the “lost energy”) when the block
reaches the ground will now be different than when it started. Therefore we call
friction a force. You can argue, of course, that if the dissipated
energy is accounted for (the particles inside the block and the plane will have
taken up that so called “lost” energy), the total energy of the whole system
would be constant.

To calculate the energy of the block we need a reference level for the system
where we say the total energy is zero. Very often the ground level is taken as
zero energy level. Another sensible choice is the starting point of the block,
which is the reference taken in the simulation. At that point the potential,
kinetic, and total energy are zero, therefore, the potential energy will become
negative as the block slides down. The gravitional potential energy of a mass

is given by:
= (34)

with the gravitational acceleration, and the vertical distance from the chosen
reference level. (With our choice of reference level, is negative as soon as the
block slides, and so will be the potential energy.) The kinetic energy of the
block with mass is:

=
1

2
(35)

with the speed of the block. The motion of the block is a motion with constant
acceleration, (the resulting force on the block is constant—we will go further
into this during the laboratory), we know that the speed of the block is

= (36)

with the acceleration of the block and the time past since its starting point,
when the initial velocity was zero. The displacement of the block is:

=
1

2
(37)

measured along the plane. Substituting in equation (35) by (36) and (37)
gives:

= (38)

In the following experiments we are going to become familiar with the forces
acting on a block on an incline and the effects of these forces. The free-body
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force diagram in the display shows the forces acting on the block. If the block
does not slide down, the static friction is never overcome, so the friction force
displayed is the static friction. When the block will slide down, the static friction
is overcome, and the force diagram you will see is the one at the moment the
block starts sliding. The displayed friction force is then the kinetic friction.

In this experiment, we will familiarize ourselves with the laboratory, especially
with the display and the free body force diagram.

1. In the PEARLS window, select .

2. Launch the simulation.

3. You will now see the experiment window, with a control window at the
left and a laboratory display at the right.

4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:

3 5 10 degrees
5 000 10
3 000 10
1 000 10 kg
0 000 m/s
9 800 m/s
1 500 10 pixels/meter

7. You should see an inclined plane with a block and the angle of incline and
the free body force diagram.

(a) What is the value of the of incline?

(b) What is the value of the coefficient?

(c) What is the value of the coefficient?

(d) Which forces are acting on the block?

8. Run the experiment, observe and reset.

(a) Did the block move?

9. Click and choose .
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(a) What are the components of the weight ?

(b) Can you tell from the force diagram why the block did move?

10. Set the coefficient equal to 0.5

11. Run, observe and reset the experiment.

(a) What happened to the force compared to step 9b?

(b) Is the force in this step the static or the kinetic friction?

(c) Did the block move?

(d) Is the sum of the forces zero?

12. Set back to 0.3.

13. Set equal to 25 degrees.

14. Compare the length of force with the from step 9b.

(a) How do they compare?

15. Compare the friction force with .

(a) Do you get the same result as in step 9b?

(b) Is the sum of the forces the same as in step 9b?

16. Run the simulation, stop, and reset.

(a) Did the block move?

17. Raise the to 20 kilogram.

(a) What happened to the components of the forces?

(b) Do you expect that the block will move now?

18. Run, observe and reset.

(a) Did the block move?

19. Observe .

20. While observing slide from 0 to 0.5.

(a) Did change?

(b) Is the static or the kinetic friction in this step?

(c) Is the sum of the forces zero?
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7.4.2 Experiment B: The Angle of Inclination and the Static Friction
Coefficient
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In this experiment we will study how the static friction coefficient can be deter-
mined by the angle of inclination of the plane.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From the menu choose .

(a) What is the value of the angle of incline?

(b) What is the value of the ?

(c) Remember equation(29). For this case: tan = 0 5. What is ?

3. Set equal to your calculated value.

4. Run, observe and reset the experiment.

(a) Did the block move?

(b) Does this result agree with your calculated from step 2c?

5. Set equal to 26 6 degrees.

6. Run, observe and reset the experiment.

(a) Did the block move?

(b) Compare with the calculated . Could you expect that the
block would move?

7. Set equal to 26.4 degrees.

8. Run, observe and reset the experiment.

(a) Did the block move?

(b) Compare with the calculated . Could you expect what the
block did?

9. Suppose the angle is 30 degrees. Set equal to 30 degrees.

(a) Use your calculator to determine the static friction coefficient .
Remember equation (29).

(b) Set equal to your calculated value. Does
the block slide down?

(c) Set a little higher. Does the block slide down?
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In this experiment we will study how the block accelerates due to the forces
acting on in.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From the menu choose .

3. Set equal to 30 degrees.

4. Set equal to 0.57.

5. Let’s calculate the total force acting on the block. Remember equations
(32) and (33).

(a) Calculate the component of the weight along the plane = sin .
Remember that = with the mass of the block, the gravity
acceleration. is given by the control and is given by the
control .

(b) Calculate the kinetic friction. Remember that = = cos .
is given by the control .

(c) What is the value of the total force on the body along the plane?

6. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

7. Run the experiment for 10 seconds and observe the graph.

(a) How is the frictional force behave with time?

(b) Does the value in the graph agree with your calulation in step 5b?

8. Close the graph.

9. Knowing the total force working on the block we can calculate its accela-
ration with Newton’s law. Remember = with the acceleration of
the mass .

(a) What is the value of the acceleration of the block?

10. Click the graph button and make a graph with in the vertical
axis and in the horizontal axis.

11. Run the experiment for 10 seconds and reset.

(a) How does the acceleration behave in time? Is this in accordance with
Newton’s law?
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(b) Is the value of the acceleration in the graph the same as your calcu-
lated value of step 9a?

12. Close the graph.

13. Click the graph button. Make a graph with in the vertical axis
and in the horizontal axis.

14. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

15. Run the experiment for 10 seconds and reset.

(a) How does the velocity behave in time? Did you expect anything else
with a constant acceleration?

(b) How does the displacement behave in time?

16. Set equal to 45 degrees.

17. Procede as in steps 5a, 5b, 5c.

(a) What is the component of the weight along the plane?

(b) Compare this with the result in step 5b.

(c) What is the value of the frictional force?

(d) Compare this frictional force with the one in step 5a.

(e) What is the net force on the block?

(f) Compare this with the result in step 5c.

(g) What is the value of the acceleration of the block?

In this experiment we will study how the kinetic friction coefficient can be
determined by the angle of inclination of the plane.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Set equal to 30 degrees.

3. Set equal to 0.57.

4. Click the graph button. Make a graph with in the vertical axis
and in the horizontal axis.

5. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.
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6. Drag the graphs away from each other, so you can see both graphs and
the display.

(a) What is the value of the kinetic friction coefficient?

(b) Is a net force acting on the block?

7. Run the experiment for 10 seconds and reset.

(a) How does the velocity behave in time?

(b) How does the acceleration behave in time?

8. In analogy with experiment B we can find an angle of inclination corre-
sponding to . Remember = tan .

(a) Calculate the angle corresponding to the .

(b) Calculate the as in experiment B.

(c) How does compare to ?

9. To verify what happens at the inclination equal to , the block must be
sliding down already. Click on the controlbar.

(a) From the display, can you tell that the block acquired some velocity?

10. Set equal to your calculated value of .

(a) Is a net force acting on the block?

11. Run the experiment for 10 seconds and reset.

(a) How is the velocity behaving in time?

(b) What is the value of the acceleration?

12. Close all graphs.

In this experiment we will have a closer look at the kinetic, potential and total
energy of the block. We will study which forces are conservative and which are
not.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Set equal to 0.

3. Set equal to 0.

4. Click the graph button. Make a graph with in the ver-
tical axis and in the horizontal axis.
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5. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

6. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

7. Drag the graphs so you can see them all.

8. Run the experiment for 10 seconds and reset.

(a) How does the kinetic energy behave in time? Can you explain why?
(use the results from subsection 7.4.3.)

(b) How does the potential energy behave in time? Can you explain
why? (use the results from subsection 7.4.3.)

(c) How does the total energy, the sum of the potential energy and the
kinetic energy behave in time?

(d) Is energy lost?

(e) Are all forces acting on the block conservative?

9. Set equal to 0.3.

10. Set equal to 0.3.

11. Run the experiment for 10 seconds and reset.

(a) How does the total energy behave in time?

(b) Is energy lost?

(c) Are all forces working on the block conservative?

12. Set equal to 0.6.

13. Set equal to 0.6.

14. Run the experiment for 10 seconds and reset.

(a) How does the total energy behave in time?

(b) Is more energy lost than in step 11b?

15. Close all graphs.



←↩

7.4.6 Experiment F: Potential and kinetic energy

Block on Incline

Kinetic Friction Coefficient

Static Friction Coefficient

Potential Energy
Displacement

Kinetic Energy
Displacement

Total Energy
Displacement

Static Friction Coefficient

Kinetic Friction Coefficient

Static Friction Coefficient

Kinetic Friction Coefficient

60

In this experiment we will have a closer look at the kinetic, potential and total
energy of the block and how they change when the friction changes.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Set equal to 0.

3. Set equal to 0.

4. Click the graph button. Make a graph with in the ver-
tical axis and in the horizontal axis.

5. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

6. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

7. Run the experiment for 10 seconds and reset.

(a) How does the kinetic energy relate to the displacement?

(b) How does the potential energy relate to the displacement?

(c) How does the total energy, the sum of the potential energy and the
kinetic energy relate to the displacement?

(d) Is energy lost?

(e) Are all forces acting on the block conservative?

8. Set equal to 0.3.

9. Set equal to 0.3.

10. Run the experiment for 10 seconds and reset.

(a) Compare the potential energy of the block with the one in step 7.

(b) Compare the kinetic energy of the block with the one in step 7.

(c) Compare the total energy with the one in step 7. Is energy lost?

(d) Are all forces working on the block conservative?

11. Set equal to 0.6.

12. Set equal to 0.6.

13. Run the experiment for 10 seconds and reset.

(a) How does the friction compare to step 10?
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(b) How does the energy loss compare to the one in step 10?

(c) Compare the potential energy of the block with the one in step 10.

(d) Compare the kinetic energy of the block with the one in step 10.

14. Set equal to 0.9.

15. Set equal to 0.9.

16. Run the experiment for 10 seconds and reset.

(a) How does the friction compare to step 10 and 16?

(b) How does the energy loss compare to the one in step 10 and 16?

(c) Compare the potential energy of the block with the one in step 10
and step 16.

(d) Compare the kinetic energy of the block with the one in step 10 and
step 16.

17. We can calculate the amount of energy that was lost to heat after the
block moved 100 m under these conditions.

(a) Calculate the potential energy = sin for a displacement
of 100 m. Compare your value with the graph.

(b) Calculate the kinetic energy for a displacement of 100 m. The
acceleration is given by equation (38) or: = (sin cos ).
Compare your value with the graph.

(c) What is the value of the total energy? What is the value of the energy
loss? Compare with the graph.

18. Close all graphs.

In this experiment we will have a closer at what happens when the mass of the
block changes.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Click and choose

3. Calculate as in 7.4.2. Remember = tan .

(a) At which angle will the block start sliding?

4. Set to degrees.



2

←

s

s

s

s

s

α . .

α

α . .

α

α . .

↩

7.4.8 Experiment H: Another gravitational field

Angle

Angle

Mass

Angle

Angle

Mass

Angle

Block on Incline

Display Components

Gravity

Gravity

Static Friction Coefficient

62

(a) Does the block slide down?.

5. Set to +0 1 degrees, i.e., to your calculated angle plus 0 1 degrees.

(a) Did the block slide now?

6. Set back to your calculated .

7. Set equal to 20 kg.

(a) What happened with the forces in the free body diagram?

(b) What can you tell about the sum of the forces?

8. Run, observe and reset.

(a) Did the block slide down, now that it has a bigger mass?

9. Set to +0 1 degrees, i.e., to your calculated angle plus 0 1 degrees.

(a) Did the block slide now?

10. Set back to your calculated .

11. Set equal to its maximum value.

12. Run and reset.

(a) Did the block slide?

13. Set to +0 1 degrees, i.e., to your calculated angle plus 0 1 degrees.

(a) Did the block slide now?

In this experiment we will change the gravitational acceleration and see its
influence on the forces on the block and the energy of the block.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From the menu choose

3. Set equal to double its value.

(a) Did the body move?

(b) What happened in the free body diagram?

4. Set back to 9.8 m/s .

5. Set equal to 0.6.
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6. Click the graph button and make a graph with in the ver-
tical axis and in the horizontal axis.

7. Click the graph button and make a graph with in the vertical
axis and in the horizontal axis.

8. Run the experiment for 10 seconds and reset.

9. Set equal to twice its value.

10. Run the experiment for 10 seconds and reset.

(a) Compare the results in the graphs with what you saw in the free
body diagram. Do you see the same?

11. Close all graphs.

12. Set back to 9.8 m/ s .

13. Click the graph button and make a graph with in the
vertical axis and in the horizontal axis.

14. Click the graph button and make a graph with in the
vertical axis and in the horizontal axis.

15. Click the graph button and make a graph with in the vertical
axis and in the horizontal axis.

16. Run the experiment for 10 seconds and reset.

17. Set equal to twice its value.

18. Run the experiment and reset after some time.

(a) What happened to the potential energy?

(b) What happened to the kinetic energy?

(c) What happened to the total energy?

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. A heavier rock will slide down faster on a hill than a similar lighter rock.

(a) true

(b) false
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2. The friction force on an object with mass 10 kg sliding down a hill will be
10 times bigger than the friction force on a similar object with mass 1 kg.

(a) true

(b) false

3. On the moon where the gravity is 1.67 m/s , the friction force on an object
sliding down another object will be

(a) 5.9 times smaller than on earth

(b) the same as on earth

(c) 5.9 times bigger than on earth

4. We give a block a push so its starts sliding down a hill making a angle
with the horizontal. The block will slow down

(a) when the kinetic friction coefficient tan

(b) when the kinetic friction coefficient tan

(c) when the kinetic friction coefficient = tan

(d) always.

5. On earth a block starts sliding down an incline when the angle is 45
degrees. On the moon where the gravity is 1.67 m/s the same object on
the same incline will start sliding down at an angle:

(a) 45 degrees

(b) = 45 degrees

(c) 45 degrees

6. Although the frictional force on a object sliding down an incline on the
moon is smaller than on earth the object will have a lower kinetic energy
than on earth on the same point on the hill.

(a) true

(b) false

7. When the block is just about to slide, the static friction is

(a) minimum

(b) maximum

(c) zero

8. You can go down a snowy hill on your toboggan at a constant speed when

(a) more people are on the toboggan.
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(b) the kinetic friction coefficient is equal to the tangent of the slope
angle.

(c) the static friction coefficient is equal to the tangent of the slope angle.

(d) no friction is involved.

9. To pull a sled on a horizontal path less force is needed to overwin the
static friction when you pull the sled rope

(a) horizontally

(b) in an angle

(c) either way

10. The kinetic energy of a block sliding down 2 meter on a frictionless hill
with a slope angle of 30 degrees, will be the same as when it were falling
down in frictionless free fall from the same height over

(a) 1.0 m

(b) 1.7 m

(c) 2 m

(d) depends on the mass of the block
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8 Center of Mass

8.1 Prerequisite

8.2 Theory

8.1.1 Introduction

8.2.1 Newton’s Law

8.2.2 Center of Mass Defined

A great help to this assignment are the assignments.

In this assignment we will explore the concept of center of mass. It is useful in
describing the behavior of isolated systems, i.e. systems which are not subjected
to forces from the outside.

When we push on an object, physicists say that there is a force acting on the
object. Some experimental facts: if there is no force to balance the push, the
object will accelerate (move with changing velocity) as a result. If there is no
force acting on an object, or if all the forces cancel each other, the object does
not accelerate. These experimental facts are summarized by Newton’s Law:

= (39)

This states that the acceleration (measured in meters/sec ) is proportional

to the force (measured in Newtons). The constant of proportionality is the
mass , usually measured in grams or kilograms. Note that Newton’s law is a
vector equation.

Experiment shows that if we push an object at its center of mass, the object
will accelerate, but it will not rotate. Experiments have also found that if no
external forces act on a set of masses, then the center of mass of the set does
not accelerate. It is for these reasons that the center of mass is a useful quantity
in physics.
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Imagine a physical system consisting of two bodies. The coordinates of the
center of mass of the two-body system are defined as

=
+

+

=
+

+
(40)

=
+

1 + 2

These three equations can be summarized by a single vector equation, as follows:

=
+

+
(41)

where , and are the position vectors of the two masses and the center
of mass, respectively.

For simplicity, let us say that the center of mass of a set of bodies is station-
ary. If no external forces are pushing on the bodies, then we say that the system
is isolated, and the center of mass remains at rest. This conclusion holds even
if the two bodies are exerting forces on one another. These are called internal
forces, and they have no effect on the motion of the center of mass.

In the laboratory, we will explore the consequences of these equations for a
two dimensional case, involving motion in and only.

In this experiment, we will examine how the center of mass position changes as
the masses of the alligator and the canoe are varied.

1. In the PEARLS window, select .

2. Now launch the entry.

3. You will now see the laboratory window, with a Control Window at the
left and a laboratory display at the right.

4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:
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8.3.2 Experiment B: The Case of Equal Masses

Gator Position Rel. Canoe
Mass of Gator
Mass of Canoe
System CM Rel. Shore
Zoom

Gator Mass

Canoe Mass

Gator Mass

Canoe Mass

Canoe Mass

Center of Mass

Display Menu Center of Mass
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0 m
1 000 10 kg
1 000 10 kg
0 m
5 000 10 pixels/meter

7. Observe the three cross-hairs which indicate the center of mass of the
alligator, the canoe, and the system (alligator plus canoe). Note that the
system center of mass is halfway between the canoe’s center of mass and
the alligator’s.

8. Change the control to 200 kg using the slider.

(a) In which direction did the system center of mass move?

9. Change the control to 200 kg using the slider.

(a) In which direction did the system center of mass move?

(b) Where is the system center of mass located now?

10. Change the control to 20 kg using the slider.

(a) In which direction did the system center of mass move?

11. Change the control to 20 kg using the slider.

(a) In which direction did the system center of mass move?

(b) Where is the system center of mass located now?

(c) Where is the system center of mass located for a pair of equal masses?

12. Change the control to 0 kg.

(a) In which direction did the system center of mass move?

(b) Where is the system center of mass located now?

In this experiment, we will investigate the effect of the alligator pedaling her
unicycle, thus changing her position within the canoe. In general, this will
change her position relative to the shore, as well as the canoe’s position relative
to the shore.

1. Start up the PEARLS experiment, or if it is already run-
ning, restore the default conditions by clicking the .

2. Pull down the and turn off the option, to
help clarify the diagram.
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8.3.3 Experiment C: The Case of the Heavy Alligator
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3. Note the value of the control. It should read zero.

4. Also note the values of the Gator Pos. Rel. Shore, Canoe Pos. Rel. Shore
and System CM Rel. Shore meters. They should also read zero initially.

5. Let the alligator pedal forward on her unicycle. Do this by reducing the
control to a value of 2 meters.

(a) Did the system center of mass change?

(b) What is the alligator’s position relative to the shore now?

(c) What is the canoe’s position relative to the shore now?

6. Let the alligator pedal backward on her unicycle. Do this by increasing
the control to a value of 2 meters.

(a) Did the system center of mass change?

(b) What is the alligator’s position relative to the shore?

(c) What is the canoe’s position relative to the shore?

In this experiment, we again investigate the effect of the alligator pedaling her
unicycle, thus changing her position within the canoe. In experiment A, we did
this for the case of equal masses. Here we will first make the alligator heavy
compared with the canoe.

1. Start up the PEARLS experiment, or if it is already run-
ning, restore the default conditions by clicking the .

2. Pull down the and turn off the option,
to help clarify the diagram.

3. Set the control to 200 kg.

4. Set the control to 2 kg. The alligator now weighs 100 times
more than the canoe.

5. Note the value of the control. It should read zero.

6. Also note the values of the
and meters. They should also read zero initially.

7. Let the alligator pedal forward on her unicycle. Do this by reducing the
control to a value of 2 meters.

(a) Did the system center of mass change?

(b) What is the alligator’s position relative to the shore?
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(c) What is the canoe’s position relative to the shore?

(d) Which moved further relative to the shore: the alligator or the canoe?

8. Let the alligator pedal backward on her unicycle. Do this by increasing
the control to a value of 2 meters.

(a) Did the system center of mass change?

(b) What is the alligator’s position relative to the shore?

(c) What is the canoe’s position relative to the shore?

(d) Which moved further relative to the shore: the alligator or the canoe?

9. Click the graph button and make a graph with
in the vertical axis and

in the horizontal axis. Click .

10. Click the graph button again and make a graph with
in the vertical axis and in the horizontal axis. Click .

11. Click the graph button again and make a graph with
in the vertical axis and in the horizontal axis. Click .

12. Run the simulation for 10 seconds. Stop and reset the simulation.

13. Compare the three graphs.

(a) In between what values does the gator position relative to the shore
vary?

(b) In between what values the canoe position relative to the shore vary?

(c) Does the position of the center of mass relative to the shore vary?

(d) Is the position relative to the shore of the canoe zero at the same
time the position of the gator is zero relative to the shore?

(e) When the position of the canoe is positive, is the position of the gator
positive or negative? In other words when the gator moves to the
left, do the canoe move to the left or the right relative to the shore?

In this experiment, we investigate the effect of the alligator pedaling her unicycle
one last time. In experiment C, we arranged matters such that the alligator was
very heavy compared with her boat. Now we do the opposite: we imagine that
the alligator is on an aircraft carrier, which is much heavier than she is.

1. Start up the PEARLS experiment, or if it is already run-
ning, restore the default conditions by clicking the .
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2. Pull down the and turn off the option,
to help clarify the diagram.

3. Set the control to 2 kg.

4. Set the control to 200 kg. The boat now weighs 100 times
more than the alligator.

5. Note the value of the control. It should read zero.

6. Also note the values of the ,
and meters. They should also read zero initially.

7. Let the alligator pedal forward on her unicycle. Do this by reducing the
control to a value of 2 meters.

(a) Did the system center of mass change?

(b) What is the alligator’s position relative to the shore?

(c) What is the canoe’s position relative to the shore?

(d) Which moved further relative to the shore: the alligator or the canoe?

8. Let the alligator pedal backward on her unicycle. Do this by increasing
the control to a value of 2 meters.

(a) Did the system center of mass change?

(b) What is the alligator’s position relative to the shore?

(c) What is the canoe’s position relative to the shore?

(d) Which moved further relative to the shore: the alligator or the canoe?

9. Click the graph button and make a graph with
in the vertical axis and

in the horizontal axis. Click .

10. Click the graph button again and make a graph with
in the vertical axis and in the horizontal axis. Click .

11. Click the graph button again and make a graph with
in the vertical axis and in the horizontal axis. Click .

12. Run the simulation for 10 seconds. Stop and reset the simulation.

13. Compare the three graphs.

(a) In between what values does the gator position relative to the shore
vary?

(b) In between what values the canoe position relative to the shore vary?
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(c) Does the position of the center of mass relative to the shore vary?

(d) Is the position relative to the shore of the canoe zero at the same
time the position of the gator is zero relative to the shore?

(e) When the position of the canoe is positive, is the position of the gator
positive or negative? In other words when the gator moves to the
left, do the canoe move to the left or the right relative to the shore?

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. Consider two objects, A and B, of equal mass. Where is the center of mass
of the two-mass system?

(a) at A

(b) at B

(c) midway between A and B

2. Is the combined center of mass of two particles always on a straight line
connecting the two?

(a) yes

(b) no

3. What is the state of motion of the center of mass of a set of particles, if
no external forces act on them?

(a) the center of mass accelerates

(b) the center of mass moves in a circle

(c) the velocity of the center of mass is constant

4. Say that particle A has a mass of 4 kg and is located at = 1 m, and
particle B has a mass of 1 kg and is located at = 1 m. Where is the
combined center of mass of A and B?

(a) 1 0 meters

(b) 0 6 meters

(c) 0 meters

(d) 0.25 meters

5. Is the center of mass of a two particle system always closer to the heavier
particle?
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(a) yes

(b) no

6. Can internal forces among a system of particles change the velocity of the
combined center of mass?

(a) yes

(b) no

7. Consider the alligator on a unicycle from the laboratory section. Say her
mass is the same as the mass of the canoe. If she moves 0.4 meters relative
to the canoe, how far does she move relative to the shore?

(a) 0.1 meters

(b) 0.2 meters

(c) 0.4 meters

(d) 0.8 meters

8. In the previous question, how far does the canoe move relative to the
shore?

(a) 0 4 meters

(b) 0 2 meters

(c) 0 4 meters

(d) 0 8 meters

9. Consider two masses, A and B. If both masses are quadrupled, does the
center of mass location change?

(a) yes

(b) no

10. If there are no external forces, is it possible for the alligator and the canoe
to move in the same direction relative to the shore?

(a) yes

(b) no
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9 Circular Motion

Vectors Collision

9.1 Prerequisite

9.2 Introduction

A great help to this assignment are the assignments and .

Our planet is continously moving in a circular motion. So does the moon around
earth, or the tether ball around the tether pole. So do the particles in a cen-
trifuge, once it has reached it constant speed or the boleadores from the South
American cowboy before he throws them at the unlucky cow.

Figure 7: Uniform Circular Motion

Curves rounded by bike or car are parts of circular motions. In this assign-
ment, we will study all the components needed for a uniform circular motion.
Velocity, acceleration, force, angular momentum and their relations will become
clear.
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9.3 Theory

Circular Motion

Vector Com-
ponents

centripetal

9.3.1 Centripetal Acceleration

9.3.2 Angular Displacement, Angular Velocity and Angular Accel-
eration
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Figure 8: Acceleration and Velocity in the Uniform Circular Motion

A uniform motion means that the speed of the motion is constant. This doesn’t
really mean that the velocity vector is constant (see assignment

). The speed is only the magnitude of the velocity. The vector can
still change in direction. This is exactly what happens in the uniform circular
motion.

A mass moving with a constant speed in a circle has a velocity that contin-
uously changes direction, but doesn’t change in magnitude. Figure (7) shows
this clearly. If the velocity changes the acceleration is not zero. It can be shown
using geometry and some algebra that the vector with magnitude:

= lim
∆

∆
= (42)

is the instantanuous acceleration of the particle. For each position on the circle
you can draw the acceleration and velocity vector continuously changing in
direction but constant in magnitude. Remark that the acceleration is at all
times perpendicular to the velocity. (See figure (8)). Because the acceleration
is pointing towards the center we call it the acceleration.

In this section we are looking at a more practical way to define rotational motion
than the one in the previous section. We want to be able to describe a rotational



y

x

q

Y

X

P

r
®

−1 2

av

radians

θ
θ

θ
θ

π .

θ θ θ

t
t

ω
θ

t

t

ω
dθ

dt

α
dω

dt

76

Figure 9: Angular Position

motion the way we describe a translational motion. For example, a uniform
linear motion, means that the linear velocity is constant and thus its acceleration
zero. The same way we would like to say that a uniform circular motion has
constant angular velocity and thus zero angular acceleration. In figure (9) you
can see that the position of the particle is at all times determined by the angle

if we agree upon the reference frame and the sense of rotation.
We call the rotation sense positive if it is counterclockwise ( increases). The

rotation is negative when the particle rotates clockwise ( decreases). As unit
for the angle mostly are used. If the particle has completed a whole
circle, we say it has gone 2 radians or 360 degrees. So 1 radian = 57 5 degrees.
Instead of measuring the displacement along the circle, we can measure it in the
difference in angles. The angular displacement is:

∆ = (43)

This displacement happened in a time ∆ . The angular speed (averaged over
the interval ∆ ) is the:

=
∆

∆
(44)

In the limit for (∆ aproaching zero) we become the instantaneous angular
speed:

= (45)

The angular speed is constant in a uniform circular motion. The same way we
can define angular acceleration:

= (46)
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which is of course zero in the uniform circular motion ( = cte.)
The components of the position vector relate to the angular position in

the following way:

= cos

= sin (47)

The linear speed relates to the angular speed in the following way:

= (48)

The linear acceleration for the uniform circular motion becomes with equation
(42)

= (49)

Newton’s law = tells us that a body cannot have an acceleration if no
force is acting on the body. Therefore a particle going around in a circle with
constant speed must have a force acting on it. We know that the acceleration

is centripetal and constant in magnitude = , so will be the force and its
magnitude will be:

= = (50)

with the mass of the particle that is moving in a circle, the speed of the
particle, the radius of the circle. This force is the centripetal force. This
means that to keep a mass moving in een circle with constant speed you have
to apply a force. In the tether ball this force will be the tension in the string.
In an atom the force that keeps the electron circling around the nucleus is an
electrostatic force. The moon stays in orbit around the earth because of the
gravitational centripetal force.

In the assignment we became familiar with the linear momentum of a
body. The linear momentum of a body with mass moving with a velocity
is:

= (51)

In analogy to the linear momentum in translational motion we can define a
angular momentum for the rotational motion:

= (52)

with the position vector of the particle (the origin is the center of the circle)
and the linear momentum. The product is a vector cross product. (See
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assignment ). The angular momentum will be normal to
the plane made by and (use the right hand rule). The magnitude of this
angular momentum is:

= sin (53)

with the angle between and . and are the magnitude of the linear
momentum and the position vector, resp. In the uniform circular motion is
90 degrees because is always normal to .

In the assignment we learned about the importance of the law conser-
vation of momentum. In a rotational motion a similar law is valid: conservation
of angular momentum. We saw that the law of conservation of linear momentum
is very practical when we consider what happens when there are a large numbers
of particles with forces in between them and forces on them from outside. If no
external force is acting on the system the linear momentum stays constant. In
the rotational motion the law translates to: if no external torques act upon the
system the angular momentum stays constant. A torque is the force times the
lever of that force.

In the laboratory we will become familiar with all vectors that influence the
uniform circular motion.

In this experiment, we will familiarize ourselves with the laboratory, especially
with the display and the free body force diagram.

1. In the PEARLS window, select .

2. Launch item.

3. You will now see the experiment window, with a control window at the
left, and a laboratory display at the right.

4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:
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9.4.2 Experiment B: The Angular and Linear Velocity
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7 500 10 m
1 400 rad/s
1 050 10 m/s
1 000 kg
1 000 pixels/meter

7. You should see , and axis, a block with its velocity vector , a
dashed circle, the path of the block.

8. Run the simulation, let the block complete a whole circle, stop, and reset.

(a) Is the block running clockwise or counterclockwise?

(b) Is always positive or negative? Look at the meter.

(c) Is positive or negative?

9. Set equal to 1 4 rad/s. Click in the small window
under the control, type in the number and press return on your keyboard.

10. Run the experiment, let the block complete a whole circle, stop, and reset.

(a) Is the block running clockwise or counterclockwise?

(b) Is always positive or negative? Look at the meter.

11. Run the experiment.

12. Turn the rotation control to have a look at all sides.

(a) In which plane is the block moving?

13. Reset the experiment.

(a) What is the for this position of the block?

(b) Where is the block positioned?

14. Click . Turn on the option . The components of the
position vector will be displayed.

15. Run the experiment and observe the components.

In this experiment we will study how the angular and the linear velocity relate.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Click and choose .
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3. Click and choose .

4. Set equal to 100 m/s.

5. Run the experiment, observe, stop, and reset.

(a) In which plane is the position vector located at all times?

(b) In which plane is the velocity vector located at all times?

6. Turn the so the -axis is pointing upwards. This view
should let you check your answers.

7. Have a look at the .

(a) What is the value of the ?

(b) What is the value of the ?

(c) What is the value of the ?

(d) Check the relation = .

8. Set equal to twice its value, so = 150 m.

9. Run the experiment, observe, stop and reset.

(a) What is the value of the ?

(b) How did the change?

(c) Did you see a change in the display?

10. Set the to half its original value, so = 37 5 m.

11. Run the experiment, observe, stop, and reset.

(a) What is the ?

(b) How did the change?

(c) Did you see a change in the display?

12. Set back to 75 m.

13. Set equal to twice its value, so = 2 667 rad/s.

(a) What is the value of the tangential velocity?

14. Set equal to 2 667 rad/s.

15. Set equal to 75 m.

16. Run, observe, stop and reset the experiment.

(a) What is the value of the tangential velocity?

(b) In which direction is the block turning?

(c) Compare the direction in which the velocity vector is pointing with
step 5.
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In this experiment we will study how the angular velocity and the angular
position relate.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose .

3. Set equal to 1 57 rad/s.

4. Run and observe.

(a) How much time (approximately) did the block need to complete a
whole circle?

5. Reset the simulation.

6. Click the graph button.

7. Make a graph with in the vertical axis and in the horizontal
axis.

8. Click .

9. Run the experiment for 10 seconds, stop, and reset.

10. Look at the plot.

(a) What is the maximum value of ?

(b) How much time does it take the block to complete a whole circle?
Does your observation from step 4a agree with this result?

(c) In between = 0 and its maximum value, how does the angle behave
in time?

11. Set equal to 1 57.

12. Run the simulation and observe.

(a) How much time does the block need to complete a whole circle?

13. Reset the simulation.

14. Run the experiment for 10 seconds, stop and reset.

15. Look at the plot.

(a) Why is the negative?

(b) What is the minimum value of ?
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(c) How much time does it take the block to complete a whole circle?
Does your observation from step 12a agree with this result?

(d) In between = 0 and its minimum value, how does the angle behave
in time?

16. Set equal to 150 m.

17. Run the experiment for 10 seconds, and reset.

(a) Did change?

(b) How does the plot for this experiment compare with the one of step
15?

18. Set equal to 3.14 rad/s.

(a) How long will it take before the block has completed a circle?

19. Run the experiment for 10 seconds, and reset.

(a) Does the plot agree with your calculation?

20. Close all graphs.

In this experiment we will study how the and component of the position
vector of the block change when the block moves in a circle with constant
speed.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose .

3. Rotate the display with the so you have a clear view at
the components and of the position vector .

4. Set equal to 1.26 rad/s.

5. Run the experiment until the block has completed a whole circle and reset.

(a) At what position on the circle is zero?

(b) At what position on the circle is zero?

(c) At what position on the circle is maximum?

(d) At what position on the circle is maximum?

(e) What value does the -component have at all times?
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6. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

7. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

8. Run the experiment for 10 seconds and reset.

(a) How does the X-component change in time?

(b) How does the Y-component change in time?

(c) Can you tell from the plot how long it took the block to complete a
whole circle?

9. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

10. Set the minimum of X-component equal to 150 meters and the maximum
equal to 150 meters. Click .

11. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

12. Set the minimum of Y-component equal to 150 meters and the maximum
equal to 150 meters. Click .

13. Run the experiment for 10 seconds and reset.

(a) At which value of is zero? Compare with step 5a.

(b) At which value of is zero? Compare with step 5b.

(c) At which value of is maximum? Compare with step 5c.

(d) At which value of is maximum? Compare with step 5d.

(e) At which value of are both components the same?

14. Set equal to 150 m.

(a) How do the plots of the components of the position vector in function
of the time change compared to step 8a and 8b?

(b) How do the plots of the components of the position vector in function
of change compared to step 13?

15. Set back to 75 m.

16. Set equal to 2.52 rad/s.

17. Run the experiment for 10 seconds and reset.
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(a) How do the plots of the components of the position vector in function
of the time change compared to step 8a and 8b?

(b) How do the plots of the components of the position vector in function
of change compared to step 13?

18. Close all graphs.

In this experiment we will become familiar with the concept of angular momen-
tum.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose
.

3. Set equal to 2 rad/s.

4. Rotate the display with the so you have a clear view at
all the vectors.

5. Run the experiment so the block completes a whole circle and reset.

(a) In which plane does the force vector lay at all times?

(b) In which plane does the position vector lay at all times?

(c) Along which axis does the angular momentum vector lay at all times?

6. Set equal to 2 rad/s.

7. Run the experiment so the block completes a whole circle and reset.

(a) How is the angular momentum different from step 5?

(b) Can you explain this difference using the right hand rule and the
definition of angular momentum?

8. Set equal to 4 rad/s.

(a) How did the force change?

(b) How did the angular momentum change?
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In this experiment we will look at the variables of the block when its angular
momentum is constant, in other words when no external torque is acting on it.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose .

3. From choose .

4. Run the experiment.

5. While the experiment is running, change the radius to greater values with
the slider. Observe the display. Observe the control window.

(a) Does the change?

(b) How does the change?

(c) How does the change?

6. From choose .

7. Run the experiment.

8. While the experiment is running, change the radius to greater values with
the slider. Observe the display. Observe the control window.

(a) Does the change?

(b) How does the change?

(c) How does the change?

9. Restore the default values. Click .

(a) Calculate the angular momentum for the default values.

10. Set equal to 50 m.

(a) To keep the angular momentum constant, what should the angular
velocity be?

(b) To what value will the tangential velocity change?
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Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. A particle travels in a circular path with constant speed and radius .
When the speed is doubled the acceleration is

(a) zero, because the speed is constant.

(b) doubled also.

(c) four times its original value.

2. A car can round a flat curve at a speed

(a) unlimited

(b) limited by its weight only.

(c) limited by friction between the tires and the road.

3. You are whirling a ball on a string in a horizontal circle with radius 1 m.
If the centripetal acceleration is equal to the acceleration due to gravity
the ball is completing

(a) 3.13 revolutions/second

(b) 29.9 revolutions/second

(c) 29.9 revolutions/minute

4. The tension in a string of 0.5 m whirling a ball of 1 kg around horizontally
completing two circles in a second is:

(a) 78.9 N

(b) 19.7 N

(c) 6.28 N

5. The angular speed of an hour hand of a watch is

(a) 0.52 rad/h

(b) 6.28 rad/h

(c) 0.08 rad/h

6. Assume the car’s speedometer reads proportional to the rotational speed
of the wheels. The driver changes his tires to larger ones. The speedometer
read will be

(a) lower than its actual speed

(b) the same as its actual speed
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(c) higher than its actual speed.

7. A particle completes a circle of radius 4 cm in 8 seconds. Its linear velocity
is:

(a) 0.78 cm/s

(b) 1.27 cm/s

(c) 3.14 cm/s

8. A particle completes counter clockwise a circle of radius 4 cm in 8 seconds.
At time = 0 the component is 4 cm. The component of the position
vector of the particle at = 1 s will be

(a) 3.14 cm

(b) 2.83 cm

(c) 6.28 cm

9. If a ball with a mass twice an other ball is whirled in a horizontal circle
at the same speed its angular momentum will be:

(a) the same

(b) twice the other ball’s angular momentum

(c) half the other ball’s angular momentum

10. The angular momentum = of a particle with mass in uniform
circular motion will continuously vary in direction because and change
continuously in direction.

(a) true

(b) false
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10.1 Prerequisite

10.2 Introduction

10.3 Theory

A great help this assignment is the assignment .

A body can only move in a circle when a centripetal force keeps it in that path.
Centripetal means pointing towards the center. One example of a uniform
circular motion is the revolution of the planets around the sun. The orbit,
that is the path around the sun, only differs slightly from a circle. The force
that keeps the planet in orbit is the gravitation. This force sets the centripetal
acceleration for a certain planet and thus its velocity.

In the assignment we defined several new concepts. The
angular velocity and angular momentum were defined in analogy with their
linear counterparts. The angular quantities allow us to describe the rotational
movement similar to the translational movement. In analogy with the uniform
linear motion we can state that a body in a uniform circular motion has a
constant angular velocity. The angular acceleration is zero.

The centripetal force, that keeps the planet in orbit around the sun (or a satelite
around a planet) is the gravity. The universal gravitation law looks as follows:

= (54)

with the magnitude of the force between two particles with mass , ,
respectively, separated by a distance . is the universal gravitation constant.
(To find the gravitational force between the sun and the earth we fill in the
mass of the sun, the mass of the earth and the distance earth-sun.) The
value of is: = 6 6726 10 m /kg.s .

The period of revolution of a planet around the sun is the time the planet
takes to complete a whole circle around the sun. The angular velocity for the
uniform circular motion is given by:

=
∆

∆
(55)
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with ∆ the change in angular position occurred in the time ∆ . For a whole
revolution

∆ = 2

∆ =

We obtain for using equation (55):

=
2

(56)

We recall also the relation between the linear velocity and the angular ve-
locity (see assignment ):

= =
2

(57)

The magnitude of the centripetal acceleration is:

= (58)

This lab shows the planetary motion which is circular to a good approximation.
The main purpose of this lab is to show that for any given orbital radius there
is only one possible orbital velocity and acceleration.

In this experiment, we will familiarize ourselves with the laboratory, especially
with the display and the free body force diagram.

1. In the PEARLS window, select .

2. Now launch the item.

3. You will now see the experiment window, with a control window at the
left and a laboratory display at the right.

4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:
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1 500 10 m
2 975 10 m/s
1 983 10 rad/s
1 990 10 kg
5 980 10 kg
6 670 10 Nm /kg
6 870 10 pixels/meter
6 000 10

7. You should see a yellow circle, the sun, and the earth on a background
with stars. The axis are displayed and the orbit (blue circle) of the
planet.

8. Look at the control window.

(a) What is the radius of the orbit?

(b) What is the tangential velocity?

9. Set equal to 1 08 10 m (the distance Venus-Sun).

(a) What other values changed in the ?

10. From , choose .

11. the experiment, observe until the planet has complete a revolution,
and .

(a) Is the velocity tangent to the circle at all times?

(b) Is the acceleration centripetal at all times?

(c) What causes the centripetal force ?

In this experiment we will become familiar with the concept period of revolution
and study this for several planets.

1. Start up the PEARLS experiment, or if it is already run-
ning, restore the startup conditions by clicking the button.

2. Click and choose .

3. Click the graph button. Make a graph with in the vertical axis and
in the horizontal axis.

4. Run the experiment until the earth has completed two revolutions, stop,
and reset.
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(a) The data from the and equation (57) are all we
need to calculate the period of the earth around the sun. What is
the period?

(b) Look at the plot. When did the angle complete a whole circle (2
radians)? Does your calculated period agree with the value resulting
from the graph?

5. Set equal to 5 8 10 m, the distance Mercury-Sun.

6. Run the experiment until the planet has completed two revolutions, stop
and reset.

(a) How does the tangential speed compare to the one of the earth in its
orbit?

(b) Calculate the period of the revolution of Mercury around the sun?

(c) Does your calculated value agree with the graph value?

7. Set equal to 2 28 10 m, the distance Sun-Mars.

8. Run the experiment until the planet has completed two revolutions, stop
and reset.

(a) How does the tangential speed of Mars compare to the one of the
earth in its orbit?

(b) Calculate the period of the revolution of Mars around the sun?

(c) Does your calculated value agree with the graph value?

9. Close all graphs.

In this experiment we will study the centripetal acceleration for several planets,
resulting from the gravitational force between them and the sun.

1. Start up the PEARLS experiment, or if it is already run-
ning, restore the startup conditions by clicking the button.

2. From choose

3. Recall the relation between centripetal acceleration and tangential speed
in a uniform circular motion: = with the radius of the circle or

orbit.

(a) The data in the are by default the data for the
motion of the earth around the sun. Calculate the centripetal accel-
eration of the earth.
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4. Recall the equation (54) for the universal gravitation force and Newton’s

law: = . The force is the gravitational force, is the mass of the
planet and is its centripetal acceleration. With equation (54) we become:

= (59)

with = 6 6726 10 m /kg s the universal gravitational constant.

(a) Using your calculated from step 3a what is the mass of the sun?
Compare to the value.

5. Set equal to 5 8 10 m, the distance Mercury-Sun.

(a) Looking at the display, how does the centripetal acceleration in this
orbit compare to the one in step 3a?

(b) With the data of the calculate the centripetal ac-
celeration.

6. Set equal to 2 28 10 m, the distance Sun-Mars.

(a) Looking at the display, how does the centripetal acceleration in this
orbit compare to the one in step 3a?

(b) With the data of the calculate the centripetal ac-
celeration.

7. Change the mass of the planet to greater values with the slider.

(a) Does the centripetal acceleration change?

(b) Does the tangential speed change?

(c) Does the angular speed change?

(d) Does the gravitational force change?

8. Reset the simulation.

9. Change the mass of the sun to greater values with the slider.

(a) If the planet stays in the same orbit, does the angular velocity change?

(b) If the planet stays in the same orbit, does the tangential velocity
change?

(c) If the planet stays in the same orbit, does the centripetal acceleration
change?

10. Reset the simulation.

11. Change the radius of the planet’s orbit to greater values with the slider.
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(a) Does the gravitational force change?

(b) Does the centripetal acceleration change?

(c) Does the tangential speed change?

(d) Does the angular speed change?

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. The acceleration of the planet Pluto, compared to the acceleration of
Mercury is

(a) much larger

(b) much smaller

(c) the same

2. The linear velocity of a planet farther from the sun, compared to the linear
velocity of a planet closer to the sun is

(a) greater

(b) smaller

(c) depending on the planet.

3. The acceleration of the planets around the sun is independent of their
mass.

(a) true

(b) false

4. An electron is forced into a circular path by a magnetic field. It has a
radial acceleration of 3 0 10 m/s . Its path has a radius of 15 cm. The
speed of this electron is:

(a) 1 1 10 m/s

(b) 6 7 10 m/s

(c) 6 7 10 m/s

5. The electron in the previous question will have completed one circle in:

(a) 1 4 10 s

(b) 7 0 10 s

(c) 8 6 10 s
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6. A satellite moves at a constant speed in a circular orbit about the center
of the earth, near the surface of the earth (take the orbit radius equal to
the earth radius: 6370 km, the acceleration equal to 9.81 m/s .) Its speed
is:

(a) 250 m/s

(b) 7.9 m/s

(c) 7.91 km/s

7. The distance from the earth to the moon is approx. 3 82 10 m. The
moon completes a whole orbit in 27.3 days. The radial acceleration of the
moon is:

(a) 2 7 10 m/s

(b) 1 67 m/s

(c) 9 8 m/s

8. The mass of Jupiter is expected to be 318 times the mass of the earth.
Jupiter is 5 times farther away from the sun than the earth. Compare the
centripetal force excerted by the sun on the earth with the centripetal
force excerted by the sun on Jupiter:

(a) = 0 08

(b) = 12 7

(c) = 63 6

9. If the earth would have a smaller revolution period, it would have an orbit

(a) closer to the sun

(b) farther from the sun

(c) the same as it has now.



2

2

Vectors

~F m~a

~a
~F

m

K mv

m v

11.3.1 Fundamentals

11 Elastic Collisions

11.1 Prerequisite

11.2 Introduction

11.3 Theory

A great help to this assignment are the simulations.

Everything in the universe is composed of particles. If we can understand how
any given pair of particles behaves in a collision, then we can understand a great
deal about the universe.

In this assignment we will examine a relatively simple sort of collision: the
elastic collision of two pool balls. In creating the laboratory for this assignment,
we chose pool balls for the sake of concreteness, but don’t take this too seriously.
Real pool balls are more complicated than this. Also, we might just as well have
chosen the collision of two inert gas atoms (Helium, for example), which behave
similarly, though on a very different size scale.

The important thing is that the principles we will learn in this assignment
apply to any collision, even in realms very far removed from the pool table.

In the last assignment we introduced our first vector equation, Newton’s Law:

= (60)

This states that the acceleration (measured in meters/seconds ) is propor-

tional to the force (measured in Newtons). The constant of proportionality
is the mass , usually measured in grams or kilograms.

We now proceed by defining two new physical quantities. The first of these
is called the kinetic energy, which is a parameter associated with the motion of
an object. It is defined as

=
1

2
(61)

where is the mass of the particle (usually in kilograms), and is its speed
(usually in meters per second). Note that equation (61) involves numbers rather
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than vectors, and thus the kinetic energy does not have any direction associated
with it.

Another quantity associated with the motion of a particle is the momentum.
Unlike the kinetic energy, momentum is a vector whose direction is the same as
the particle’s velocity. It is defined by the equation

= (62)

where again is the mass, and is the velocity vector of the particle. This
vector equation is the equivalent of three scalar equations (equations involving
ordinary numbers):

= (63)

= (64)

= (65)

In the above equations, we have used the components of the velocity and mo-
mentum vectors, which are their projections onto a cartesian coordinate system.
Please refer to our earlier assignments on coordinate systems and vectors if you
have questions about these equations.

In our analysis of the collision of two pool balls, we will make some simplifying
assumptions. We will assume that the pools balls are not deformed, smashed,
or stuck together as a result of the collision; this is called an elastic collision.
We will also assume that no outside force of any kind (including friction) acts
on the pool balls.

Under these conditions, it turns out that both quantities introduced above,
momentum and kinetic energy, are conserved. This means that, no matter how
we set up the pool balls, the total momentum and the total kinetic energy do
not change as a result of the collision. It turns out that these two facts are
related to important symmetries possessed by our universe.

Let us now state these facts in mathematical form. Conservation of energy
states that

= (66)

where is the total kinetic energy initially (that is, before the balls collide)
and is the final kinetic energy (after the collision). and are obtained
by adding together the kinetic energies of the two balls, like this:

=
1

2
+

1

2
(67)

=
1

2
+

1

2
(68)
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where the subscripts and refer to pool balls A and B respectively.
Conservation of momentum states that

= (69)

where
= + (70)

= + (71)

The laws of physics should not depend on the velocity of our laboratory. If they
did, we would need a new set of laws for every possible velocity that our lab
could have, which is an uncountably infinite number. This idea is called the
principle of relativity.

Thus, the equations given above should hold no matter what velocity our
lab has. Experiment shows that they do in fact hold, so long as our pool balls
move slowly compared with the speed of light.

In the case we will look at in the laboratory, it is possible for you (the
observer) to move relative to the pool table with different velocities. Every
possible value of the observer’s velocity corresponds to a different reference
frame. In every reference frame, the numbers that go into the equations will be
different, but the equations themselves are always valid.

In the lab we will investigate how the appearance of a collision changes as
we observe it from different reference frames.

In this experiment, we will familiarize ourselves with the laboratory, especially
the Controls and the Display Menu. In this lab, we will be creating collisions
of pool balls, and observing the results. The pool table was chosen because it
is something that most of us are familiar with. We could have chosen inert gas
atoms instead of pool balls, and our results would still hold. Therefore, think in
terms of a pool table if it helps you to understand what is happening; but bear
in mind that the results are quite general and apply to systems very different
from pool balls.

1. In the PEARLS window, select .

2. Now launch the entry.

3. You will now see the laboratory window, with a Control Window at the
left and a laboratory display at the right.
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4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:

1 000 m/s
1 000 10 m
5 000 10 kg
5 000 10 kg
0 m/s
0 m/s
5 000 10 pixels/meter
1

7. You should now see two pool balls, and two black lines indicating the
trajectories of the balls.

8. the experiment and observe the collision, then and to
return the experiment to its initial state.

9. Set the Control to 0 5 m/s and run the experiment
again. Be sure to click the Button at the end of each run.

(a) Have the trajectories changed?

(b) Has the speed of ball B after the collision increased or decreased?

10. Set the of A Control back to 1 m/s.

11. Slowly increase the Control to a value of 0 069 m.

(a) In what way have the trajectories changed?

12. Using the , turn off the option and turn on the
option.

13. and observe the collision, then to return the experiment to its
initial state.

14. Set the to 0 4 m/s and run the experiment again,
then reset.

(a) Did the collision point’s position change?
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In this experiment, we will conduct a set of head-on and nearly head-on colli-
sions, and observe how we can arrive at very different outcomes, depending on
the exact conditions we specify.

1. Start up the PEARLS experiment, or if it is already running,
restore the default conditions by clicking the button.

2. Set the Control to zero. the experiment and then
.

(a) What are the masses of the two balls?

(b) What happens to ball A after the collision?

3. Set the to 0.4 kg. the experiment and then .

(a) What happens to ball A after the collision?

4. Set the to 0.3 kg. the experiment and then .

(a) What happens to ball A after the collision?

5. Set the Mass of both balls to 0.4 kg. Set the to a small
value: 6 10 m (you will need to type in this number as 6 04).
the experiment and then .

(a) How does Ball A move after the collision?

6. Set the back to zero. the experiment and .

(a) How does the motion of Ball A after the collision compare with step
5a?

In this experiment we will check the equation for the conservation of kinetic
energy.

1. Start up the PEARLS experiment, or if it is already running,
restore the default conditions by clicking the Defaults button .

2. Set the control to 0.4 m/s.

3. Click the Button and create a graph with on
the vertical axis and on the horizontal axis. (If you are not sure how
to create a graph, please consult the user’s manual) Drag the new graph
to the top of the window.
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4. Click the Graph Button and create a graph with on
the vertical axis and on the horizontal axis.

5. Arrange the two graphs so that they are both easily visible.

6. the experiment and then . Examine the two graphs.

(a) What happens to the kinetic energy of A as a result of the collision?

(b) What happens to the kinetic energy of B as a result of the collision?

(c) What happens to the total kinetic energy of A and B as a result of
the collision?

7. Set the to 0.3 m/s. the experiment and then
. Examine the two graphs.

(a) How is the graph of the kinetic energy of A changed compared with
step 6?

(b) How is the graph of the kinetic energy of B changed compared with
step 6?

(c) Is the total kinetic energy greater or less than the kinetic energy in
step 6?

8. Set the sl Impact Parameter to 0.056 m. the experiment and then
.

(a) How is the graph of the kinetic energy of A changed compared with
step 7?

(b) How is the graph of the kinetic energy of B changed compared with
step 7?

(c) Is the total kinetic energy different from the total kinetic energy of
step 7?

In this experiment we will observe how conservation of momentum applies to
collisions of different types.

1. Start up the PEARLS experiment, or if it is already running,
restore the default conditions by clicking the Defaults button . Also,
close any graphs that may be present.

2. Set the control to 0.4 m/s.

3. Set the and the controls to 0.1 kg.
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4. Click the Graph Button and create a graph with on
the vertical axis and on the horizontal axis. (If you are not sure how
to create a graph, please consult the User Manual.) Drag the new graph
to the top of the window.

5. Click the Graph Button and create a graph with on
the vertical axis and on the horizontal axis.

6. Arrange the two graphs so that they are both easily visible.

7. the experiment and then . Examine the two graphs.

(a) What happens to the as a result of the collision?

(b) What happens to the as a result of the collision?

(c) What happens to the total momentum of A and B as a result of
the collision?

8. Set the to 0.3 m/s. the experiment and then
. Examine the two graphs.

(a) How is the graph of the changed compared with
step 7?

(b) How is the graph of the changed compared with
step 7?

(c) Is the greater or less than the
in step 7?

9. Set the to 0.05 m. the experiment and then .

(a) How is the graph of the changed compared with
step 8?

(b) How is the graph of the changed compared with
step 8?

(c) Is the different from the of
step 8?

In this experiment we will observe how conservation of momentum applies to
collisions of different types. This time we will examine the vertical ( ) momen-
tum.

1. Start up the PEARLS experiment, or if it is already running,
restore the default conditions by clicking the Defaults button . Also,
close any graphs that may be present.
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11.4.6 Experiment F: Center of Mass Motion
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2. Set the and the controls to 0.1 kg.

3. Click the Graph Button and create a graph with on
the vertical axis and on the horizontal axis. (If you are not sure how
to create a graph, please consult the User Manual.) Drag the new graph
to the top of the window.

4. Click the Graph Button and create a graph with on
the vertical axis and on the horizontal axis.

5. Arrange the two graphs so that they are both easily visible.

6. the experiment and then . Examine the two graphs.

(a) What happens to the as a result of the collision?

(b) What happens to the as a result of the collision?

(c) What happens to the of A and B as a result of
the collision?

7. Set the and the controls to 0.2 kg. the experi-
ment and then . Examine the two graphs.

(a) How is the graph of the changed compared with
step 6?

(b) How is the graph of the changed compared with
step 6?

(c) Is the greater or less than the
in step 6?

8. Set the to 0.015 m. the experiment and then
.

(a) How is the graph of the changed compared with
step 7?

(b) How is the graph of the changed compared with
step 7?

(c) Is the different from the of
step 7?

In this experiment we will observe how conservation of momentum applies to
collisions of different types.

1. Start up the PEARLS experiment, or if it is already running,
restore the default conditions by clicking the Defaults button . Also,
close any graphs that may be present.
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11.4.7 Experiment G: Reference Frames
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2. With the , turn on the display.

3. Using the , turn on the option.

4. Set the control to 0.35 m/s.

5. the experiment and then . Observe the motion of the center of
mass of the two pool balls.

(a) Is the center of mass motion affected by the collision?

6. Set the to zero. the experiment and then .

(a) Is the center of mass motion affected by the collision?

7. Decrease the to 0.15 kg. the experiment and then .

(a) How does the mass change affect the position of the center of mass?

(b) Is the center of mass motion affected by the collision?

In this experiment we will observe collisions while moving relative to the pool
table. We will see how this affects our view of collisions.

1. Start up the PEARLS experiment, or if it is already running,
restore the default conditions by clicking the Defaults button . Also,
close any graphs that may be present.

2. Using the , turn on the option.

3. With the , turn on the display.

4. Turn on the display.

5. Turn on the display.

6. Set the to zero.

7. Set the control to 0.4 m/s. Run the experiment and
then Reset.

(a) Does the center of mass move?

(b) Does the pool table move?

(c) Is one of the balls stationary initially?

(d) What is the name of this reference frame?

8. Set the to 0.5 m/s. Run the experiment and then
Reset.
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(a) Does the center of mass move?

(b) Does the pool table move?

(c) Is either ball stationary initially?

9. Set the to 0.4 m/s. Run the experiment and then
Reset.

(a) Does the center of mass move?

(b) Does the pool table move?

(c) Is either ball stationary initially? Why?

10. Set the to 0.2 m/s. Run the experiment and then
Reset.

(a) Does the center of mass move?

(b) Does the pool table move?

(c) Is either ball stationary initially?

(d) What is the name of this reference frame? Why?

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. Consider a head on collision (zero impact parameter) of two pool balls, A
and B of equal mass. Ball B is initially stationary. What is the velocity
of ball A after the collision?

(a) 0.0 meters/sec

(b) 5.0 meters/sec

(c) 10.0 meters/sec

(d) 100.0 meters/sec

2. Consider again the previous question. As the impact parameter is varied,
is it possible for the recoil angle of ball A to be greater than 90 degrees?
(The recoil angle is the angle between its initial velocity and its final
velocity.)

(a) yes

(b) no

3. In the collision of two particles with no external forces, does the combined
center of mass move at constant velocity?
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(a) yes

(b) no

4. If the collision of two particles is viewed from the center of mass frame,
are the momentum vectors of the two particles always equal and opposite?

(a) yes

(b) no

5. Consider a head on collision (zero impact parameter) of two pool balls,
A and B. Ball B is initially stationary, and is heavier than A. In what
direction does ball A move after the collision?

(a) in its original direction

(b) opposite its initial direction

(c) 90 degrees from its original direction

6. Pool balls A and B are made to collide. B is more massive than A. In the
center of mass frame, which ball moves more rapidly?

(a) A

(b) B

7. Is conservation of kinetic energy satisfied in all reference frames?

(a) yes

(b) no

8. Is conservation of momentum satisfied in all reference frames?

(a) yes

(b) no

9. Does the total kinetic energy of two particles change if the observer’s
velocity changes?

(a) yes

(b) no

10. Does the total momentum of two particles change if the observer’s velocity
changes?

(a) yes

(b) no



12 Simple Harmonic Oscillator

12.1 Prerequisite

12.2 Introduction

12.3 Theory

Block on Incline Collision Oscillating Functions

12.3.1 Harmonic Oscillator without Damping

The Motion Equations

A great help to understand some of the concepts in this assignment are the
simulations , , and .

If a particle is moving back and forth, following the same path, it is oscillating. If
this oscillation repeats itself after the same time interval the oscillation is called
harmonic or periodic. This oscillation normally undergoes a certain damping,
e.g. friction, and will stop after a while.

The harmonic oscillator is an important system in physics. The oscillations
of the pendulum or the mass on the spring bouncing up and down can be
described by the same mathematical equations as the oscillations of the charges
in an inductor-capacitor circuit, of a tuning fork, of the atoms in a crystal, the
pistons in the car engine, etc.

In this assignment we will study the harmonic oscillation of a mass on a
spring. We will study the kinematics and the laws of conservation for the un-
damped and the more realistic damped oscillator.

Let’s attach a block to a spring and put it on a
frictionless table. We stretch the spring by pulling on the block. When we
release the block, it is not just going to return to its original position. The spring
will pull it back, the block will pass its equilibrium and compress the spring.
Then the spring will push the block out. The block will pass its equilibrium,
stretch the spring, and so on. The block is oscillating. By equilibrium we mean
the position in which the spring is neither stretched nor compressed.

Experiments have shown that the spring will pull the block back with a force
that is proportional to the distance over which we stretched the spring.This
result is valid as long as we do not stretch the spring to far.
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Figure 10: A Block on a Spring

Here we suppose that the spring is ideal: no friction, no overstretching, etc.
The magnitude of the force by the spring on the block is thus:

= (72)

with the spring constant specific of the spring and the distance over which
the block is stretched. The units of the spring constant are Newton/meter.
The minus sign tells us that the force is a restoring force, it means that it will
try to bring the block back into its unstretched, uncompressed position, i.e. its
equilibrium. When the block is going in the positive direction the force is
going in the negative direction and so on (see figure (10)). This law is called

and is as said, an empirical law.
We suppose that the block is sliding over a surface without any friction. The

only force acting on the block is the force by the spring. We can write Newton’s
law = as:

= = (73)

The motion is totally linear (let’s say along the x-axis) so the acceleration can
also be written as:

= = (74)

We put this into the equation (73) and become:

= (75)

This equation is called a differential equation and is typical for the simple har-
monic motion. This is the famous equation that turns up in so many physical
problems.
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The solution of this equation describes the motion. The block is oscillating,
so the expression for ( ) will have to show that type of motion.

You can verify that the following function is a solution for the famous dif-
ferential equation:

= cos( + ) (76)

with the amplitude of the oscillation, the angular frequency and the phase
constant.

The amplitude is the maximum distance the block moves away from
its equilibrium point during the oscillation. It is determined by the initial
conditions. What this means will become clear during the laboratory.

The angular frequency is given by:

= (77)

This frequency is often called the natural frequency. In this assignment
we are studying natural oscillations, they are not forced as opposite to the
ones we will study in the assignment .

The period of the oscillation is the duration of a oscillation or the time
after which the motion repeats itself. The function (76) repeats itself after

= 2 or

=
2

= 2 (78)

The frequency of the oscillation is per definitions the number of oscilla-
tions in a second, thus:

=
1

=
1

2
(79)

The constant is the phase constant. (Also in assignment you
can become familiar with phase, phase constant, phase difference). It is
determined by the initial conditions of the oscillation just as the amplitude
is.

Doing some algebra you find the expressions for the speed and the accelera-
tion of the block on the spring.

= cos( + ) (80)

= = sin( + ) (81)

= = cos( + ) (82)
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For all energy considerations of a system we need a
reference level where we put the potential energy zero. (In the assignment

we studied this already.) For the spring-block system the equilibrium
position of the block (the spring is not stretched, not compressed) is chosen
as reference level. In this section we consider an oscillation without friction,
in other words only a conservative force is acting on the block. The potential
energy in function of the position of the oscillating block can be shown to be:

= ( ) =
1

2
(83)

The kinetic energy is given by:

=
1

2
(84)

Only a conservative force is acting so the total energy should be constant at all
times and positions. Using the expressions (81) and (82) we find for :

= + =
1

2
+

1

2
=

1

2
(85)

In the previous section we described an oscillation that would go on for ever.
In reality friction (in the spring, with the surface...) would damp the oscillation
and finally stop it. In the assignment we studied the friction
between the block and the surface on which it slides. Experiments have shown
that for regular speeds this friction was as good as independ of the speed of the
block. In most cases (springs, viscous fluids...) friction is proportional to the
velocity, but of course opposite to it (because it will slow down the movement).
The friction has the form:

= = (86)

with a positive constant that gives the magnitude of the damping. The units
of this damping constant are kg/s. The equation (75) becomes then:

= (87)

or the differential equation for the damped oscillation becomes:

+ + = 0 (88)

If the damping is small a solution for this equation is:

= cos( + ) (89)
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with

=
4

(90)

This means that for small damping we become again a harmonic oscillation.
The amplitude is not constant anymore but decreases exponentially in time.
The frequency of that oscillation is which is for small damping: .

You can damp the motion so much that actually no oscillation occurs any-
more. That means that the is zero. Putting this in equation (90 gives:

= 2 = 2 (91)

with the mass of the oscillating object and the natural frequency. All
damping that is greater than the critical damping is called overdamping. The
block will have a hard time to return to its equilibrium position.

Friction is a non-conservative force. Some of the energy is “lost” to
heat. The total energy of the block will not be constant. As the total energy
is proportional to the square of the amplitude it can be shown that the total
energy decreases exponentially due to the negative work of the damping force
on the system:

= (92)

with the total energy at = 0.

In this laboratory we will perform experiments with a harmonic oscillator with-
out damping and with damping. One purpose is to show the kinematic relations
between displacement, velocity and acceleration. Another purpose is to examine
the law of energy conservation and energy loss. We will also have a closer look
at the difference between light, heavy and critical damping.

In this experiment, we will familiarize ourselves with the laboratory.

1. In the PEARLS window, select .

2. Now launch the item.

3. You will now see the experiment window, with a control window at the
left, and a laboratory display at the right.

4. The default settings for this experiment are:
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1 000 kg
1 500 10 N/m
4 000 10 Ns/m
1 622 s
3 873 rad/s
6 164 10 Hz
5 000 10 m
0 000 m/s
1 10 pixels/m

5. Adjust the window size as desired.

6. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

7. You should see a piston in a cylinder (the spring, the block, and the
damper are visible).

8. Run the simulation. Stop and reset.

9. Have a look at the .

(a) What is the value of the ?

(b) What is the value of the ?

10. Set equal to zero.

11. and observe. and .

(a) When does the displacement have its greatest value?

(b) What is the value of the displacement of the block for an unstretched,
uncompressed spring position or the equilibrium position?

12. Click the button. Choose and
. The vectors are displayed on the -axis. You might have to move

the display to make them visible.

13. , observe, , and .

(a) When is the force zero during the motion?

(b) When is the acceleration maximum?

14. Restore the default values by clicking the .

15. From choose and .

16. the simulation and observe.

(a) Does the maximum displacement (fully stretched or fully compressed)
change during the motion?
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12.4.2 Experiment B: The Kinematic Relations
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In this experiment we will study the undamped simple harmonic oscillator. We
will see how the displacement, velocity and acceleration change in time and
relate to each other.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose .

3. for at least a complete oscillation.

4. Compare the vectors in the display.

(a) At which position was the acceleration maximum?

(b) Did the acceleration become zero? If so, when?

(c) At which position was the velocity maximum?

(d) Did the velocity become zero? If so, when?

(e) When are the acceleration vector and velocity vector pointing in the
same direction?

(f) When are the acceleration vector and velocity vector pointing in the
opposite direction?

(g) At which position does the acceleration vector change direction?

(h) At which position does the velocity change direction?

5. and the experiment.

6. the simulation. Observe the clock: .

(a) How long does a whole oscillation take? Compare to the value of the
in the control window.

7. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

8. Click the graph button again. Make a graph with in the vertical
axis and in the horizontal axis.

9. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

10. Drag the graphs away from each other, so you can see all three.

11. the experiment for at least two whole oscillations, and .

(a) How does the displacement vary in time?
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(b) How does the velocity vary in time?

(c) How does the acceleration vary in time?

(d) Is the period of all these functions the same?

12. Find the times when the displacement is zero (or the spring is neither
stretched nor compressed).

(a) Is the absolute value of the velocity maximum or zero?

(b) Is the absolute value of the acceleration maximum or zero?

13. Find the times when the displacement is maximum. By maximum we
mean maximum compression or maximum stretching.

(a) Is the absolute value of the velocity maximum or zero?

(b) Is the absolute value of the acceleration maximum or zero?

In this experiment we will become familiar with the concept amplitude, period
and frequency of the undamped simple harmonic oscillator. We will also study
how the initial conditions (the position and the velocity of the block at = 0)
influence the motion.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Set equal to zero.

3. From choose and .

4. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

5. Click the graph button again. Make a graph with in the vertical
axis and in the horizontal axis.

6. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

7. Drag the graphs away from each other, so you can see all three.

8. Run the experiment for at least two whole oscillations, stop, and reset.

(a) What is the value of the ?

(b) Recall the formula for the natural frequency of the oscillator =
. Calculate the natural frequency and compare to the value in

the control.
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(c) Calculate the period of the oscillation and compare to the graph and
the value in the control window.

(d) Do all three curves have the same period?

(e) What is the value of the phase constant (see equation (81) and (82))?

(f) What is the value of the amplitude of the oscillation? Is it different
from the initial displacement?

(g) What is the value of the amplitude of the velocity? Recall equation
(82).

(h) What is the amplitude of the acceleration? Recall equation (82).

9. Set equal to 0.50 kg.

10. Run the experiment for at least two whole oscillations, stop and reset.

(a) What is the value of the ?

(b) Calculate the natural frequency and compare to the value in the
control window.

(c) Calculate the period of the oscillation and compare to the graph an
the period of step 8c.

(d) Do all new curves have that same period? Compare to the plots from
step 8d.

(e) What is the value of the amplitude of the oscillation? Compare to
the graph from step 8f.

(f) What is the amplitude of the velocity versus time graph? Compare
to the graph from step 8g.

(g) What is the value of the amplitude of the acceleration versus time
graph? Compare to the graph from step 8h.

11. Set equal to 4 kg.

12. Run the experiment for at least a whole oscillation, stop and reset.

(a) Compare the with its values in the previous steps.

(b) Compare the period of the oscillation with its value in the previous
steps.

(c) Did the maximum displacement change?

(d) Compare the maximum velocity to its value in step 8g.

(e) Compare the maximum acceleration to its value in from step 8h.

13. Click the button.

14. Set equal to zero.
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15. Run the experiment until the block has completed at least a whole oscil-
lation.

(a) What is the value of the amplitude of the oscillation?

(b) What is the value of the period of the oscillation?

16. Set equal to 0 05 m.

17. Run the experiment until the block has completed a whole oscillation.

(a) Did the amplitude of the oscillation change compared to step 15?

(b) Did the period of the oscillation change compared to step 15?

18. Set to 0.10 m.

(a) Did the period change compared to the previous step?

(b) Did the velocity change compared to the previous step?

(c) Did the acceleration change compared to the previous step?

.

19. Set equal to 0.1 m/s.

20. Run the experiment until the block has completed a whole oscillation.

21. Observe the motion of the block.

(a) Was the initial displacement of the block the maximum displacement?

22. Run the experiment again until the block has completed a whole oscilla-
tion.

23. Observe the plots.

(a) Compare the amplitude of the oscillation to the one in step 15. Is
the value still the same as the initial displacement?

(b) Compare the period with step 15.

(c) What is the difference with the plot in step 15?

24. Recall that the motion of the block is described by the equations (81) and
(82). Initial conditions mean = 0.

(a) Filling in the values for the initial conditions in both equations, what
is the value of the phase constant?

(b) Using this calculated phase constant, what is the amplitude of this
oscillation? Compare to the maximum value given by the plot.
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In this experiment we will examine the elastic force, its relation with the spring
constant and the period of the oscillation.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose , and
.

3. Click the graph button. Make a graph with (that is the total force)
in the vertical axis and in the horizontal axis.

4. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

5. Drag the graphs away from each other so you can see them both.

6. Set equal to zero.

7. Run the experiment until the block has completed at least a whole oscil-
lation and reset.

(a) Is the total force different from the spring force?

(b) What is the value of the period of the oscillation

8. Have a look at the plots.

(a) How does the force relate to the displacement?

(b) What does the downwards slope mean?

(c) What is the maximum force?

(d) For which displacement is the force zero?

(e) What is the value of the period of the oscillation?

9. Set the equal to 7.5 N/m, half the original value.

10. Run the experiment for a whole oscillation, stop and reset.

(a) What is the value of the period? Compare to step 8e.

11. Have a look at the plots.

(a) Compare the slope with step 8.

(b) What is the maximum force?

(c) For which displacement is the force zero?
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12. Set the equal to zero.

13. Run the experiment, observe and reset.

(a) Is there any elastic force?

(b) Does the block’s position change?

14. Set equal to 10 m/s.

15. Run the experiment, observe and reset.

(a) Is there any elastic force?

(b) Does the block’s position change?

(c) Is this still an oscillation? How would you call this motion? What
can you predict about the velocity of the block? Check your answer
with the plot .

In this experiment we will examine the kinetic, potential and total energy. We
will study how they vary in function of time and displacement.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Click the graph button. Make a graph with in the ver-
tical axis and in the horizontal axis.

3. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

4. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

5. Drag the graphs away from each other so you can see them both.

6. Set equal to zero.

7. Run the experiment until the block has completed at least a whole oscil-
lation and reset.

(a) How does the total energy vary in time? What does this mean?

(b) Recall the expression for the total energy: equation (85). Calculate
its value and compare to the graph.

(c) What is the maximum potential energy? When does its first maxi-
mum occur?
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(d) What is the maximum kinetic energy? When does its first maximum
occur?

(e) At = 0 the kinetic energy is zero. When is the next time it is zero
again? Compare to the period of oscillation given by: = 2 .

8. Close all graphs.

9. Click the graph button. Make a graph with in the ver-
tical axis and in the horizontal axis.

10. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

11. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

12. Run the experiment until the block has completed at least a whole oscil-
lation and reset.

(a) What is the value of the total energy at all positions?

(b) At which positions is the kinetic energy zero?

(c) At which positions is the kinetic energy maximum?

(d) At which positions is the potential energy zero? Is this the equilib-
rium position?

(e) At which positions is the potential energy maximum?

13. Set the equal to 7.5 N/m.

14. Run the experiment until the block has completed at least a whole oscil-
lation and reset.

15. Compare to step 12.

(a) Did the total energy change?

(b) Did the potential energy change?

(c) Did the kinetic energy change?

(d) Did the positions change at which the potential energy is maximum?

16. Set the back to 15 N/m.

17. Set the equal to 2 5 10 m.

18. Run the experiment until the block has completed at least a whole oscil-
lation and reset.

19. Compare to step 12.
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(a) Did the total energy change? What is its value?

(b) Did the potential energy change?

(c) Did the kinetic energy change?

(d) Did the positions change at which the potential energy is maximum?

20. Set the back to 0 05 m.

21. Set the of the block equal to 4 kg.

22. Run the experiment until the block has completed at least a whole oscil-
lation and reset.

23. Compare to step 12.

(a) Did the total energy change?

(b) Did the potential energy change?

(c) Did the kinetic energy change?

In this experiment we will examine the acting forces on the damped oscillator.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. From choose .

3. Run the experiment and observe.

(a) Compare the motion of the displacement vector and the motion of
the spring force vector.

(b) When is the spring force maximum?

4. Stop and reset the experiment.

5. From choose and .

6. Run the experiment and observe.

(a) Compare the motion of the velocity vector and the motion of the
damping force vector.

(b) When is the damping force maximum? Is the damping force maxi-
mum at the same time the spring force is maximum?

(c) When is the damping force zero? Is the damping force zero at the
same time the spring force is zero?
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7. Stop and reset the experiment.

8. From choose and .

9. Run the experiment.

(a) Compare the motion of the acceleration vector and the total force
vector.

In this experiment we will examine the motion of the oscillator when the motion
is damped. We will study the difference between light, critical, and overdamp-
ing.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

3. Set equal to zero.

4. Run the experiment for 10 seconds, stop, and reset.

5. Set equal to 0.4 Ns/m.

6. Run the experiment for 10 seconds, stop and reset.

(a) Compare the amplitude of the motion with step 4.

(b) Compare the period of the motion with step 4.

7. Set equal to 0.8 Ns/m.

8. Run the experiment for 10 seconds, stop and reset.

(a) Is the block still oscillating?

9. Set equal to 1.6 Ns/m.

10. Run the experiment for 10 seconds, stop and reset.

(a) Is the block still oscillating?

(b) How is the displacement varying in time?

11. From choose .

12. Run the experiment for 10 seconds, stop and reset.

(a) What is the value of the damping?
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(b) Is the block oscillating?

(c) Is the block returning fast to its equilibrium position? How long does
it take the block to return to its equilibrium?

(d) Look at the plot. How does the displacement vary in time?

13. Set equal to 15 Ns/m.

(a) How long does it take the block to reach its equilibrium position?
Compare to step 12c.

14. Set of the block equal to 4 kg.

(a) Calculate the critical damping. Recall: = 2 .

15. Set equal to the calculated value.

16. Run the experiment for 10 seconds, stop, and reset.

(a) Does the displacement exponentially decrease in time?

In this experiment we will examine the total, kinetic and potential energy of the
oscillator when the motion is lightly, critically, and heavily damped.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

3. Click the graph button again. Make a graph with in the
vertical axis and in the horizontal axis.

4. Click the graph button. Make a graph with in the vertical
axis and in the horizontal axis.

5. Drag the graphs so you can see all three at the same time.

6. Drag the display so you can observe the motion of the block too.

7. Set equal to zero.

8. Run the experiment for a whole oscillation period, stop, and reset.

(a) Is the total energy constant in time?

9. Set damping equal to 4 10 Ns/m.
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10. Run the experiment for a whole oscillation period, stop, and reset.

(a) Is the total energy constant in time?

(b) At some times the total energy loss is minor. At what points in the
period? What is the speed of the block at those times?

11. Set damping equal to 0.8 kg/s.

12. Run the experiment for a whole oscillation period, stop, and reset.

13. Compare the three plots in each graph window.

(a) Is the loss or dissipation of energy greater than in step 10a?

14. Set damping equal to critical damping. (Choose from :
.

15. Run the experiment for a whole oscillation period, stop, and reset.

16. Compare the new plot with the previous ones in each graph window.

(a) How does the total energy behave in time?

(b) How does the kinetic energy of the block compare to the one for less
damping?

(c) Did the block oscillate?

17. Set damping equal to heavy damping 15 Ns/m..

18. Run the experiment for a whole oscillation period, stop, and reset.

19. Compare the new plot with the previous ones in each graph window.

(a) How does the total energy behave in time? Compare to step 16a.

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. If the amplitude of a simple harmonic oscillator is doubled, its total energy
is changed by a factor:

(a) 1.4

(b) 2

(c) 4
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2. Consider two identical blocks attached to two identical ideal springs on
the same surface. Block one is pulled out over 10 cm and block two is
pulled out over 5 cm. Both blocks are released at the same time. Block
one will pass by the equilibrium position:

(a) before block two.

(b) at the same time as block two.

(c) after block two.

3. When in a spring block system the block is replaced by a block with a
mass 4 times as big the period of the oscillation is:

(a) the same

(b) half the original period

(c) twice the original period

(d) four times the original period

4. When in a spring block system the spring is replaced by a 4 times stiffer
spring the maximum velocity of the block will be

(a) one fourth the original velocity

(b) half the original velocity

(c) twice the original velocity

(d) four times the original velocity

5. The motion of the piston in a car engine is approximately simple harmonic.
If the stroke of an engine (a stroke = 2 amplitude) is 10 cm and the engine
runs at 2500 rev/min, the acceleration of the piston at the end point of a
stroke is:

(a) zero

(b) 13 09 m/s

(c) 86 8 m/s

(d) 3 43 10 m/s

6. A 0.4 kg mass on the end of a spring with force constant = 300 N/m is
damped by a force . The motion will be critically damped for

(a) = 21 9 kg/s

(b) = 0 03 kg/s

(c) = 10 95 kg/s
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7. A 2 kg object oscillates with a initial amplitude of 3 cm on a spring with
spring constant = 400 N/m. The energy decreases by 1 percent per
period. The damping constant is:

(a) = 0 045 kg/s

(b) = 0 29 kg/s

(c) = 56 6 kg/s

8. An oscillator has a period of 3 s. Its amplitude decreases by 5 percent
during each cycle. The total energy decreases during each cycle by:

(a) 5 percent

(b) 10 percent

(c) 25 percent

9. A damped oscillator initially oscillates with an amplitude of 25 cm. The
block has a mass of 2 kg. The spring constant is 10 N/m. The damping
force is = . The amplitude falls to 3/4 of its original value in four
complete cycles. The value of the damping is:

(a) 0.020 kg/s

(b) 0.025 kg/s

(c) 0.102 kg/s

10. The block with mass 5 kg in the spring-block system is given an initial
velocity of 10 m/s towards the equilibrium. The initial displacement is 50
cm. The spring constant is 1000 N/m. The total energy of the system is:

(a) 125 Joule

(b) 262.5 Joule

(c) 375 Joule
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A great and indispensable help to this assignment is the assignment
.

In the assignment we have seen that in damped
oscillations energy is lost and the oscillation finally will stop. These oscillations
are called natural oscillations. If we want the oscillation to continue we will have
to put energy into the system. Just as you have to pump if you want to keep on
swinging on a swing. In other words we will have to force the oscillations. In this
assignment we will study how the driving force does affect the forced oscillation.
We wil examine the conditions under which we even can become oscillations or
vibrations with an amplitude that is much bigger than the magnitude of the
driving force. This phenomenon is called .

The natural frequency of an oscillator (see assignment
) is the frequency of the oscillator when it is oscillating all by itself without

friction. In the oscillator is a block attached to a
spring, which other end is held in a fixed place. If we move this point of support
in a harmonic motion, at first we get a complicated motion, but after a while a

is reached. The block will oscillate with the same frequency as the
support and the amplitude will be constant.

The driving force is putting energy into the oscillating system, which loses
energy because of damping. When as much energy is put in as is dissipated the
system reaches the steady state. The energy of the oscillating system is directly
related to the amplitude of the oscillation (see ).
This amplitude is not only going to depend on the amplitude, i.e. the magnitude,
of the driving force but is also going to depend on its frequency. If the frequency
of the driving is approximately equal to the natural frequency the system will
oscillate with an amplitude much larger than the amplitude of the driving force.
This phenomenon is called .
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We saw in the assignment that the forces work-
ing on the oscillator were

the elastic force with the spring or force constant.

the damping force with the damping factor and the speed of the
oscillating block.

Now we have added the driving force which is an oscillating force:

= cos (93)

Newton’s law becomes then:

+ cos = (94)

This leads to the differential equation:

+ + = cos (95)

Let’s not worry about how to solve this. The solution has two parts: the part
that looks exactly like the damped oscillator and is dissapearing after some
time (remember the exponentially decreasing amplitude) and another part that
is the steady state solution, which does not depend on the initial conditions.
This steady state solution looks like:

= cos( + ) (96)

with the frequency of the driving force, the amplitude of the oscillation in
steady state and a phase constant. The amplitude and the phase constant
are not arbitrary but depend on the driving force amplitude and frequency

. The steady state amplitude is given by:

=
( ) +

(97)

Resonance means amplification for small damping. For frequencies close to the
resonance frequency the amplitude becomes:

= = (98)

A force on a spring would make it elongate over a distance (see assign-
ment . Equation (98) gives that at the resonance
frequency the amplitude will be times larger. The phase constant is
given by:

tan =
( )

(99)
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The meaning of this complicated expressions will become a lot clearer in the
laboratory. The phase constant has to be negative: the motion of the oscillating
block lags behind the driving force. For = , tan = 0 or = 2. Just
one more word about the velocity of the block.

= = sin( + ) (100)

In case of resonance = 2 or

= cos (101)

If we compare this equation for the velocity with the driving force expression
(93) we see that at resonance the block is moving in the direction of the driving
force.

The reason why we have to drive the oscillation is the energyloss due to the
damping. The quality factor of a system is a measure for the energyloss in
the system. The quality factor is defined as:

= (102)

The quality factor is small for highly damped systems. In the laboratory we
will see that systems with low damping (and high factors) show a sharply
peaked resonance curve. The ratio of the resonance frequency to the width of
the resonance curve is the quality factor:

=
∆

(103)

with ∆ the width of the curve.

In this laboratory we will perform experiments with a piston in a cylinder. The
spring, connected at one end to the piston, is connected to an oscillating rod
at the other end. We will see how the motion of the piston depends on the
amplitude and the frequency of the oscillation of the rod. We will also study
the influence of the stiffness of the spring and of the damping.

In this experiment, we will familiarize ourselves with the laboratory.

1. In the PEARLS window, select .

2. Now launch the item.
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3. You will now see the experiment window, with a control window at the
left and a laboratory display at the right.

4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:

4 000 10 Hz
2 500 10 N
1 000 kg/s
1 000 kg
9 870 N/m
7 500 10 pixels/meter
1 000

7. You should see a piston in a cylinder attached to a spring, which is at-
tached to a rod. The length of the steady state amplitude is marked
on the display. Two graphs are displayed.

8. Drag the graphs so you can see them both and the display.

9. One graph is the or
( ). The other graph gives the

or ( ).

10. Observe the position of the piston before the driving force is started.

11. the experiment.

(a) Did you observe the complicated motion in the beginning?

(b) Was the amplitude in the first oscillation the shown steady state
amplitude?

12. and .

13. Look at the plots.

(a) Read the steady state amplitude from the plot.

(b) Is a greater amplitude possible for this system? At which frequency?

14. Change the to greater values using the slider.

(a) Does the steady state amplitude change?

(b) Does the maximum amplitude value in the plot ( ) change?
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15. Change to a lower value.

(a) Did the steady state amplitude change?

(b) Which change did you see in the plot ( )?

(c) Which change did you see in the plot ( )?

In this experiment we will vary the frequency of the driving force and see how
the oscillation amplitude of the piston changes. We will examine for which
frequency the motion becomes amplified.

1. Start up the PEARLS experiment, or if it is already running,
restore the startup conditions by clicking the button.

2. Close the plot if displayed.

3. With the slider change the slowly from its minimum
to its maximum value. Observe the plot and the display.

(a) Does the steady state amplitude stay constant when you change the
frequency of the driving force?

(b) For which frequency is the amplitude maximum?

(a) What is the value of the ?

(b) What is the value of the ?

(c) Recall the expression (see assignment ) to calcu-
late the natural angular frequency of the oscillating block: =

. Calculate the angular natural frequency.

(d) What is the natural frequency ? Recall = 2 . Is your
calculated value equal to the displayed?

4. Run and observe the experiment.

(a) Is the steady state reached immediately?

(b) What is the value of the ? How does this value
compare to the ?

5. and the experiment.

6. Recall the equation (97).

(a) What is the value of ?

(b) What is the value of ?
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(c) What is the value of the ?

(d) What is the value of the ?

(e) Calculate the steady state amplitude. Compare your calculated value
with the value displayed.

7. Look at the plots.

(a) Look at the plot ( ). How does this steady state amplitude compare
to the maximum steady state amplitude possible for this system?

8. Set equal to 0 1 Hz.

9. Run,observe, stop and reset the experiment

(a) Compare the with the .

(b) What is the value of the ? Compare to the
maximum possible value.

(c) Compare the steady state amplitude to , the elongation when
a force would pull on a spring with a spring constant . Is the
motion amplified?

10. Set equal to 2 Hz.

11. Run, observe, stop and reset the experiment

(a) Compare the with the .

(b) What is the value of the ? Compare to the
maximum value possible for this system.

(c) Compare the steady state amplitude to . Is the motion amplified?

12. Set equal to the natural or resonance frequency.

13. Calculate the steady state amplitude. The equation (97) becomes simple
for = . = .

(a) What is the value of the ? Compare to the
maximum value possible for this system.

(b) Compare the steady state amplitude to . Is the motion amplified?

In this experiment we will vary the frequency of the driving force and see how
the oscillation of the piston changes.

1. Start up the PEARLS experiment, or if it is already running,
restore the startup conditions by clicking the button.
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2. Drag the plots so you can see them both and the display.

(a) What is the value of the resonance frequency?

3. Set equal to 0.1 Hz.

4. the experiment.

(a) Once the piston has reached the steady state, is it moving in the
same direction the forcing rod is moving?

(b) Compare the forcing frequency to the resonance frequency.

(c) Look also at the plot .
Does this forcing frequency fall in the frequency interval where the
amplitude is amplified?

(d) In the plot find the phase
constant for this forcing frequency.

(e) Look back at the motion. Do you see this phase difference between
the forcing rod and the piston in the motion?

5. the experiment and .

6. Set equal to 0.7 Hz.

7. the experiment.

(a) Once the piston has reached the steady state, is it moving the same
way the forcing rod is moving?

(b) Compare the forcing frequency to the resonance frequency.

(c) Look also at the plot .
Does this forcing frequency fall in the frequency interval where the
amplitude is amplified?

(d) In the plot find the phase
constant for this forcing frequency. Compare to your answer of
step 7a.

8. the experiment and .

9. Set equal to 0.5 Hz.

10. the experiment for 10 seconds, stop and reset.

(a) Once the piston has reached the steady state, is it moving the same
way the forcing rod is moving?

(b) Compare the forcing frequency to the resonance frequency.
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(c) Look also at the plot .
Does this forcing frequency fall in the frequency interval where the
amplitude becomes greater?

(d) In the plot find the phase
constant for this forcing frequency.

In this experiment we will vary the damping of the system and see how the
oscillation of the piston changes. We will study the quality factors of different
systems.

1. Start up the PEARLS experiment, or if it is already running,
restore the startup conditions by clicking the button.

2. Drag the plots so you can see them both and the display.

3. Set forcing frequency equal to resonance frequency 0.5 Hz.

4. Set equal to 0.5 N.

5. Set equal to 1 kg/s.

(a) Is the plot symmetric?

(b) What is the value of the steady state amplitude at resonance fre-
quency?

(c) Is the maximum steady state amplitude the amplitude at resonance
frequency?

(d) What is the value of the quality factor for this system? Recall equa-
tion (102).

6. Run the simulation. Observe, stop, and reset the simulation.

7. Set equal to 0.1 kg/s.

(a) Is the plot symmetric?

(b) Compare the width of the resonance peak to the one in step 3.

(c) What is the value of the steady state amplitude at resonance fre-
quency? Compare to the one in step 3.

(d) Is the maximum steady state amplitude the amplitude at resonance
frequency?

(e) Compare the plot with the
one of step 3.
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(f) What is the value of the quality factor for this system? Recall equa-
tion (102). Compare to the quality factor of step 5d.

8. Run and observe. Compare to step 6. Stop and reset the simulation.

9. Set equal to 10 kg/s.

(a) Is the plot symmetric?

(b) Do you still observe a resonance peak as in step 3 and step 7?

(c) What is the value of the steady state amplitude at resonance fre-
quency? Compare to the one in step 3 and 7.

(d) Is the maximum steady state amplitude the amplitude at resonance
frequency?

(e) Compare the plot with the
one of step 3 and 7.

(f) What is the value of the quality factor for this system? Recall equa-
tion (102).

10. Run the simulation and observe. Compare the motion of the block to step
6 and step 9.

11. Decrease the with the slider and observe how the shape of the
resonance curve varies.

In this experiment we will examine what happens if the system is not damped.

1. Start up the PEARLS experiment, or if it is already running,
restore the startup conditions by clicking the button.

2. Click the graph button and make a graph with in the vertical
axis and in the horizontal axis.

3. Click the graph button again and make a graph with in the
vertical axis and in the horizontal axis.

4. Run the experiment and look at the plot.

(a) How does the total energy vary in time?

(b) How does the vary in time?

5. Set equal to 0 kg/s.

6. Set equal to the resonance frequency 0.5 Hz.

7. Run the experiment for 20 seconds, stop and reset.
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(a) What can you tell about the motion in the display?

(b) Does the system reach a steady stage?

(c) Do you see the same pattern in the graph ?

(d) Is the total energy reaching a steady state as in step 4a?

8. Set equal to 0.45 Hz.

9. Clear the graph .

10. Run the experiment for 40 seconds, stop and reset.

(a) Recall the beat phenomenom in the assignment . Do you see
the same beat pattern in the motion of the block and in the graph

?

(b) How may beats do you see in 40 seconds? What is the beat fre-
quency?.

(c) Compare the beat frequency to the difference between forcing fre-
quency and natural frequency.

11. Set equal to 0.3 Hz.

12. Run the experiment.

(a) What is the difference between the and the reso-
nance frequency?

(b) Do you see a beat pattern?

(c) Is the motion of the piston simple harmonic?

In this experiment we will see by which parameters the steady state amplitude is
influenced for a driving force with low frequency in comparison to the resonance
frequency.

1. Start up the PEARLS experiment, or if it is already running,
restore the startup conditions by clicking the button.

2. Set equal to 0.5 N.

3. Set equal to 0.01 Hz.

4. Set equal to 20 N/m.

(a) What is the resonance frequency?

(b) How does the forcing frequency compare to the resonance frequency?
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(c) What is the steady state amplitude?

5. Set equal to 40 N/m.

(a) What is the resonance frequency?

(b) How does the forcing frequency compare to the resonance frequency?

(c) What is the steady state amplitude? Compare to step 4.

6. Set equal to 80 N/m.

(a) What is the resonance frequency?

(b) How does the forcing frequency compare to the resonance frequency?

(c) What is the steady state amplitude?Compare to step 4 and 5.

7. Set equal to 40 N/m.

8. Set equal to 2 kg.

(a) What is the resonance frequency?

(b) How does the forcing frequency compare to the resonance frequency?

(c) What is the steady state amplitude?

9. Run the simulation. Observe, stop and reset.

10. Set equal to 4 kg.

(a) What is the resonance frequency?

(b) How does the forcing frequency compare to the resonance frequency?

(c) What is the steady state amplitude? Compare to step 8.

11. Run the simulation. Observe, stop and reset.

12. Set equal to 8 kg.

(a) What is the resonance frequency?

(b) How does the forcing frequency compare to the resonance frequency?

(c) What is the steady state amplitude? Compare to step 8 and 10.

13. Run the simulation. Observe, stop and reset.

14. Recall equation (97). For frequencies low in comparison to the resonance
frequency the steady state amplitude becomes: = or =
with the spring constant.
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(a) The mass doesn’t appear in this equation for low frequencies. Did
you become the same result? Check your answer by sliding the

slider from its minimum to its maximum value, while you read
the steady state amplitude in the plot.

(b) The spring constant is important in this equation. Slide the spring
constant from its minimum to its maximum value and observe the
influence on the steady state amplitude.

In this experiment we will see how the maximum of the resonance curve changes
when you change the stiffness of the spring or the mass of the piston.

1. Start up the PEARLS experiment, or if it is already running,
restore the startup conditions by clicking the button.

2. Set equal to 0 5 N.

3. Set equal to 0 5 kg/s.

4. Have a look at the plot .

5. Set equal to 20 N/m.

(a) What is the value of the resonance frequency?

(b) What is the value of the steady state amplitude at resonance fre-
quency?

(c) Compare this maximum with ( = the force magnitude, the
spring constant) or the amplitude for = 0. What is the amplifica-
tion? Is this value the same as: ?

6. Set equal to 40 N/m.

(a) What is the value of the resonance frequency? Did the resonance
curve shift to lower or higher frequencies? Compare to step 5.

(b) What is the value of the steady state amplitude at resonance fre-
quency? Compare to step 5.

(c) Compare this maximum with or the amplitude for = 0. What
is the amplification? Is this value the same as: ?

7. Set equal to 80 N/m.

(a) What is the value of the resonance frequency? Did the resonance
curve shift to lower or higher frequencies? Compare to step 5 and 6.
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(b) What is the value of the steady state amplitude at resonance fre-
quency? Compare to step 5 and 6.

(c) Compare this maximum with . What is the amplification? Is
this value the same as: ?

8. Set equal to 40 N/m.

9. Set equal to 2 kg.

(a) What is the value of the resonance frequency?

(b) What is the value of the steady state amplitude at resonance fre-
quency?

(c) Compare this maximum with . What is the amplification? Is
this value the same as: ?

10. Run the simulation. Observe, stop and reset.

11. Set equal to 4 kg.

(a) What is the value of the resonance frequency? Did the resonance
curve shift to lower or higher frequencies? Compare to step 9.

(b) What is the value of the steady state amplitude at resonance fre-
quency? Compare to step 9. item Compare this maximum with

. What is the amplification? Is this value the same as: ?

12. Run the simulation. Observe, stop, and reset.

13. Set equal to 8 kg.

(a) What is the resonance frequency? Did the resonance curve shift to
lower or higher frequencies? Compare to step 9and 11.

(b) What is the value of the steady state amplitude at resonance fre-
quency? Compare to step 9 and 11.

(c) Compare this maximum with . What is the amplification? Is
this value the same as: ?

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. Consider a driven oscillating (block-spring) system that is rather heavily
damped. The block will move the least when the frequency of the driving
force is:

(a) much larger than the resonance frequency
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(b) smaller than the resonance frequency

(c) equal to the resonance frequency

(d) for all frequencies

2. At the frequencies low compared to the resonance frequency the piston in
a driven oscillation will be moving

(a) in the direction of the driving force

(b) in the opposite direction of the driving force

(c) in a direction independent of the direction of the driving force.

3. If we double the mass of the block in the driven spring-block system,
the amplitude at resonance frequency for the same driving force will be
approximately:

(a) half the original resonance amplitude.

(b) the same as the original resonance amplitude.

(c) the original resonance amplitude 2.

(d) four times the original resonance amplitude.

4. If we drive a harmonic oscillator without damping with a forcing frequency
equal to the resonance frequency of the oscillator no steady state will be
reached.

(a) true

(b) false

5. The sum of two undamped harmonic oscillations with frequencies very
close to each other results in a periodic motion with

(a) an amplitude that is the sum of both amplitudes

(b) an amplitude that varies harmonically

(c) a continuously increasing amplitude

6. When the frequency of the driving force with amplitude is very low
compared to the resonance frequency of the driven oscillation of a block-
spring system the amplitude of the oscillation will be

(a) depending on the mass of the block

(b) = with the spring constant

(c) smaller than because of damping

7. When the driving force frequency is equal to the resonance frequency of a
damped driven system, the steady state amplitude is
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(a) maximum

(b) close to maximum

(c) zero

8. System 1 has the same resonance frequency as system 2, but the quality
factor of system 1 is twice the one of system 2. The width of the resonance
curve of system 1 is:

(a) twice the width of system 2’s resonance curve

(b) half the width of system 2’s resonance curve

(c) equal the width of system 2’s resonance curve

9. When you tap a glass made of fine crystal it will ring longer than one
made of ordinary glass. A sound wave of the right frequency can break a
glass. Using this method, it will be easier to break

(a) the fine crystal glass

(b) the ordinary glass

(c) neither one, nor the other.
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14 Stress and Strain

Simple Harmonic Oscillator

14.1 Introduction

14.2 Theory

Most solids will, to some extent, return to their original shape after you pushed
or pulled on them with an equal force on two opposite sides. We call them
elastic. Some solids are more elastic than others. We also know that if we push
or pull too hard the solid will break.

In this assignment we will study the law of elasticity. We will see how solid
rods made out of different materials or with different lengths or with different
cross sections will stretch differently when pulled uniformly using a very simple
model. We will also study what their breaking point is.

Figure 11: A force stretches a solid rod.

A cylindrical rod with length and crossection is stretched by pulling each
end equally in opposite directions (see figure (11)). The rod will stretch and the
length will increase with an amount ∆ . We suppose that this length increase is
a small fraction of the total lenght of the rod. For a large number of materials
experiments have shown that the force is proportional to the length increase.
This is Hooke’s law:

∆ (104)

We have met this law before in the assignment
when we discussed the restoring force excerted by the spring. A rod with a
length twice as long will stretch twice as much. This means that the force is
invertionally proportional to the length of the rod, or

∆
(105)
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The fractional change in length of the rod is called . For a rod with a
cross section twice the cross section of a rod of the same length and the same
material we will have to pull twice as hard to increase the length over the same
amount. Putting this into the previous expression, we become:

∆
(106)

Finally we can write Hooke’s law as:

=
∆

(107)

The force per unit area is called the . The units are Newton/meter . The
equation (107) can be rewritten as:

=
∆

(108)

The constant factor is called Young’s modulus and depend only on the nature
of the material. The units for are Newton/meter .

Stress = Youngs Modulus Strain.

The maximum stress the rod can sustain without breaking is called the
.

Up to now we discussed what happens to a rod when you pull on it. For
many materials Hooke’s Law and the Young’s modulus will be the same when
you compress the material. The length will then of course decrease, we call the
stress and the maximum compressive stress you can apply
before breakage occurs the .

The purpose of this lab is to present a very simple model of the behavior of
materials under stress. In particular we wish to demonstrate the concepts of
stress and strain. We will also become familiar with the material constants
Young’s modulus and Breaking Stress, also called Tensile Strength.

In this experiment, we will familiarize ourselves with the laboratory, especially
with the display.

1. In the PEARLS window, select .

2. Now launch the item.
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3. You will now see the experiment window, with a control window at the
left, and a laboratory display at the right.

4. Adjust the window size as desired.

5. Move the laboratory display to a convenient location on your screen by
dragging the display with your mouse.

6. The default settings for this experiment are:

4 000 10 N
1 000 10 Pa
6 366 10 Pa
1 273 10 Pa
1 273 10 Pa
1 000 10 m
1 000 10 m
1 273 10 m
1 000 10 pixels/meter

7. You should see a blue wire, stretched by the force , a red wire which
is the same wire as the blue one, before stretching. By default a graph

is displayed as is the change in length ∆ = 1 27 10
m.

8. Look at the control window.

(a) What is the value of the applied force?

(b) What is the value of the stress?

(c) What is the radius of the wire?

9. Change the slowly to its maximum value with the slider.

(a) Did the value change?

(b) Did the aspect of the wires change?

(c) Did the length difference ∆ change?

10. Restore the default conditions. (Click ).

11. Set the force to zero.

(a) Is the blue wire shorter or longer than the red wire?

(b) What is the value of the stress?

12. Restore the defaults by clicking .
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13. Run the simulation.

14. Augment the using the slider until the wire breaks.

(a) What was the magnitude of the for which the wire breaks?

(b) Compare the stress with the breaking stress the moment the rod
breaks.

15. Stop the simulation.

16. Restore the default values.

17. Augment the using the slider. Observe the graph.

(a) At which point in the graph does the wire break?

In this experiment we will examine if the elongation of a certain wire indeed is
proportional to its original length.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Set equal to 0 1 m.

(a) What is the elongation?

(b) Did you see a change in the plot?

3. Set equal to 0 2 m.

(a) What is the elongation? Compare to the elongation of step 2a.

4. Set equal to 0 4 m.

(a) What is the elongation? Compare to the elongation of step 2a and
step 3a.

5. Set to 0 8 Newton.

6. Set equal to 0 1 m.

(a) What is the elongation?

7. Set equal to 0 2 m.

(a) What is the elongation? Compare to the elongation of step 6a.

8. Set equal to 0 4 m.

(a) What is the change in length? Compare to the change in length of
step 6a and step 7a.
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. In this experiment we will examine if the change in length of a certain wire
changes when the cross section changes.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

(a) What is the change in length?

(b) Calculate the cross section.

(c) Calculate the stress, compare to the displayed one.

2. Set equal to 2 10 m.

(a) What is the change in length?

(b) Calculate the cross section.

(c) Calculate the stress, compare to the displayed one and the stress in
step 1c.

(d) Did something change in the plot? What does this change mean?

3. Set equal to 0 5 10 m.

(a) What is the change in length?

(b) Calculate the cross section.

(c) Calculate the stress, compare to the displayed one and the stress in
step 1c and step 2c.

(d) Did something change in the plot? What does this change mean?

4. Set equal to 0 4 10 m.

(a) What happened to the wire?

(b) Calculate the stress. Compare to . Why did the wire
break?

(c) Could you see the same result in the plot?

In this experiment we will examine the elongation and breakingspoint for for
different materials, that is materials with different Young’s Constants.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

(a) What is the value of Young’s Modulus?
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(b) What is the change in length?

(c) What is the strain?

2. Set equal to 0 8 Newton.

(a) What is the change in length? Compare to the value of step 1b.

(b) What is the value of the strain?

3. Set equal to 2 Newton.

(a) What is the maximum stress allowed without breaking the wire?

(b) Is the applied force the maximum force that can be applied to the
wire without breaking it?

(c) What is the change in length?

(d) What is the strain for the maximum stress?

4. Restore the default values.

5. Set equal to 2 10 Pa.

(a) Did you see a change in the plot?

(b) What is the change in length? Compare to the one in 1b.

(c) What is the value of the strain?

6. Set equal to 0 8 N.

(a) What is the change in length? Compare to the value of step 2a.

(b) What is the strain?

7. Set equal to 2 N.

(a) Is this the maximum force that can be applied to the rod without
breaking it? Compare to step 3b.

(b) What is the change in length for the maximum stress for this mate-
rial?

(c) What is the strain for this maximum stress? Compare to step 3d.

In this experiment we will examine the breaking stress of different materials.

1. Start up the PEARLS experiment, or if it is already
running, restore the startup conditions by clicking the button.

2. Observe the plot while you change the with the slider to
higher and then to lower values.
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3. Set equal 2 10 Pa.

(a) Use the slider to find how thin you can make the wire before it breaks.

(b) Calculate the minimum radius of the wire for which the wire will just
not break. Compare to you measured value.

4. Set equal 4 10 N/m .

(a) Use the slider to find how thin you can make the wire before it breaks.
Compare with 3a.

(b) Calculate the minimum radius of the wire for which the wire will just
not break. Compare to you measured value.

5. Set equal 8 10 N/m .

(a) Use the slider to find how thin you can make the wire before it breaks.
Compare with 3a.

(b) Calculate the minimum radius of the wire for which the wire will just
not break. Compare to you measured value.

Please circle the correct answers to the following multiple-choice questions. You
may, if you like, use PEARLS to help you find the correct answer.

1. Human muscles can approximately exert the same maximum stress. Mus-
cles with larger cross sections are able to exert

(a) only the same force.

(b) a larger force.

(c) only a smaller force.

2. A ball of 50 kg is suspended from a steel wire of length 5 m and radius 2
mm. Young’s modulus for steel is: 200 10 N/m . The wire will stretch
by:

(a) 6 125 10 m

(b) 0.19 mm

(c) 0.976 mm

3. Young’s modulus for bone is 1 0 10 N/m . Bone can only take 1 0%
change in length. The maximum force a bone with cross section 3 cm
can undergo is:

(a) 3 10 N
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(b) 3 10 N

(c) 3 10 N

4. Nickel has a Young’s modulus that is approx. twice the Young’ modulus
of copper. We apply the same stress to wires with equal length made of
the two materials. The copper wire will elongate

(a) the same as the nickel wire

(b) twice as much as the nickel wire

(c) half as much the nickel wire

5. A wire is stretched 1 mm by a force of 1 kN. A wire of the same material,
same length but four times that diameter will be stretched:

(a) 1/4 mm

(b) 1/8 mm

(c) 1/16 mm

(d) depends on the length

6. A vertical steel post 15 cm in diameter and 3 m long has to support a load
of 6000 kg. The stress in the post is:

(a) 3 33 10 N

(b) 3 33 10 N/m

(c) 3 33 10 N/m

(d) 3 33 10 N

7. Copper has a breaking stress of 3 10 N/m . The maximum load that
can be hung from a copper wire with diameter 0.5 mm is:

(a) 58.9 N

(b) 235.6 N

(c) 300 N

8. A steel wire with diameter 1 mm can maximum support a load of 408
N. To support a load of 816 N a steel wire is needed with a diameter
minimum:

(a) 2 mm

(b) 1.41 mm

(c) 0.7 mm
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9. A wire 1 m long has a cross section of 2 mm . It is hung vertically and
stretches 0.2 mm when a 10 kg block is attached to it. The Young’s
modulus of this wire is:

(a) 9 8 10 N/m

(b) 2 4 10 N/m

(c) 2 5 10 N/m

(d) 2 4 10 N/m

10. A wire of length under a stress is stretched 1 mm. A wire of the same
material under the same stress but with length 2 , will be stretched

(a) 0.5 mm

(b) 1 mm

(c) 2 mm
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7.4.1 7a 35 degrees.

7b = 0 5.

7c = 0 3.

7d The weight , the normal force from the inclined plane on the block
, and the , the friction.

8a Yes.

9a Two components: , parallel to the plane, perpendicalar to
the plane.

9b The sum of the forces is not zero. ( and =

11a became larger.

11b is the kinetic friction.

11c Yes.

11d No, = 0.

14a The recent is greater than the previous .

15a No: =

15b No, the sum of the forces is now equal to zero.

16a The block is at rest.

17a Each component became twice as long.

17b The block will not move because the sum of the forces is still zero.

18a No.

20a did not change.

20b is the static friction.

20c = 0.

7.4.2 2a 35 degrees.

2b = 0 5

2c = 26 56 degrees (tan 26 56 = 0 5).

4a No.

4b Yes, the static friction is maximum at this point.

6a Yes.

6b For angles the block will slide down.

8a No.

8b For angles the block will not slide down.
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9a = tan 30 = 0 58

9b No.

9c Yes. .

7.4.3 5a = 10 9 8 sin 30 kg m/s or = 49 kgm/s = 49 N

5b = 0 3 10 9 8 cos 30 kgm/s or = 25 N

5c = (49 25) N= 24 N

7a The frictional force is constant in time.

7b The value in the graph is 25 N.

9a = = 24 10m/s = 2 4 m/s

11a The acceleration is constant in time. This agrees with Newton’s
law: if a constant force is acting on a body the acceleration will be
constant.

11b The value is 2.4 m/s .

15a The velocity changes linear in time. The slope of the linear curve is
the acceleration, hence constant.

15b The displacement changes with .

17a = 69 N.

17b The weight component is now larger.

17c = 21 N

17d The friction force is less.

17e = 48 N.

17f The total force is approx. twice the previous total force.

17g = 48 10 m/s = 4 8 m/s .

7.4.4 6a = 0 3

6b Yes. A downward force.

7a The velocity changes linear with the time.

7b The acceleration is constant of course.

8a 16 70 degrees.

8b 29 56 degrees.

8c .

9a Yes. A velocity vector appeared.

10a The total force is zero.

11a The velocity is constant in time.

11b The acceleration is of course zero.
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7.4.5 8a The potential energy is proportional to .

8b The kinetic energy is proportional to .

8c The total energy is constant.

8d No, the total energy stayed constant. All potential energy is trans-
formed into kinetic energy.

8e Yes.

11a The total energy changes now proportional to .

11b Yes, the total energy is not constant.

11c No, friction is a non-conservative force.

14a The energy is decreasing in time.

14b More energy is lost: friction is higher.

7.4.6 7a The kinetic energy changes linearly with the displacement (see equa-
tion (38)).

7b The potential energy is given by with = sin so their relation
is linear if is constant.

7c The total energy is constant. Its value is 0.

7d No energy is lost.

7e All forces are conservative.

10a The potential energy is the same.

10b The kinetic energy is less, the speed is less because the acceleration
is not sin but smaller.

10c The total energy is not constant anymore. Energy is lost to heat.

10d Not all forces are conservative.

13a The friction is higher.

13b The energy loss is higher.

13c The potential energy is the same.

13d The kinetic energy is smaller at all spots.

16a The friction is higher.

16b The energy loss is higher.

16c The potential energy is the same.

16d The kinetic energy is smaller at all spots.

17a sin = 6936 Joule.

17b = 10 0 69 100 Joule = 690 Joule.

17c Total energy: ( 6936 + 690) Joules = 6246 Joule Energy loss 6246
Joule.
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7.4.7 3a All angles above 26 56 .

4a No, the static friction is maximum for this angle.

5a Yes. The sum of the forces was not zero anymore.

7a The forces becames all twice as large.

7b The sum of the forces is still zero.

8a No.

9a Yes.

12a No. All forces grew proportionally, the sum stayed zero.

13a Yes.

7.4.8 10a Yes, the friction and the acceleration (and thus the total force) are
twice the original value.

18a The potential energy drops twice as fast.

18b The kinetic energy climbs twice as fast.

18c The total energy drops twice as fast.

8.3.1 8a The system center of mass moved closer to the alligator.

9a The system center of mass moved towards the canoe’s center of mass.

9b The system center of mass is midway between the alligator and the
canoe.

10a The system center of mass moved towards the canoe’s center of mass.

11a The system center of mass moved towards the alligator’s center of
mass.

11b The system center of mass is again midway between the alligator and
the canoe.

11c The center of mass of a system of two equal masses is always halfway
between the two.

12a The system center of mass moved towards the alligator.

12b The system center of mass is at the alligator’s center of mass.

8.3.2 5a No. The system center of mass remained stationary.

5b The alligator’s position relative to the shore is 1 meter.

5c The canoe’s position relative to the shore is +1 meter.

6a No. The system center of mass remained stationary.

6b The alligator’s position relative to the shore is +1 meter.
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6c The canoe’s position relative to the shore is 1 meter.

8.3.3 7a No. The system center of mass remained stationary.

7b The alligator’s position relative to the shore is 0 0198 meter.

7c The canoe’s position relative to the shore is +1 98 meter.

7d The canoe moved much further than the alligator (relative to the
shore).

8a No. The system center of mass remained stationary.

8b The alligator’s position relative to the shore is +0 0198 meter.

8c The canoe’s position relative to the shore is 1 98 meter.

8d The canoe moved much further than the alligator (relative to the
shore).

13a In between +0 0198 m and 0 0198 m.

13b In between 1 98 m and 1 98 m.

13c The position of the center of mass didn’t change relative to the shore.

13d When the gator is in the middle of the canoe, all positions relative
to the shore are zero.

13e When the gator moves to the right the canoe moves to the left, so
that the center of mass of the system doesn’t move.

8.3.4 7a No. The system center of mass remained stationary.

7b The alligator’s position relative to the shore is 1 98 meter.

7c The canoe’s position relative to the shore is +0 0198 meter.

7d The alligator moved much further than the canoe (relative to the
shore).

8a No. The system center of mass remained stationary.

8b The alligator’s position relative to the shore is +1 98 meter.

8c The canoe’s position relative to the shore is 0 0198 meter.

8d The alligator moved much further than the canoe (relative to the
shore).

13a In between 1 98 m and 1 98 m.

13b In between +0 0198 m and 0 0198 m.

13c The position of the center of mass didn’t change relative to the shore.

13d When the gator is in the middle of the canoe, all positions relative
to the shore are zero.

13e When the gator moves to the right the canoe moves to the left, so
that the center of mass of the system doesn’t move.
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9.4.1 8a Counterclockwise.

8b is positive, as the convention says.

8c is positive.

10a Clockwise.

10b is negative.

12a In the plane.

13a = 0

13b The block is on the axis.

9.4.2 5a The -plane.

5b The -plane.

7a = 75 m

7b = 1 333 rad/s.

7c = 100 m/s.

7d = 1 33 75 m/s = 100 m/s.

9a did not change. = 1 333 rad/s.

9b = 200 m/s, double the original value.

9c The magnitude of the velocity vector doubled, so did the radius.

11a did not change.

11b = 50 m/s half its original value.

11c The magnitude of the velocity vector and the radius are half their
original value.

13a = 200 m/s, double the original value.

16a = 200 m/s.

16b Clockwise.

16c The velocity vector is pointing in the direction opposite to the one
in step 5.

9.4.3 4a A whole circle means 2 radians = 6 28 radians. The motion is
uniform , so it wil take the block 4 seconds to complete the circle.

10a = 6 28 radians.

10b is reached after 4 seconds.

10c varies linear in time, the motion is uniform.

12a 4 seconds.
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15a is negative because the block is turning clockwise.

15b 6 28 rad/s.

15c 4 seconds

15d Linear.

17a stayed the same.

17b The plot is the same, because the angular velocity is the same.

18a 2 seconds.

19a reaches its maximum after 2 seconds.

9.4.4 5a For = 2 and = 3 2 rad. (The block passes the axis.)

5b For = 0 and rad. (The block passes the axis).

5c When = 0 or for = 0 and rad. (The block passes the axis).

5d When = 0 or for = 2 and = 3 2 rad. (The block passes
the axis.)

5e is zero at all times because the block is turning in the plane.

8a As a cosine.

8b As a sine.

8c After 5 seconds is zero for the second time.

13a For = 2 and = 3 2 rad. (The block passes the axis.)

13b For = 0 and rad. (The block passes the axis).

13c When = 0 or for = 0 and rad. (The block passes the axis).

13d When = 0 or for = 2 and = 3 2 rad. (The block passes
the axis.)

13e For = 4 rad.

14a The maxima are higher but occur at the same times as in 8a and 8b.

14b The maxima are higher but occur at the same .

17a The period of the sine and cosine is half the period of step 8a and
8b. The block completes a circle in half the original time.

17b The plots stay the same.

9.4.5 5a plane.

5b plane.

5c axis.

7a The angular momentum points towards the negative axis.

7b The definition is a cross product = . The velocity changed
direction so will the angular momentum.
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8a The force became larger since the acceleration is larger.

8b The angular momentum changed direction and became larger.

9.4.6 5a Yes. The angular momentum becomes greater.

5b The tangential velocity increases.

5c No, the angular velocity stays the same.

8a No, the angular momentum is kept constant.

8b The tangential velocity decreased.

8c The angular velocity decreases.

9a = = 1 4 75 kg.m /s = 7875 kg.m /s.

10a = 7878 50 rad/s = 3 15 rad/s.

10b = = 3 15 50 m/s = 157 5 m/s.

10.4.1 8a 1 5 10 m.

8b 2 975 10 m/s.

9a The became 3 506 10 m/s. The
changed too.

11a Yes.

11b The centripetal force is the gravitational force between the sun and
the planet earth.

10.4.2 4a 3 15 10 s = 365 days.

4b After 3 15 10 s.

6a The linear speed is higher than the one for the earth orbit.

6b = 2 or = 2 5 8 10 (4 8 10 ) s. = 7 61 10 s or
= 0 241 year.

6c Yes.

8a The linear speed for the Mars orbit is smaller than for the earth orbit.

8b = 2 2 28 10 2 41 10 s = 1.88 year.

8c Yes. After the calculated the angle has reached 6.28 rad.

10.4.3 3a = = (2 98 10 ) 1 5 10 m/s = 5 9 10 m/s

4a = 1 99 10 kg.

5a The centripetal acceleration is a lot higher, the distance to the sun
is so much smaller.

5b = = 39 10 m/s .
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6a The acceleration is smaller.

6b = 2 5 10 m/s .

7a No, the acceleration does not change.

7b No.

7c No.

7d Yes, because the mass of the planet changed.

9a The angular velocity becomes greater.

9b The value of the tangential velocity becomes greater.

9c The centripetal acceleration is greater.

11a Yes, it becomes smaller.

11b Yes, it becomes smaller.

11c Yes, it becomes smaller.

11d Yes, it becomes smaller.

11.4.1 9a No. The trajectories are the same.

9b The speed of ball B after the collision is decreased.

11a Ball A’s trajectory after the collision is only slightly different from
its initial trajectory. Ball B goes off with a final trajectory nearly
perpendicular to the axis.

11.4.2 2a The mass of both balls is 500 grams.

2b Ball A is stationary after the collision.

3a Ball A continues to move forward after the collision, but at a slower
speed.

4a Ball A recoils backwards after the collision.

5a Ball A has a very small velocity after the collision, nearly perpendic-
ular to its initial velocity.

6a Now ball A has zero velocity after the collision.

11.4.3 6a The kinetic energy of ball A decreases.

6b The kinetic energy of B increases.

6c The total kinetic energy is unchanged; the amount lost by A is the
amount gained by B.

7a The initial kinetic energy of A is less than before. The final kinetic
energy of A is about the same as in step 6.
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7b The final kinetic energy of B is less than in step 6; its initial kinetic
energy is zero, as it was in step 6.

7c The total kinetic energy is less.

8a The initial kinetic energy of A is the same as step 7. The final kinetic
energy of A is greater than in step 7.

8b The final kinetic energy of B is less than in step 6; its initial kinetic
energy is zero, as it was in step 7.

8c The total kinetic energy is the same as in step 7. The difference is
that less kinetic energy was transferred from A to B in this case,
because of the glancing nature of the collision.

11.4.4 7a The momentum of ball A decreases.

7b The momentum of B increases.

7c The total momentum is unchanged, because the amount lost by A
is the amount gained by B.

8a The initial momentum of A is less than before. The final mo-
mentum of A is about the same as in step 7.

8b The final momentum of B is less than in step 7; its initial mo-
mentum is zero, as it was in step 7.

8c The total momentum is less than before, because of A’s lower inital
velocity.

9a The initial momentum of A is the same as step 8. The final
momentum of A is greater than in step 8.

9b The final momentum of B is less than in step 8; its initial mo-
mentum is zero, as it was before.

9c The total momentum is the same as in step 8. The difference is that
less momentum was transferred from A to B in this case, because
of the glancing nature of the collision.

11.4.5 6a The momentum of ball A increases from zero to a positive number.

6b The momentum of ball B decreases from zero to a negative number.

6c The total momentum is zero, both before and after the collision.
The increase in A’s momentum is offset by the decrease in B’s.

7a The initial momentum of A is zero, as before. The final momen-
tum of A is greater than in step 6.

7b The initial momentum of B is zero, as before. The final momen-
tum of B is more negative than in step 6.

7c The total momentum is greater than before.
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8a The initial momentum of A is the same as step 7. The final
momentum of A is less than in step 7.

8b The final momentum of B is less negative than in step 7; its initial
momentum is zero, as it was before.

8c The total momentum is the same as in step 7. The difference is that
less momentum was transferred from A to B in this case, because
of the glancing nature of the collision.

11.4.6 5a No. Neither the direction nor the magnitude of the center of mass
velocity is affected by the collision.

6a No. Neither the direction nor the magnitude of the center of mass
velocity is affected by the collision.

7a The center of mass is closer to B, at all times.

7b No. Neither the direction nor the magnitude of the center of mass
velocity is affected by the collision.

11.4.7 7a Yes, the center of mass moves to the right.

7b No, the pool table does not move.

7c Ball B is initially stationary.

7d This is the “lab” frame.

8a Yes, the center of mass moves to the left.

8b Yes, the pool table moves to the left.

8c No. Neither ball is initially stationary.

9a Yes, the center of mass moves to the left.

9b Yes, the pool table moves to the left.

9c Yes. Ball A is initially stationary.

10a No.

10b Yes, the pool table moves to the left.

10c No.

10d This is the center of mass frame, so named because the observer is
moving at the same speed as the center of mass.

12.4.1 9a = 0 05

9b = 0 m/s

11a The displacement is the greatest when the spring is totally com-
pressed or stretched.
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11b The displacement is zero.

13a The force is zero when the acceleration is zero, or when the block is
going to the equilibrium.

13b The acceleration is maximum when the spring is fully stretched or
fully compressed.

16a Yes, the amplitude of the motion becomes smaller.

12.4.2 4a When the displacement is maximum, in other words when the spring
is most compressed or most stretched.

4b Yes. At the equilibrium point = 0.

4c At the equilibrium point = 0.

4d When the displacement is maximum.

4e When the block moves from maximum displacement to the equilib-
rium position.(By maximum we mean the positive as well the nega-
tive displacement maximum.)

4f When the block moves from the equilibrium position out, in other
words when the spring is stretched or compressed again.

4g At the equilibrium point.

4h At maximum displacement.

6a The period of an oscillation is the time of an entire oscillation takes.
= 1 622 s.

11a As a cosine.

11b As a sine.

11c As a cosine.

11d Yes.

12a Maximum.

12b Zero.

13a Zero.

13b Maximum.

12.4.3 8a 15 N/m

8b = 3 873 rad/s.

8c = 2 = 1 622 s.

8d Yes. Displacement, velocity and acceleration repeat the same behav-
ior after the period of the oscillation.

8e The phase constant is zero (For = 0 the displacement is the ampli-
tude).
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8f = 0 05 m. The amplitude = the initial displacement.

8g = 0 19 m/s.

8h = 0 75 m/s .

10a 15 N/m.

10b = 5 477 rad/s.

10c = 2 5 477 = 1 147 s.The period is 2 times smaller.

10d Yes. The new plots show a shorter period than the ones of step 8d.

10e = 0 05 m. The same as in step 8f.

10f = 0 27 m/s. The maximum velocity is 2 times the value of
step 8g.

10g = 1 50 m/s . The maximum acceleration is 2 times the value
in step 8h.

12a = 1 94 rad/s, half the value of step 8c.

12b = 3 245 s.The period is twice its value of step 8f.

12c = 0 05 m. The amplitude stayed the same.

12d = 1 94 0 05 m/s = 0 092 m/s. The maximum velocity is
half the original value.

12e = (1 94) 0 05 = 0 18 m/s . The maximum acceleration is
one fourth of the original one.

15a = 0 05 m

15b = 1 622 s

17a The absolute value of the amplitude did not change. The spring
starts from fully compressed.

17b No, the period is not affected by the initial displacement.

18a The period is not affected by the initial displacement.

18b The velocity is not affected by the initial displacement.

18c The acceleration is not affected by the initial displacement.

21a No, the block moves farther out.

23a The amplitude is greater than the initial displacement.

23b The period is not affected by the initial velocity.

23c The new plot differs by a phase constant from the old plot.

24a Initial conditions = 0: = 0 10 = cos and = 0 1 =
sin . Dividing both equations gives: tan = 0 26 or = 14 5

degrees.

24b = 0 1 cos 14 5 = 0 097 m.
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12.4.4 7a The total force is equal to the spring force because there is no damp-
ing.

7b = 1 622 s.

8a The force varies linear with the displacement.

8b The slope is , and means that the force is a restoring force (oppo-
site to the displacement).

8c = = 15 0 05 N = 0.75 N.

8d For = 0 or the equilibrium point.

8e The period is 1.622 s.

10a = 2 294 s, 2 larger than the one in step 8e.

11a The slope is less steep than in step 8 because the spring constant is
half the first value.

11b = = 7 5 0 05 N.

11c For = 0 or the equilibrium point.

13a No.

13b No, no forces are acting on the block.

15a No.

15b The position of the block changes linear in time.

15c No. This is a linear motion with constant velocity. No force is acting
on the block.

12.4.5 7a The total energy is constant.The energy is conserved.

7b = 1 88 10 Joule.

7c The maximum potential energy is equal to the total energy: 1 88
10 Joule. Its first maximum occurs at = 0.

7d The maximum kinetic energy is equal to the total energy: 1 88 10
Joule. Its first maximum occurs at = 0 4 s.

7e The period of oscillation is: = 1 622s. The kinetic energy becomes
zero at = 0 8 s.

12a The total energy is constant and equal 1 88 10 Joule.

12b For = and = with the amplitude = 0 05 m.

12c For = 0 the equilibrium point.

12d For = 0, the equilibrium position.

12e For = and = with the amplitude = 0 05 m.

15a Yes. The total energy = 1 2 = 9 4 10 Joule, half the value
in step 12
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15b Yes. The curve is less steep. The maximums are half the ones in step
12.

15c Yes. The curve is less steep. The maximum is half the ones in step
12.

15d No.

19a Yes. is half its original value, so the energy is one quart of the
value from step 12

19b The curve is shorter..

19c Yes.

19d = and = with = 100m.

23a No. The total energy of the block does not depend on the mass of
the block.

23b No.

23c No.

12.4.6 3a The spring force vector points in the opposite direction to the dis-
placement vector.

3b The spring force is maximum when the displacement is maximum.

6a The damping force points in the opposite direction as the velocity
vector.

6b The damping force is maximum when the velocity is maximum, in
other words, when the block passes through its equilibrium, or when
the spring force is zero.

6c The damping force is zero when the velocity is zero, in other words
when the block is at its maximum displacement. The spring force is
maximum then.

9a The total force is proportional to the acceleration, they move in the
same direction.

12.4.7 6a The amplitude is diminishing during the motion.

6b The period of the damped motion is approx. the same as for the
undamped motion.

8a Very small oscillation.

10a Yes.

10b The amplitude of the displacement is decreasing fast.

12a The critial damping is 7.746 Ns/m.

12b No.

12c It takes the block approx. 1.6 seconds to return to its equilibrium.
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12d The displacement varies exponentially in time.

13a It takes approximately 3.9 seconds to reach its equilibrium, which is
a lot longer than at critical damping.

14a = 15 49 Ns/m.

16a Yes.

12.4.8 8a Yes.

10a No, the total energy is diminishing in time.

10b At = 2 and = . The speed is small and zero at those times.

13a Yes.

16a Drops fast to zero.

16b The block almost doesn’t have kinetic energy.

16c No, it returned to its equilibrium position.

19a Drops slower to zero in time than in step 16a.

13.4.1 11a Yes. For a short time the motion is not steady.

11b No. The amplitude is smaller at the beginning.

13a The steady state amplitude = 5 74 10 m.

13b Yes. The maximum possible amplitude is = 0 806 10 m.
The frequency for which the amplitude is maximum is approximately
0 5 Hz.

14a Yes, it becomes greater.

14b The maximum of the plot has greater values, too.

15a Yes, it became larger.

15b The width of the resonance curve decreases. The height increases.

15c The phase drops faster around the resonance frequency.

13.4.2 3a No, the steady state amplitude varies with the frequency of the driv-
ing force.

3b The amplitude is maximum for a forcing frequency equal to 0.5 Hz.

3a = 9 87 N/m.

3b = 1 kg.

3c = 3 14 rad/s.

3d = 0 5 Hz, the resonance frequency.
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4a It takes a short time before the block is oscillating with an amplitude
equal to the steady state amplitude.

4b = 0 4 Hz. The forcing frequency is close to the resonance frequency.

6a = 2 0 5 rad/s= 3 14 rad/s

6b = 2 0 4 rad/s = 2 51 rad/s.

6c = 1 kg/s.

6d = 1 kg.

6e = 5 74 10 m.

7a The amplitude is very close to the maximum steady state amplitude
for this system.

9a The forcing frequency is much lower than the resonance frequency.

9b = 2 63 10 m. The steady state amplitude is much lower than
the maximum possible value.

9c = 0 25 9 87 m = 2 5 10 m. The motion is only slightly
amplified.

11a The forcing frequency is much lower than the resonance frequency.

11b = 1 68 10 m is much smaller than the maximum possible value.

11c The motion is not amplified quite the opposite.

13a = 7 96 10 m. This is very close to the maximum value.

13b The steady state amplitude is much larger than = 2 5 10 m.
The motion is amplified (approx. 3 times).

13.4.3 2a = 0 5 Hz.

4a Yes.

4b The forcing frequency is quite smaller than the resonance frequency.

4c The forcing frequency is smaller than the frequency in the interval.

4d 0.

4e The piston and the rod move in the same direction, there is almost
no phase difference between their motion.

7a Piston and rod are moving opposite ways.

7b The forcing frequency is higher than the resonance frequency.

7c The frequency is higher than the frequencies in the interval.

7d 162 degrees. This phase difference shows indeed that the rod
should move almost in the opposite direction the block is moving.

10a The piston lags behind the rod.

10b The forcing frequency is equal to the resonance frequency.
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10c At this frequency the amplitude is very close to maximum.

10d = 90 degrees.

13.4.4 5a The plot is symmetric in the region around the resonance frequency
but assymmetric en total.

5b = 1 59 10 m

5c No, it is slightly different.

5d The quality factor = = 1 6.

7a Yes.

7b The width of the peak is a lot smaller than in step 3.

7c = 1 59 m. The amplitude is ten times higher.

7d Yes.

7e The Phase drop is steeper around the resonance frequency.

7f = 15 7 The quality factor is ten times the quality factor of step
5d. Less energy is lost because the damping is smaller.

9a No, very asymmetric.

9b No, the damping is too high.

9c = 1 59 10 m. The amplitude is half the value of the one in
step 3 and 100 times smaller than the one in step 7.

9d No, the difference between both is bigger than in the previous cases.

9e The phase drops a lot slower than in the case with less damping.

9f The quality factor = 0 16 is ten times smaller than in step 5d,
because the damping is ten times higher.

13.4.5 4a The total energy is varying harmonically in time, once the steady
state is reached.

4b The position of the block varies harmonically in time once the steady
state is reached.

7a The piston is wildly oscillating.

7b No. The amplitude becomes larger and larger.

7c Yes. The amplitude becomes larger and larger as time goes by.

7d No, the energy becomes larger and larger.

10a Yes. The block’s amplitude increases to a maximum, to decrease
again.

10b In 40 seconds we see 2 beats. Or the beat frequency is = 2 40
Hz= 0 05 Hz.

10c = = 0 05 Hz = .
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12a = 0 5 0 3 Hz = 0.2 Hz.

12b No, the difference in frequency of the two harmonic motions is too
large.

12c No. The position versus time is not a simple cosine or sine function.

13.4.6 4a = 0 712 Hz.

4b .

4c = 0 0255 m

5a = 1 01 Hz.

5b .

5c = 0 01262 The amplitude is half the amplitude in step 4.

6a = 1 42 Hz.

6b .

6c The amplitude 1/4 the amplitude of step 4 and 1/2 the amplitude of
step 5

8a = 0 712 Hz

8b .

8c = 1 28 10 m.

10a = 0 503 Hz.

10b .

10c = 1 30 10 m. The amplitude almost didn’t change.

12a = 0 356 Hz.

12b .

12c = 1 36 10 m. The change in amplitude is very small.

14a Yes, changing the mass doesn’t affect the amplitude at low frequen-
cies while the amplitude is invertionally proportional to the spring
constant.

13.4.7 5a = 0 712 Hz.

5b = 0 2227 m.

5c = 0 025 m. The amplification is: 0 2227 0 025 = 9 =
20 0 5 = 9.

6a = 1 01 Hz.The curve shifted to higher frequencies.

6b = 0 156 m. = 1 41 = 2

6c = 0 0125 m. The amplification is 0.156/0.0125 = 12.5.

7a = 1 42 Hz. The resonance curve shifted to higher frequencies.
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Answers: Stress and Strain
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7b = 0 110 m. = 2 = 4, = 1 41 = 2

7c = 0 00625 m. The amplification is 0 110 0 00625 = 17 6.

9a = 0 712 Hz.

9b = 0 219 m

9c = 0 0125 m. The amplification is 0 219 0 0125 = 17 5.

11a = 0 503 Hz. The curve shifted to lower frequencies.

11b = 0 305 m = 0 7 = 1 2

11b The amplification is 0 305 0 0125 = 24.

13a = 0 356 Hz. The curve shifted to lower frequencies.

13b = 0 419 m = 0 5 = 1 2, = 0 71 = 1 2

13c The amplification is 0 419 0 0125 = 34.

14.3.1 8a = 0 4 N.

8b The stress is equal to 1 273 10 Pa.

8c The radius of the wire is 1 10 m.

9a Yes. The stress becomes smaller as the radius becomes larger.

9b The radius of the wire change so it is thicker.

9c Yes. The length difference becomes smaller as the radius becomes
larger.

11a Both wires are the same length.

11b The stress is of course zero. No force is applied.

14a = 2 Newton.

14b The stress becomes greater than the tensile strength.

17a The breaking point of the wire is the point where the plot becomes
horizontal.

14.3.2 2a ∆ = 1 27 10 m

2b No change in the plot.

3a ∆ = 2 55 10 m. This is twice the elongation of step 2a.

4a ∆ = 5 09 10 m This is twice the elongation of step 3a and four
times the one of step 2a.

6a ∆ = 2 55 10 m

7a ∆ = 5 09 10 m. This is twice the elongation of step 6a.
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8a ∆ = 1 02 10 m. This is twice the elongation of step 7a and four
times the one of step 6a.

14.3.3 1a ∆ = 1 27 10 m.

1b = 3 14 10 m .

1c = 1 273 10 Pa.

2a ∆ = 3 18 10 m.

2b = 1 25 10 m .

2c = 3 183 10 Pa.

2d The cross hairs moves down the curve. We are farther from the
breaking point.

3a ∆ = 5 09 10 m

3b = 7 85 10 m

3c = 5 093 10 Pa.

3d We are close to the breaking point.

4a The wire broke.

4b = 7 958 10 Newton/m . The stress is greater than the
tensile strength or breaking stress.

4c We are past the breaking point.

14.3.4 1a = 1 10 Pa.

1b ∆ = 1 27 10 m.

1c Strain = 1 273 10

2a ∆ = 2 55 10 m, twice the first elongation.

2b Strain = 2 546 10

3a = 6 366 10 Pa.

3b = 2 N. Yes, this is the maximum force, because for a greater
force the stress will be greater than the tensile strength or the break-
ing stress.

3c The change is length is 6 37 10 m.

3d Strain = 6 366 10 .

5a Yes. The slope became steeper for this higher value of Young’s con-
stant.

5b ∆ = 6 37 10 m. The elongation is 20 times smaller, the material
is 20 times stiffer.

5c ∆ = 6 366 10 .

6a ∆ = 1 27 10 m.
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6b ∆ = 1 273 10 .

7a Yes, it is the same maximum force as in step 3a.

7b ∆ = 3 18 10 m, 20 times smaller than the elongation of 3c.

7c ∆ = 3 183 10 . The strain is 20 times smaller than for the less
stiff material.

14.3.5 3a Around 7 6 10 m.

3b 7 98 10 m

4a 5 5 10 m. Because the tensile strength is higher the wire can be
made thinner before it breaks.

4b 5 64 10 m.

5a 3 98 10 m. The minimum radius is half the minimum radius of
step 3a.

5b 3 99 10 m.


