
The Hashemite University

Department of Physics

Computer-based Physics Experiments

Laboratory Manual for Physics 2102283

By

Muhammad S. Bawa’aneh

Ghada A. Assayed

Muna Khasawneh

2006



Preface

Physics is the science that seeks to explain how our universe, and ev-
erything in it, works. Experimentation involves observing how things work
under certain conditions and theory seeks to understand the observations
already made and make predictions for new experiments to be carried out.

This course, certains a set of virtual laboratory experiments, software
that emulates a real physics lab. So you will be doing simulated physics
experiments, that are taken from commercial companies, mainly Physics
Academy Software.

In the virtual laboratory, you can do many of the things you do in a real
lab: set up experiments, predict outcomes, make measurements and perform
observations. But you can also do things that can not be done in a real lab.
The course is designed to target mainly second year physics students at the
Hashemite University. As a prerequisit for this course, students must pass
the required three courses in general physics offered at the Hashemite Uni-
versity.

A final word that the author would like to say is a warning for both in-
structors and students not to think of the virtual laboratory as a substitute
for real laboratory experience. On the contrary, think of it as preparation
for a real lab. Many of the experiments that you will do in software can be
done easily with hardware.
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1 Origin, the graphical software

Origin is a friendly graphical software. It provides power and speed for tech-
nical graphics and data analysis under windows. It is one of the friendlist
and easy to use graphical softwares. You can easily import data or open
excel worksheets directly. Two and three dimensional graphs are created
quickly and effortlessly with just a single click. Graph elements can be
modified by double clicking to get a specialized dialog box.

When you start origin, it opens a new project displaying a worksheet
window. You can insert data in one of two ways;

1. Direct inserting data in the x and y columns.

2. Import data by choosing from the main menue file/Import/single
ASCII/ (for importing one data file) and Multiple ASCII (for im-
porting more than one data file).

Example:-
Plot a graph between x-axis and y-axis for the following points;
(x, y)=(1, 1), (2, 4), (3, 9), (4, 16)

1. Choose the style line + symbol from the plot icon in the main bar.

2. Adjust the x and y ranges to x ǫ(0, 5) and y ǫ(0, 20), respectively, with
a suitable increment.

3. Let the x-axis represent displacement measured in meters (m) and the
y-axis represent time measured in seconds (s), by changing the axis.

4. Inseret a title.

5. Find the equation of this linear relation.
Note: Go to analysis in the toolbar and choose fit linear. This
implies that the program will give you the fitting equation with the
slope and y-intercept in a small window.

Exercise:-
Inseret the following data in a notpad file, then import them in origin and
repeat the steps in the above example.
(x, y)= (-5, -125), (-3, -27), (-1, -1), (0, 0), (1, 1), (3, 9), (5, 125).
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2 Coordinate Systems

2.1 Coordinate Systems

Theory

The space we live in is three-dimensional. This means that three numbers
are required to specify the location of a point in space without ambiguity
[Recall what you have learned in Mathematical Physics I]. These three num-
bers may be replaced by three independent variables. A point in space is an
interception of three orthogonal surfaces. We use the cartezian coordinate
system (x, y, z) to describe the position of an object. The three surfaces for
the cartezian coordinate system are plane surfaces. Sometimes it is conve-
nient to represent a point in its spherical or cylindrical coordinates. In this
case the type intercepting surfaces in a point are not all plane surfaces.

The spherical coordinates of a point are (r, φ, θ). Two surfaces for the
spherical coordinate system are curved and one is a plane surface. Specify
them. Here, r is the distance from the origin, θ is the polar angle, and φ is
the azimuthal angle. Their relation to cartezian coordinates (x, y, z) can be

x = r sinφ cos θ (1)

y = r sin φ sin θ (2)

z = r cos φ (3)

The cylindrical coordinates of a point are (r, θ, z). Two surfaces for
cylindrical coordinate system are plane surfaces and one is a curved surface.
Specify them. Note that r is the distance to the point from the z-axis, θ
has the same meaning as in spherical coordinates, and z is the same as the
cartezian. The relationship with cartezian coordinates is

x = r cos θ (4)

y = r sin θ (5)

z = z (6)

Experiment

In the demostration on your computer screen, you will see a window
with two main menues; in the left menu you have the title “Coordinate
Systems”. In the right menu you find three options to go to representing
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cartezian, cylindrical and spherical coordinate systems.

Choose one coordinate system on the right menu and try to demostrate
what the instructor has explained. You can play with the components on the
left “control window”. By the end of each demostration you should be able
to recognise the three independent variables for each coordinate system, a
randomly chosen point in space (seen as a black sphere in the lab.) and the
position vector of this point. You can switch any of these elements on and
off clicking on “Display” in the main menu and then switching elements on
and off . Also, you can choose “Experiment” from the main menu and see
what the choice “Defaults” can do.

In the control window the default parameters, for cartezian coordinates,
the x-component, y-component and z-component are 70m, 110m and 100m,
respectively.
For cylindrical coordinates the default parameters for r, θ, z are 130m, 57.5◦

and 100m, respectively.
For spherical coordinates the default parameters for r, θ, φ are 164m, 57.5◦,
52.5◦, respectively.

Procedure:

1. Cartesian coordinate

(a) Display the position vector.

(b) play with the x, y and z-components and observe the direction
of the position vector.

2. Cylindrical coordinate
Display the position vector and the three cartesian components on
your screen.

(a) i. Calculate the three cartesian components for the point (80, 70, 110)
presented in cylindrical coordinates.

ii. Record the cartesian components for the point (80, 70, 110)
from the control window.

iii. Do the corresponding results agree?

(b) Repeat step (a) for point (52, 33, 90).

3. Spherical coordinate
Display the position vector and the three cartesian components on
your screen.
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(a) i. Calculate the three cartesian components for the point (120, 30, 40)
presented in spherical coordinates.

ii. Record the cartesian components for the point (120, 30, 40)
from the control window.

iii. Do the corresponding results agree?

(b) Repeat step (a) for point (70, 22, 77).
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3 Mechanics

This chapter consists of six sets of experiments; block on an incline, circu-
lar motion, center of mass, collision, simple harmonic oscillator and stress-
strain.

3.1 Block on an Incline

Theory

Newton’s second law;
“The acceleration (~a) of an object is directly proportional to the
net force (

∑ ~F ) acting on it and inversely proportional to it’s mass
(m)”.

Consider an object of mass (m) placed on an incline with an x-axis along
the incline and a y-axis perpendicular to the incline.

Newton’s second law yields

∑

Fx = mg sin θ − fr = max (7)

∑

Fy = mg cos θ = 0, (8)

where fr is the frictional force.

Notes:

1. When the block is at rest, ax = 0, fr = fs, the static frictional force.

2. When the block is about to move, ax = 0, fr = fs(max.) = µsN =
µsmg cos θ.

3. When the block slides along the incline, fr = fk = µkN = µkmg cos θ.
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Experiment

The setup on your screen consists of a block situated on an incline. In
the control window the default parameters the inclination angle, static fric-
tion coefficient, kinetic friction coefficient and the mass of the block are 35◦,
0.5, 0.3 and 10kg, respectively.

Procedure:

I. Using default parameters answer the following;

1. Does the block slide?

2. What makes the block slide?

3. Write down the default parameters.

4. Calculate the force acting on the block along the incline.

5. Calculate the acceleration.

II. Set the experiment to default parameters and continue.

1. Change the angle of inclination slowly utill you arrive at a situation
where the block is about to slide.

2. Compare the coefficient of static friction with the tangent of the
inclination angle.

3. For the same situation (block about to move), check if this angle
depends on the mass of the block.

III. Reset the experiment to default parameters and continue.

1. From the “Display” button choose “velocity” and “acceleration”
and notice the velocity and acceleration vectors appearing on the
screen (Note: Magnitude of a vector is proportional to length
of this vector). Run the experiment and watch the magnitude of
velocity and acceleration as the block slides. What do you see?

2. Plot two graphs for the frictional force versus time and acceleration
versus time.
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3.2 Simple Harmonic Oscillator

Theory

Each day we encounter many kinds of oscillatory motions. Oscillatory
motion occures when the force acting on an object is proportional to the
displacement of the body from some equilibrium position. If this force is
always directed toward the equilibrium position, repetitive back-and-forth
motion occures about this position. In this subsection, two cases are dis-
cussed; the simple harmonic motion and the damped motion.

Simple Harmonic Motion (No Damping):

Consider a physical system of a spring that is fixed at one end and at-
tached to a block of mass (m) at the other end, where the mass is free to
move on a horizontal frictionless surface.

The spring exerts a force on the block that is proportional to the dis-
placement. This force is given by Hook’s law:

F = −kx, (9)

where x is the displacement from the equilibrium position. This force is
called the restoring force because it is always directed toward the equilibrium
position and, therefore, opposite to the displacement. Using equation (9),
Newton’s second law of motion gives

F = ma

m
d2

dt2
x = −kx or ẍ +

k

m
x = 0 (10)

A solution for this equation is

x = A cos(ωt + φ) (11)

where A is the amplitude of oscillation, ω =
√

k
m is the angular frequency

and φ is the phase constant. The period of oscillation T = 2π
ω is the time

needed for the particle to complete one full cycle. The inverse of the period

is called the frequency (ν = 1
T = 1

2π

√

k
m).
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We can obtain the linear velocity and acceleration of a particle under-
going simple harmonic motion as follows;

υ = ẋ = −ω A sin(ωt + φ) (12)

a = ẍ = −ω2A cos(ωt + φ) (13)

For simple harmonic motion, the total mechanical energy (E = K + U)
is conserved, where K = 1

2 kx2, U = 1
2 mυ2. It is given by the following

relationship;

E =
1

2
kx2 +

1

2
mυ2 (14)

Using equations (11) and (12), the total energy becomes

E =
1

2
kA2 (15)

Damped Harmonic Motion:

In equation (15), energy is proportional to the square of the amplitude of
the wave. In damped oscillations, the amplitude of the oscillation gradually
decreases to zero as a result of friction. The frictional force is proportional
to the speed of the block, the equation of motion (equation (10) becomes

ẍ +
k

m
x +

b

m
ẋ = 0 (16)

where b is a positive constant measured in kg/s. A solution for equation
(16) is

x = A e−
bt

2m cos(ω′t + φ), (17)

where

ω′ =

√

k

m
− (

b

2m
)2 (18)

Equations (17) and (18) are valid only for b ≥ 2
√

km. If b has its largest
possible value (b = 2

√
km), then ω′ = 0 and the displacement approaches

the equilibrium point after a perturbation with no oscillation. This condi-
tion, called critical damping, is often the goal of mechanical engineers in
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designing a system in which oscillations are meant to disappear in the short-
est possible time. It is very obvious from equation (17) that the amplitude
(

Ae−bt/2m
)

decays exponentialy with time.

In damped harmonic motion, the energy of the oscillator is gradually
dissipated by friction and falls eventualy to zero. The energy is given by

E(t) =
1

2
k (A e−

bt

2m )2

E(t) = E0 e−
bt

m , (19)

where E0 = 1
2kA2 is the energy at t = 0.

Two final notes are

1. K, U , x, υ, a ≡ constants if there is no damping.

2. E = K + U is equal to a constant value for the nondamped motion,
and of decreases with time for damped motion.

Experiment

The setup on your screen consists of a spring connected to a mass with
a hydrolic system. In the control window the default parameters the mass,
spring constant, damping factor, period, natural angular frequency, nat-
ural frequency, initial displacement and initial velocity are 1kg, 15N/m,
0.4N.s/m, 1.62s, 3.87rad/s, 0.616Hz, 0.05m and 0, respectively.
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Procedure:

1. “Run” the experiment with the default nombers for b = 0, 0.1, 0.5N.s/m.
How does the amplitude of oscillation change with time in each case?

2. No damping

(a) i. Calculate the maximum amplitude of the displacement, velocity
and acceleration for the default parameters.

ii. Run the experiment with the default numbers. Plot the dis-
placement, velocity and acceleration versus time. Do the
calculated value agree with that in the graph?

(b) On the graph produced in step (2.a.ii) repeate step (2.a) for m =
2kg. How does the period depend on the mass?

(c) Calculate the restoring force (spring force) for the default param-
eters (let spring constant be k1). Doubled the spring constant
(k2), then halve it (k3). How does the restoring force depend on
the spring constant?

(d) i. Calculate the total energy for the default parameters.

ii. Plot total energy versus time graph. Is the total energy changed
when mass or spring constant is changed? Explain your an-
swer.

3. Damped motion

(I) For b = 0.1N.s/m:

(a) i. Calculate the maximum amplitude of the displacement,
velocity and acceleration for the default parameters.

ii. Run the experiment with the default numbers. Plot the
displacement, velocity and acceleration versus time. Do
the calculated value agree with that in the graph?

(b) On the graph produced in step (3.I.a.ii) repeate the step
(3.I.a) for m = 2kg. How does the period depend on the
mass?

(c) Calculate the restoring force (spring force) for the default
parameters (let spring constant be k1). Doubled spring con-
stant (k2), then halve it (k3). How does the restoring force
depend on the spring constant?

(d) i. Calculate the total energy for the default parameters.
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ii. Plot total energy versus time graph. Is the total energy
changed when mass or spring constant or damping factor
is changed? Explain your answer.
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3.3 Stress and Strain

Theory

Solids are composed of atoms that are not in rigid contact. Atoms do
not have hard surfaces that can pack closely together; their electron clouds
can be shaped or deformed by external forces. If a load is static or changes
relatively slowly with time and is applied uniformly over a cross section or
surface of a member, the mechanical behaviour may be verified by a simple
stress-strain test. There are three principal ways in which a load may be
applied; tension, compression, and shear.

The stress and strain take different forms, but they are proportional
to each other. The constant of proportionality is called the modulus of
elasticity or Young’s modulus (η). Thus

η =
stress

strain
(20)

Figure (1) shows the relationship between stress and strain for a substan-
tial portion of the range of applied stresses, the stress-strain curve is linear
and equation (20) applies, with a constant η (corresponding to the linear
region of figure 1). As the stress continues to increase, the stress-strain re-
lationship may become nonlinear, but the material remains elastic; that if
the stress is removed the specimen returns to its original dimensions. If the
stress is increased beyond the breaking point of the material, the specimen
becomes permanently changed and does not recover its original dimensions
when the stress is removed.

For simple stretching or compression, the stress is defined as F/A, a
quantity that is proportional to the force causing the deformation, where
F is the external force and A is the cross-sectional area. The strain, is a
measure of the degree of deformation. It is represented by the dimensionless
quantity ∆L/L, where ∆L is change in length and L is the origional length.
With there definitions, equation (20) becomes

F

A
= η

∆L

L
(21)
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Figure 1: Stress versus Strain Curve

Experiment

The setup on your screen consists of an unstressed rod in red color and
the stressed rod (after appling an external force) in violet. Stress-strain fig-
ure is, also, shown.

In the control window the default parameters are the external force,
Young’s modulus, radius, unstressed length and the change in length are
0.4N , 1 × 106Pa, 0.001m, 0.1m and 0.0127m, respectively.

The student can change the force and radius of the rod. This will change
the stress. Changing the length of the rod, the strain will change. Also, the
change in Young’s modulus will change the strain, and the linear part of the
figure will change slope. See the breaking point on the stress-strain figure.

Procedure:

1. Click on the “run” button and start to increase the applied force.
What happens to the stress (why)? What happens to the strain (why)?
Have you arrived at the breaking point?

2. Set your experiment to the default parameters, then change the radius
of the rod while running the experiment. What happens to the stress
(why)? What happens to the strain (why)? Have you arrived at the
breaking point?
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3. To make a real experiment choose one of the metals from table (1)
and use Young modulus for that metal to do the experiment. Fill the
table and use “origin” to obtain Young modulus from the force versus
∆L graph. Compare your result with that in the control window.

Note: Recall the linear fitting of your data to find Young modulus.

Table 1: Young Modulus for some metals

Metal Young Modulus (1 × 109Pa)

Magnesium 45

Aluminum 69

Brass 97

Titanium 107

Copper 110

Nickel 207

Steel 207

Tungsten 407
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4 Fluid Dynamics

In this section we have three experiments, buoyancy in static fluid, contin-
uous flow (non viscouse flow) and viscouse flow.

4.1 Buoyancy in Static Fluids

Theory

We consider a static fluid in a container. Pressure at a point inside the
fluid increases with increasing the depth. The fluid exerts on the object a
buoyant force ~B directed upwards.

Archimedes principle states that “Any object completly or partially
submerged in a fluid, is buoyed up by a force that is equal to the
weight of the fluid displaced by the object”.

Objects submerged in fluids are buoyed out by a force ~B that is equal
to the weight of the displaced fluid, i.e.

~B = mfluid ~g = ρ′ V ′ ~g, (22)

where V ′ is the volume of the submerged part of the object, which is equal
to the volume of the displaced fluid and ρ′ the density of the fluid. At
ststic equilibrium, the net force exerted on the floating object in the vertical
direction is zero, i.e.

W = B (23)

where W = mobjg = ρgV , ρ is the density of the object, V the volume of
the object. This leads to

V ′

V
=

ρ

ρ′
(24)

Note V ′ < V implies ρ < ρ′.

Experiment

The setup on your computer screen consists of a ball submerged in a fluid
with the following default parameters for the sphere radius, sphere density
and fluid density, respectively; 2cm, 0.8g/cm3 and 1g/cm3.
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Table 2: Density

Material Density (kg/m3)

Interstellar space 10−20

Air 1.21

Wood 525

Ice 917

Water 998

Sea water 1024

Polystyrene 1050

Whole blood 1060

Glass 2190

Aluminum 2710

Iron 7800

Mercury 13600

Note: The temperature of air, water and sea water is 20◦C.

Procedure:

1. Run the experiment with the default numbers. Explain the oscillatory
motion of the ball and explain why the ball is partially submerged.

2. Set the value of ρobj to be equal to ρf and repeat the experiment.
What do you find? Explain what you find.

3. Set the value of ρobj to be larger than ρf and repeat the experiment.
What do you find? Explain what you find.

4. Change the density of the object or the liquid as described in the
manual to observe how the object is buoyed out.

5. Choose values for ρf , ρobj , sphere radius and calculate the buoyancy
force for the values you have choosen. Plot a graph between time and
buoyancy force then compare it with value in the graph for an object
in equilibrium.

6. Find the weight of the object in vacuum.

7. Find the weight of the object in the liquid.
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4.2 Continuous Flow

Theory

In this experiment, we consider the flow of a nonviscous fluid in a tube
with a variable cross-section. The fluid is in a steady state flow (not turbu-
lent flow).

A volume of ∆V of the fluid passes a cross-section (A) with velocity (υ)
in the time interval (∆t). For an incompressible fluid, A1υ1∆t = A2υ2∆t

A1υ1∆t = A2υ2∆t (25)

⇒ A1υ1 = A2υ2 (26)

Note if A1 < A2, then υ1 > υ2.

Experiment

The setup on your computer screen consists of a tube with cross-sections
1 and 2. In the control window the default parameters take the following val-
ues, respectively; radius1, radius2, velocity1 and velocity2 are 0.03m, 0.1m,
0.06m/s and 0.0054m/s.

Procedure:

1. Click the “run” button and observe the change in the velocity while
you change one of the two radii. What is your conclusion?

2. (a) Calculate the volume rate of flow for the parameters radius1
= 3cm, radius2 = 10cm,velocity1 = 0.35m/s and velocity2 =
0.0315m/s.

(b) Plot the volume rate of flow versus time for the previous param-
eters.

3. From step 2, find the volume of the fluid that passes through the tube
in 3 minutes.
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4.3 Viscous Flow

Theory

In this experiment we consider the viscous flow. Take for example the
flow of honey on the spoon. In this kind of flow of a fluid in a pipe, the
fluid sticks to the inner wall of the pipe. The adhesive force depends on the
distance of a volume element of the fluid from the pipe wall. The fluid flows
when there is a pressure difference in the pipe.

Consider a horizontal plate with an area ‘A’, where a viscouse fluid is
flowing on. We can define the stress on the fluid to be F/A, where A is
the area of the layer of fluid. A fluid responds through a change in speed υ
across each layer. The ratio between stress and strain in the fluid is called
the coefficient of viscosity η of the fluid

η =
F/A

υ/d
=

Fd

υA
(27)

For a volume element a distance ‘d’ for the plate to flow with velocity
‘υ’, a force ‘F ’ is needed where

F = η
υA

d
(28)

The SI unit for viscosity is the N.s/m2. Table (3) contains the viscosity
coefficient for some selected fluids.

A practical application of viscosity occurs in the fluid flow mostly through
cylindrical pipes. In the case of a cylindrical pipe, the variation of the ve-
locity with location across the pipe is not linear. Assuming that the central
layer moves at speed υ and the layer next to the wall is at rest, the velocity
in a cylindrical shell of radius r can be written as

v = v0(1 −
r2

R2
), (29)

where v0 is the central velocity represented by

v0 =
∆pR2

4ηL
, (30)

where ∆p
L is the pressure gradiant of the fluid, ‘R’ the radius of the cylinder

and ‘r’ the radius of the shell (0 ≤ r ≤ R). By considering the flow through
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the whole cylinder, the volume rate of flow ∆V
∆t is

∆V

∆t
=

πR4

8η

∆p

L
(31)

This applies for laminar flow where υ is sufficiently small.

Table 3: Viscosity of some fluids

Fluid Viscosity (N.s/m2)

Motor oil at 20oC 0.03

Glycerine at 20oC 1.5

Blood at 37oC 4 × 10−3

Water at 20oC 1 × 10−3

Water at 90oC 0.32 × 10−3

Gasoline at 20oC 2.9 × 10−4

Air at 20oC 1.8 × 10−5

Experiment

The setup on your screen consists of a fluid flowing through a tube. In
the control window the default parameters the pressure gradiant, density,
viscosity and radius are 0.5N/m3, 998kg/m3, 0.001N.s/m2 and 0.01m, re-
spectively.

Procedure:

1. For the default numbers, calculate the center velocity. Plot the center
velocity versus time graph and compare it with the calculating value.

2. Change the pressure gradiant. What happens to the velocity? Explain
your result.

3. Change the viscosity. What happens to the center velocity? Explain
your result.

4. For the default numbers, calculate the volume rate of flow. Plot the
volume rate of flow versus time graph and compare it with the calcu-
lating result.

5. Change the radius. What happens to the volume rate of flow? Explain
your result.
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5 Modern Physics

Modern physics began with the beginning of the twentieth century with Max
Planck’s discovery of the role of energy quantization in blackbody radiation,
a revolutionary idea soon followed by Albert Einstien’s equally revolutionary
theory of relativity and the quantum theory of light. The ideas of modern
physics represented totally new directions in thought, and the story of their
development is exceptionally interesting. In this set of experiments we de-
scribe briefly the blackbody radiation, Bohr model of the atom and Compton
effect.

5.1 Blackbody Radiation

Theory

The ability of a body to radiate energy is closely related to its ability
to absorb radiation. It is convenient to consider, as an ideal black body,
one that absorbs all radiation incident upon it, regardless of frequency. In
laboratory a blackbody can be approximated by a hollow object with a very
small hole leading to its interior (the physical blackbody is the small whole).
Any radiation striking the hole enters the cavity, where it is trapped by re-
flection back and forth until it is absorbed inside the cavity with almost no
change to escape out again.

The spectral radiancy R(λ, T ) tells us how the intensity of radiation
from the blackbody varies with wavelength for a given temperature. In
other words, it is the radiated power per unit area per a specific wavelength
(W/m2.m). We can find the radiant intensity I(T ) for any temperature by
adding up the spectral radiancy over the complete range of wavelengths.
Thus

I(T ) =

∫

∞

0
R(λ, T )dλ, (32)

where I(T ) (measured in units of W/m2) is the total radiated power per
unit area of the cavity. This equation shows that the radiant intensity I(T )
can be interpreted as the area under the spectral radiancy curve in figure (2).

Blackbody theory occupyed physicists for about 20 years before the be-
gining of the twentieth century. The history of development of its theory
will be discussed briefly;
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Figure 2: Radiancy Curve

Stefan-Boltzmann law: The radiant intensity is related to the tem-
perature by

I(T ) = σT4, (33)

where σ (= 5.57 × 10−8 W/m2.K4) is the Stefan-Boltzmann constant.

Wein’s law: The wavelength at which the spectral energy density curve
has a maximum (λmax) varies as 1/T and the product λmaxT is a universal
constant. Its meaured value is

λmaxT = 2.898 × 10−3m.K (34)

Wien’s displacement law quantitavely expresses the empirical fact that the
peak in the blackbody spectrum shifts to shorter wavelengths (higher fre-
quancies) as the temperature is increased.

Rayleigh-Jeans formula: The classical formula for the radiancy of a
blackbody is given by

R(λ, T ) =
2πckBT

λ4
(35)

This formula is in reasonable agreement with experimental data at large
wavelengths. At short wavelengths, major disagreement appears; as λ → 0,
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R(λ, T ) blows up. This is called the ultraviolet catastrophe.

Max Planck’s Solution to the Ultraviolet Catastrophe: In 1900,
Max Planck derived a formula for a blackbody radiation that is in complete
agreement with experiment at all wavelenghts. This formula is

R(λ, T ) =
2πhc2

λ5(e
hc

λkBT − 1)
, (36)

where h (= 6.626 × 10−34J.s) is Planck constant.

Experiment

The setup on your screen consists of an object that changes its color
depending on it’s temperature (the default temperature (T ) is 1.1× 103K).
Also, a spectral intensity versus wavelength graph is found there. On the
right hand side of your screen, you can see the spectral intensity peaks
wavelengths, the emission peaks region, the peak spectral intensity (radi-
ancy R(λ, T )), and the integrated intensity (radiant intensity I(λ, T )).

Procedure:

1. Change the temperature and observe the change in the radiancy curve
and the color of the object.

2. Choose a value for the temperature and record the corresponding in-
tegrated intensity. Doubled the temperature and calculate the new
integrated intensity. Compare the ratios T1 : T2 and I1 : I2. Explain
the results.

3. Find the corresponding temperature for each visible color in table (4)
by changing the value of the temperature in the control window and
observing the radiated colour.

4. Plot the radiancy versus wavelength, using origin, for at least 10 dif-
ferent wavelengths scanning the region λ ǫ (0, 10000Å). Explain your
graph.
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Table 4: Visible colours wavelengths

Color Wavelength (Å)

Red 6500

Orange 5900

Yellow 5700

Green 5100

Blue 4750

Indiga 4450

Violet 4000
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5.2 Bohr Atom

Theory

Most of our knowledge about atoms, molecules, and nuclei comes from
studying the radiation emitted or absorbed by them. A spectrum of atomic
hydrogen in the visible region had been measured with great precision in
the late 1800s, and its interpretation was puzzling for scientists.

An empirical formula for the wavelengths of the lines of atomic hydrogen
was developed in 1885 by Balmer. The general formula for the wavelengths
of the lines of atomic hydrogen is

1

λ
= R (

1

m2
−

1

n2
), n = 3, 4, 5, ..., (37)

where R (= 1.097×107m−1) is the Rydberg constant, m = 2 for the Balmer
series of hydrogen in the visible region. Soon, researchers turned up series
in the infrared region corresponding to m = 3, m = 4 and m = 5, which
are called Pashen, Brackett and Pfund series, respectively. Another series
in the ultraviolet region with m = 1 is called Lyman series.

The key to understanding the above empirical formula was provided by
the model devrloped by Bohr in 1913, who considered three postulates;

1. The hydrogen atom can exist for a long time without radiating it’s en-
ergy and eventually collapsing, i.e. electrons exist in stationary states.

2. The hydrogen atom can emit or absorb radiation only when the atom
changes from one of its stationary states to another. The energy of
the emitted (or absorbed) photon is equal to the difference in energy
between the two states.

3. Electrons orbit atoms in levels to have angular momenta such that

L = nh̄, (38)

where n is an integer.

To study the electron motion about the nucleus, we combine Coulomb’s
force law with Newton’s second law of motion for an object travelling in a
circular motion, i.e.

1

4πǫ0

(Ze)(e)

r2
= me

υ2

r
, (39)
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where Z is the atomic number, Z = 1 identifying hydrogen, me is the mass of
the electron, and υ is the speed of the electron in its orbit. Solving equation
(39) for υ yields

υ(r) =

√

ze2

4πǫ0mer
(40)

The kinetic and potential energies are given, respectively, by

K(r) =
1

2
meυ

2 =
ze2

8πǫ0r
(41)

U(r) = −
ze2

4πǫ0r
, (42)

and the total mechanical energy E(r) becomes

E(r) = K(r) + U(r) = −
ze2

8πǫ0r
(43)

The angular momentum follows directly using equation (40)

L(r) = meυr =

√

ze2rme

4πǫ0
(44)

Now, we can equalize equation (44) and equation (38) and solve them for
the orbit radius rn. We find

rn = (
ǫ0h

2

ze2πme
)n2 =

n2

z
a0, n = 1, 2, 3, ..., (45)

where a0 (= 5.292 × 10−11 = 0.529Å) is the radius of the Bohr orbit corre-
sponding to n = 1, which is the ground state of the hydrogen atom.

The energy expression for stationary states comes by substituting equa-
tion (45) into equation (43);

En = −
z2e4me

8ǫ2
0h

2
n2 =

z2

n2
E0, (46)

where E0 = −13.6 eV the ground state energy of a hydrogen atom, i.e.
n = 1 and z = 1.
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In 1924, de Broglie gave a satisfying physical interpretation of the Bohr
rule for the quantization of angular momentum; if we represent the circulat-
ing electron in terms of its de Broglie wave, then the stationary states are
those in which the electron’s de Broglie wave joins onto itself with the same
phase after each revolution. The de Broglie wavelength must fit around the
circumference of the orbit an integral munber of times, or simply

nλ = 2πr, n = 1, 2, 3, ..., (47)

Experiment

The setup on your screen shows a single electron atom with its energy
levels. The default numbers for the quantum number and number of protons
are 3 and 1, respectively.

Procedure:

1. Consider the hydrogen atom (z = 1) and change the quamtum number
for the electron (the orbit number of the electron). What is the relation
between the electron energy (En) and the quantum number (n)?

2. Fix the quantum number to n = 3 and change z observing the electron
energy. What is the relation between the electron energy and the
number of protons? Explain your result.

3. Repeat step 1 observing the radius of electron orbits for the hydro-
gen atom (z = 1). What is the relation between the radius and the
quantum number?

4. Repeat step 2 observing the radius of electron orbits for an electron
at the ground state (n = 1). What is the relation between the radius
of the ground state and the number of protons? Explain your result.

5. For each of Lyman, Balmer and Pashen series. Plot a graph for the
energy levels choosing at least 3 orbits. What can you say about the
energy difference between successive orbits for each series?
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5.3 Compton Effect

Theory

Compton effect is the scattering of radiation from atoms, where light
behaves like particles. The Compton effect can readily be understood in
terms of collisions between photons and particles.

In Compton effect, a photon with energy E and wavelength λ falls on
a static particle, and a photon with wavelength λ′ will scattered. Since the
incident photon transfers some of its energy to the particle it collides with,
the scattered photon must have a lower energy E′ (lower frequency ν ′, larger
wavelength λ′).

We now apply the law of conservation of energy to this collision; Since
the recoil particle may have a speed that is comparable with that of light, we
must use the relativistic expression for the conservation of energy, namely;

hν + mc2 = hν ′ + mc2 + K, (48)

where mc2 is the rest energy of the particle and K (=
√

m2c4 + c2P ′2
particle)

is its relativistic kinetic energy.

Also, applying the law of conservation of linear momentum to the colli-
sion gives

~Pphoton = ~P ′
photon + ~P ′

particle (49)

Carrying out the necessary algebraic steps in equations (48) and (49) leads
to the simple result for the shift in wavelength of the scattered photon in
terms of the scattering angle of the photons (φ), and the mass of the target,
namely;

∆λ = λ′ − λ = λComp(1 − cosφ), (50)

where λComp is the Compton wavelength of the scattering particle given by

λComp =
hc

mc2
(51)
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Experiment

The setup on your screen consists of two objects representing the electron
and the photon. You can display the photon wave from the “display” button.
In the control window the default parameters for the photon deflection, ini-
tial wavelength, particle mass, wavelength change and Compton wavelength
are 54◦, 2.43 × 10−12m, 9.11 × 10−31kg, 1 × 10−12m and 2.43 × 10−12m,
respectively.

Procedure:

1. Change the angle of scattering and observe the change in wavelength
shift.

(a) Determine the angle of the maximum and minimum wavelength
shift.

(b) Find the angle,where the wavelength shift equals the Compton
wavelength.

(c) Determine which photon energy is larger? The energy of the
scattered photon or the incident photon?

2. From the above theory answer the following for default parameters.

(a) Determine the energy of the photon before and after collision.

(b) Determine the energy of the electron before and after collision.

(c) What happens to the photon energy during collision?

(d) What happens to the electron energy during collision?

(e) Determine the total energy of the system before collision.

(f) Determine the total energy of the system after collision.

(g) What happens to the total energy during collision?

3. From the energy graphs answer the following for default parameters.

(a) Determine the energy of the photon before and after collision.

(b) Determine the energy of the electron before and after collision.

(c) What happens to the photon energy during collision?

(d) What happens to the electron energy during collision?

(e) Determine the total energy of the system before collision.
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(f) Determine the total energy of the system after collision.

(g) What happens to the total energy during collision?

4. Compare the corresponding results in steps (2) and (3).

5. (a) Consider a particle of a mass me/2. Find the Compton wave-
length for such a particle and compare it with λComp for the
electron.

(b) Repeat step (5.a) for a particle of mass 2me. What do you con-
clude?

(c) What do you conclude from (5.a) and (5.b)?
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