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12.3  Hyperbolic Partial Differential Equations 739

b.  Use the temperature distribution of part (a) to calculate the strain / by approximating the integral

1
I:/ oT (r,t)r dr,
0

.5

where « = 10.7 and r = 10. Use the Composite Trapezoidal method with n = 5.

12.3 Hyperbolic Partial Differential Equations

In this section, we consider the numerical solution to the wave equation, an example of
a hyperbolic partial differential equation. The wave equation is given by the differential
equation
9%u
ot2

subject to the conditions

82
(x,t)—azé(x,t)zO, O<x<I, t>0, (12.16)

u(0,0) =u(l,t) =0, for t>0,
du
u(x,0) = f(x), and E(x, 0) =gkx), for 0<x<I,

where « is a constant dependent on the physical conditions of the problem.
Select an integer m > 0 to define the x-axis grid points using 4 = [/m. In addition,
select a time-step size k > 0. The mesh points (x;, #;) are defined by

x; =1th and I = jk,

foreachi =0,1,...,mandj =0,1,....
At any interior mesh point (x;, £;), the wave equation becomes

9%u 3%u
87(961',1}‘) - azﬁ(xhtj) =0. (12.17)

The difference method is obtained using the centered-difference quotient for the second
partial derivatives given by

9%u u(xp, tiyy) — 2u(xi, ) +ulxi, tiy)  k* 9%u
W(xi,tj) = ! 2 ! - Ew(xi,ﬂj),

where 11; € (tj_1,t41), and

@(x- 1) = uiy1, 4) = 2u(x;, ) + u(xi-1, ) h_234_14
ax2 T h? 12 ax*

where &; € (x;—1,x;+1). Substituting these into Eq. (12.17) gives

G 1),

Ui, 1) — 2u(x;, ) + ulxi, ti-1) o u(xiy1,4) — 2u(x;, ) + u(xi_1, 1)
k2 h?

17 284u ) 284u T
= —_k W(xi,ﬂj) —ah W(Si’tj) .

Neglecting the error term

11 ,0%

*u
Ty = 1| K i ) — @RS (& 1) (12.18)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



740 CHAPTER 12 = Numerical Solutions to Partial Differential Equations

leads to the difference equation

W1 — 2w + Wi Q2 Wil = 2wi;+ wi—;
k? h?

Define A = ak/h. Then we can write the difference equation as

=0.

Wijp1 — 2Wij 4 wijo — Awig 4 207w — Mwi_y; =0
and solve for w; 1, the most advanced time-step approximation, to obtain
wijpr = 201 = A wij + A2 (Wi + wi1j) — wijo1. (12.19)

This equation holds foreachi = 1,2,...,m—1andj = 1,2, .... The boundary conditions
give

wo; = wy; =0, foreachj=123,..., (12.20)
and the initial condition implies that
wio = f(x;), foreachi=1,2,...,m—1. (12.21)

Writing this set of equations in matrix form gives

[2(1 — A2) A2 Onrvvvnnnnnns 0
Wy j+1 )¥2 2(1 _.‘)‘2) )}2 wy Wi,—1
W2,j+1 O. e - .. - O Wy, wj—|
. '.... 2
Win—1,j+1 : A Wn—1,j Wn—1,-1
i [ I, e 07 A2 201 )LZ)_
(12.22)

Equations (12.18) and (12.19) imply that the (j 4+ 1)st time step requires values from the
jth and (j — 1)st time steps. (See Figure 12.12.) This produces a minor starting problem
because values for j = 0 are given by Eq. (12.20), but values for j = 1, which are needed
in Eq. (12.18) to compute w; », must be obtained from the initial-velocity condition

0
a—‘f‘(x,m —g), O0O<x<L

Figure 12.12
t
ljiq X
t X X X

(o}
(e]
(o}
(o}
(o}
(o}
(o}
(o}
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12.3 Hyperbolic Partial Differential Equations m

One approach is to replace du/dt by a forward-difference approximation,

u(xi,t) —ulx;,0)  k 9%u
k T2 a2

for some fi; in (0, ¢,). Solving for u(x;, ;) in the equation gives

ou
E(xi’ 0) = — (x5, (i), (12.23)

2 92

k” 0°u
lat - 1,0 k 190 5
u(xi, 1) = u(x;, 0) + (x )+ > o

2 92

k= 07u
= u(x;, 0) + kg(x;) + EXT

Deleting the truncation term gives the approximation,

(x,, 1)

(xl’ lu’l)

wi1 = wio+ kg(x;), foreachi=1,...,m—1. (12.24)

However, this approximation has truncation error of only O(k) whereas the truncation error
in Eq. (12.19) is O(k?).

Improving the Initial Approximation

To obtain a better approximation to u(x;, 0), expand u(x;, ¢;) in a second Maclaurin polyno-
mial in ¢. Then

2 82u 3 93y
M(xl,t])—u(x,,0)+k (xlso)"i— 2 8 z(xh )+ 6 8 3(‘x19/’L1)
for some f1; in (0, #;). If f” exists, then
0u 0’u d’f .
577 06 0) = 0?2506, 0) = &’ = 05) = & f ()
and
2k2 k3 83
u(xhtl) - u(-xl’o) + kg(-xz) + _f//('xl) + — 6 ot 3 (Xi’ [’\Ll)

This produces an approximation with error O(k?):

2k2
wi = Wjo + kg(x,) + _f//( l)

f € C*0, 1] but f"(x;) is not readily available, we can use the difference equation in
Eq. (4.9) to write

JGip) =2F ) + fliz) h_2

e @ (E.
i) = 2 12f &,

for some §i in (x;—1,x;11). This implies that
2

Wiy 1) = 4Gt 0) + kg + S [ f i) = 2700 + £ ()] + O + ).

2h?
Because A = ka/h, we can write this as
)\’2
u(is11) = u(i, 0) + kg (x) + S-[f (i) = 2 () + f (xi-1)] + Ok + h*k?)

2 Az . 2 3, 42,2
=1 -=A)f)+ 7f(xi+1) + 7]‘(3@'—1) + kg(x;) + O(k™ + h°k~).
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742 CHAPTER 12 = Numerical Solutions to Partial Differential Equations

Thus, the difference equation,
e 22
wip = (1 =2 flx) + ?f(xi—i—l) + zf(xi—l) + kg(xi), (12.25)

canbeused to find w; ;, foreachi = 1,2, ...,m—1. To determine subsequent approximates
we use the system in (12.22).

Algorithm 12.4 uses Eq. (12.25) to approximate w; 1, although Eq. (12.24) could also
be used. It is assumed that there is an upper bound for the value of ¢ to be used in the
stopping technique, and that k = T /N, where N is also given.

Wave Equation Finite-Difference

To approximate the solution to the wave equation

92 92
a—t;t(x,t)—a28—):(x,t)=0, O<x<l!l, 0<t<T,

subject to the boundary conditions
u0,t) =u(ll,t) =0, 0<t<T,
and the initial conditions
u(x,0) = f(x), and %(x, 0)=gkx), for 0<x<I

INPUT endpoint /; maximum time T'; constant «; integers m > 2, N > 2.
OUTPUT  approximations w;; to u(x;, ;) foreachi =0,...,mandj=0,...,N.
Step 1 Seth =1/m;

k = T/N;
A =ka/h.
Step2 Forj=1,...,Nsetwy; =0;

Wipj = 0;

Step 3 Set woo = f(0);

Wmo = f(0).
Step4 Fori=1,...,m—1 (Initialize fort =0andt =k.)

set wip = f(ih);

)\(2
wiy = (1 =A%) f(ih) + E[f((i + Dh) + f((G = D)1 + kg(ih).

Step5 Forj=1,...,N—1 (Perform matrix multiplication.)

fori=1,....m—1
set Wi j+1 = 2(1 — )\,2)11},',]' + )\,Z(U)H_]J' + w,-_u) — Wjj—1-

Step6 Forj=0,...,N

set t = jk;
fori=0,...,m
set x = ih;

OUTPUT (x, 1, ;).

Step 7 STOP. (The procedure is complete.) [
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12.3 Hyperbolic Partial Differential Equations 743

Example 1 Approximate the solution to the hyperbolic problem

2 82
(xt) u(xt)—O 0<x<1, 0<t

with boundary conditions
u0,t) =u(l,r) =0, for 0 <1,
and initial conditions
u(x,0) =sin(wx), 0<x<1, and Z—L;(x,O) =0, 0<x<l,

using 4 = 0.1 and k = 0.05. Compare the results with the exact solution

u(x,t) = sinmwxcos2mt.

Solution Choosing h = 0.1 and k = 0.05 gives A = 1, m = 10, and N = 20. We will
choose a maximum time 7 = 1 and apply the Finite-Difference Algorithm 12.4. This
produces the approximations w; y to u(0.1i,1) fori = 0,1, ..., 10. These results are shown

Table 12.6 in Table 12.6 and are correct to the places given. [
i i The results of the example were very accurate, more so than the truncation error O (k> +
0.0 0.0000000000 h*) would lead us to believe. This is because the true solution to the equation is infinitely
0.1 0.3090169944 differentiable. When this is the case, Taylor series gives
0.2 0.5877852523
0.3 0.8090169944 u(xir1, 1) — 2u(x;, ) + u(x;—1, )
0.4 0.9510565163 h2
0 o Pu [P

: : (x,t)+2[ ) + = — () + - }
0.7 0.8090169944 v 419x4 T e axs Y

0.8 0.5877852523

09 03090169944 and
1.0 0.0000000000 Ui tie1) — 2u(xin 1)) + u(xi )
k2
2 2 a4u h4 36
(x,,tj)+2|:4' a7 4(x,,tj)—i- ol 71 6(x,,tj)—i- j|

Since u(x, t) satisfies the partial differential equation,

w(xis 1) — 2u(xi, ) +u(xi, -1) o2 u(Xiy1, ) — 2u(x;, ;) + u(xi-1, t;)

k2 h?
84
—2[ T (k2 L (1) — oI 3 4(x,,t])>
1 (49 o? 3u
+6’ k (x,,tj) ht Py 6(x,,tj) + . (12.26)
However, differentiating the wave equation gives
,0%u 92 0u 02 [9%u
'S 34(’““’1) Ko [azﬁm,g)} =a2k28—[ v (m,)}
2 0’u d*u
kzd ) [ 2 (xl’t])] = Ol4k2() 4(xl’t])
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744 CHAPTER 12 = Numerical Solutions to Partial Differential Equations

and we see that since 1> = (o?k>/h%) = 1, we have

4 4 2 4
41! [lé%m,t,) - a2h2gTZ(xi, t]-)] - Z—![azk2 _ hz]%(xi,tj) —0.
Continuing in this manner, all the terms on the right-hand side of (12.26) are 0, implying
that the local truncation error is 0. The only errors in Example 1 are those due to the
approximation of w;; and to round-off.

As in the case of the Forward-Difference method for the heat equation, the Explicit
Finite-Difference method for the wave equation has stability problems. In fact, it is necessary
that A = ak/h < 1 for the method to be stable. (See [IK], p. 489.) The explicit method
given in Algorithm 12.4, with A < 1, is O(h®> + k?) convergent if f and g are sufficiently
differentiable. For verification of this, see [IK], p. 491.

Although we will not discuss them, there are implicit methods that are unconditionally
stable. A discussion of these methods can be found in [Am], p. 199, [Mi], or [Sm,G].

EXERCISE SET 123

1. Approximate the solution to the wave equation
52 52

ﬂ—ﬂ=o, O<x<l1, O<t¢

ar? 9x?

u0,t) =u(l,t) =0, O0<t,

u(x,0) =sinmx, 0<x<l,
d
S0 =0 0=x=1,

using the Finite-Difference Algorithm 12.4 withm = 4, N = 4, and T = 1.0. Compare your results
at r = 1.0 to the actual solution u(x, ) = cos 7t sin wx.

2. Approximate the solution to the wave equation
0%u 1 0%u
arr 1672 9x?

u(0,t) =u(0.5,1) =0, 0<t,

=0, 0<x<05 0<t

u(x,00 =0, 0=<x<0.5,

a
T”:(x, 0) = sindmx, 0<x<0.5,
C
using the Finite-Difference Algorithm 12.4 withm = 4, N = 4 and T = 0.5. Compare your results
at t = 0.5 to the actual solution u(x, t) = sin ¢ sin 4 x.
3. Approximate the solution to the wave equation
u 9u
arr  ox?
u,t) =u(x,t) =0, 0<t,

=0, O<x<m O<t

u(x,0) =sinx, 0<x<m,
J

Zx0=0 0=x=<m,
ot

using the Finite-Difference Algorithm with # = 7/10 and k = 0.05, with 7 = 7 /20 and k = 0.1,
and then with & = 7/20 and k& = 0.05. Compare your results at + = 0.5 to the actual solution
u(x,t) = costsinx.
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12.3 Hyperbolic Partial Differential Equations 745

4. Repeat Exercise 3, using in Step 4 of Algorithm 12.4 the approximation
wi; = wio +kg(x;), foreachi=1,...,m—1.
5. Approximate the solution to the wave equation

u  d%u
ar? 0x2

u,))=u(l,n =0, 0<t,

=0, 0<x<1,0<m

u(x,0) =sin27x, 0=<x<I,
Ju .
E(x,O) =2msin2nrx, 0<x<l1,

using Algorithm 12.4 with 2 = 0.1 and £ = 0.1. Compare your results at ¢ = 0.3 to the actual solution
u(x,t) = sin2mwx(cos 2wt + sin 27wt).
6. Approximate the solution to the wave equation
Pu  9u
P
w0, =u(l,t)=0, O0<t,

=0, 0<x<1,0<1

1,
u(x,0) = |

d
M0 =0 0<x<l.
at

using Algorithm 12.4 with 4 = 0.1 and k = 0.1.

7. The air pressure p(x, ¢) in an organ pipe is governed by the wave equation

?p 13

F——ZW, O<x<I[,0<t,
X C

where [ is the length of the pipe, and ¢ is a physical constant. If the pipe is open, the boundary
conditions are given by

p0,1) =po and p(l,1) = po.

If the pipe is closed at the end where x = [, the boundary conditions are
ap
p0,1) =py and —(,1)=0.
ax
Assume that ¢ = 1, [ = 1, and the initial conditions are
ap
px,0) = pgcos2mx, and E(x,O) =0, 0<x<l1.

a.  Approximate the pressure for an open pipe with py = 0.9 at x = % for# = 0.5 and r = 1, using
Algorithm 12.4 with h = k = 0.1.
b. Modifty Algorithm 12.4 for the closed-pipe problem with py = 0.9, and approximate p(0.5,0.5)
and p(0.5,1) using h = k = 0.1.
8. In an electric transmission line of length / that carries alternating current of high frequency (called a
“lossless" line), the voltage V and current i are described by

2V v
—=IC—, O0<x<[,0<t
0x2 or?
9%i 9%i
@chm, O0<x<I[,0<t;
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where L is the inductance per unit length, and C is the capacitance per unit length. Suppose the line
is 200 ft long and the constants C and L are given by

C = 0.1 farads/ft and L = 0.3 henries/ft.
Suppose the voltage and current also satisfy
V(0,1) =V(200,t) =0, 0<t;

X
V(x,0) =110sin —, 0 <x <200;
(x,0) SmZOO <x<

oV
—(x,0)=0, 0<x<200;
Jat
i(0,t) =i(200,r) =0, O0<1,

(x,0) = 5.5c08 ——, 0 < x < 200;
(X, =J. COSZOO, <X = 5

and

9i
a—;(x,O) =0, 0<x=<200.

Approximate the voltage and current at ¢+ = 0.2 and # = 0.5 using Algorithm 12.4 with # = 10 and
k=0.1.

12.4

Finite elements began in the
1950s in the aircraft industry.
Use of the techniques followed a
paper by Turner, Clough, Martin,
and Topp [TCMT] that was
published in 1956. Wide spread
application of the methods
required large computer
recourses that were not available
until the early 1970s.

An Introduction to the Finite-Element Method

The Finite-Element method is similar to the Rayleigh-Ritz method for approximating
the solution to two-point boundary-value problems that was introduced in Section 11.5.
It was originally developed for use in civil engineering, but it is now used for approx-
imating the solutions to partial differential equations that arise in all areas of applied
mathematics.

One advantage the Finite-Element method has over finite-difference methods is the rel-
ative ease with which the boundary conditions of the problem are handled. Many physical
problems have boundary conditions involving derivatives and irregularly shaped boundaries.
Boundary conditions of this type are difficult to handle using finite-difference techniques
because each boundary condition involving a derivative must be approximated by a differ-
ence quotient at the grid points, and irregular shaping of the boundary makes placing the
grid points difficult. The Finite-Element method includes the boundary conditions as inte-
grals in a functional that is being minimized, so the construction procedure is independent
of the particular boundary conditions of the problem.

In our discussion, we consider the partial differential equation

9 9 9 9
e (p(x,y)—u> + — (q(x,y).—u> + r(x, yulx,y) = f(x,y), (12.27)
X dax ay dy

with (x,y) € D, where D is a plane region with boundary S.
Boundary conditions of the form

u(x,y) = g(x,y) (12.28)
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