

The Hashemite University Faculty of Science Department of Physics

Mathematical Physics (II) **Course Title: Course Number:** 110102282 Spring 2023/2024 **Semester:** Year: **Designation:** Compulsory **Prerequisite(s):** 11010281 gassem@hu.edu.jo **Instructor:** Dr. Gassem Alzoubi **Instructor's e-mail:**

Webpage: http://staff.hu.edu.jo/gassem

Office Hours: Monday and Wednesday, 1:00 – 2:00 Pm, Physics Building, Room # 107

Course Description (catalog): Physics 282 is the second course in a two-semester sequence of mathematical physics courses for physics majors. It introduces students to a variety of basic and advanced mathematical tools that will be used in subsequent physics courses. It involves curvilinear coordinates, special functions and integrals (factorial, gamma, beta, and delta functions; Gaussian integrals), series solutions of Legendre, Bessel, and Hermite differential equations, partial differential equations: Laplace's equation in rectangular and spherical coordinates systems.

. Textbook(s) and/or Other Supplementary Materials:

Textbook: Mathematical Methods in the Physical Sciences, third edition by Mary L. Boas (Wiley, New York, 2006)

References:

- (1) Mathematical Methods for Physicists, 6th edition by George B. Arfken and Hans J. Weber (Academic Press, Elsevier, 2013)
- (2) Mathematical Methods for Physics and Engineering, third Edition by K. F. RILEY, M. P. HOBSON and S. J. BENCE (Cambridge University Press, 2006)

Major Topics Covered:

Topics	No. of Week	Contact hours*	Chapter in Text	Sections	Suggested Problems (from textbook 3d edition)
Curvilinear coordinates and vector operations in orthogonal curvilinear coordinates: cartesian,	2	6	10	10.8-10.9	HW#1 : 10.8.1, 10.8.8, 10.8.15, 10.9.16-21
spherical, and cylindrical coordinate systems					
Special Functions: the factorial function, Gamma function, Beta	3	9	8 and 11	8.11, 11.1-	HW#2 : 11.3.2, 11.3.5, 11.3.10, 11.3.12, 11.5.1,
function, Stirling's formula,				11.7,	11.5.3-5, 11.7.2-3, 11.7.6,
Dirac delta function				11.11	11.7.9-11, 11.11.5,
					8.11.13, 8.11.15, 8.11.21(d), 8.11.18(d),
					8.11.23(c),
		First Ex	xam		
Series Solutions of Differential	6	18	12	12.1-	HW#3 : 12.1.2-4, 12.1.9,
Equations; Legendre, Bessel, and				12.10,	12.1.5,
Hermite				12.12-	HW#4 : 12.2.1-3, 12.4.3,
				12.17,	12.5.3-4, 12.5.11, 12.6.2-
				12.19,	3, 12.6.5-6, 12.6.9,
				12.22	HW#5 : 12.7.4-6, 12.8.1-
					2, 12.8.4, 12.9.2, 12.9.12,
					12.10.2, 12.10.4,
					HW#6 : 12.12.1-2,
					12.12.4-5, 12.12.7,
					12.13.2-3, 12.13.6,
					12.14.1-6
					HW#7 : 12.15.7(a),

							12.15.8, 12.16.2,
							12.16.14, 12.17.3-4,
							12.19.2, 12.23.14
							HW#8 : 12.22.7, 12.22.9,
							12.22.11,
			Second I	Exam	ı		
Partial Differential Equ	uations:	4	12		13	13.1-	HW#9 : 13.2.1, 13.2.3-4,
Laplace's equation in r	rectangular					13.3,	13.2.10-13, 13.3.2-3,
coordinates, steady-sta	te					13.5,	13.3.6, 13.3.8, 13.3.11-12
temperature distributio	n in semi-					13.7,	
infinite and finite plate	. the						HW#10 : 13.7.1, 13.7.9,
diffusion and heat flow	equation:						
heat flow through a slab,							
Schrodinger equation and particle							
in a box problem. Laplace's							
equation in spherical coordinates,							
steady-state temperature in a							
sphere with azimuthal symmetry							
(m=0) and without azimuthal							
symmetry (m#0: introducing							
spherical harmonics).	-						
Final Exam							
Total	15		4				
			5				

^{*}Contact hours include lectures and exams

Specific Outcomes of Instruction (Course Learning Outcomes):

After completing the course, the student will be able to:

	Course Learning Outcomes (CLO)	(SO*)
CLO1.	Develop fundamental mathematical methods, techniques, and skills required for a physics major as an integral part of the student's overall education	(a), (k), (i)
CLO2.	Use several techniques to solve advanced integrals involving Factorial, Gamma, Betta, delta functions, and Gaussian integrals	(a), (k)
CLO3.	Demonstrate the ability to solve partial second order linear differential equations with initial and boundary conditions in various fields of physics, such as mechanics, quantum, and electricity	(a), (e) (k)

 (SO^*) = Student Outcomes Addressed by the Course.

Student Outcomes (SO) Addressed by the Course:

#	Outcomes Description	Contribution
	Applied and Natural Sciences Student Outcomes	
(a)	an ability to apply knowledge of mathematics, science, and applied sciences	Н
(b)	an ability to design and conduct experiments, as well as to analyze and interpret data	
(c)	an ability to formulate or design a system, process or program to meet desired needs	
(d)	an ability to function on multidisciplinary teams	
(e)	an ability to identify and solve applied sciences problems	L
(f)	an understanding of professional and ethical responsibility	
(g)	an ability to communicate effectively	
(h)	the broad education necessary to understand the impact of solutions in a global and societal context	

(i)	(i) a recognition of the need for, and an ability to engage in lifelong learning				
(j)	a knowledge of contemporary issues				
(k)	an ability to use the techniques, skills, and modern scientific and technical tools necessary for professional practice.	М			
	H = High, M = Medium, L = Low				

Grading Plan: 1st Exam 30 Points **TBA**

2nd Exam 30 Points **TBA** Final exam 40 Points **TBA**

General Notes: Attendance Policy: students are expected to attend every class and arrive on

time in compliance with HU regulations. In case you find yourself in a situation that prevents you from attending class or exam, you have to inform your instructor. If you miss more than 6 classes for the (Sunday, Tuesday, and Thursday model) or 4 classes for the (Monday and Wednesday Model), you cannot pass the course. Makeup excuses will be accepted only for very limited

justified cases, such as illness and emergencies.

Prepared by: Dr. Gassem Alzoubi Date: Feb, 25, 2024