Phys 761 Quantum Mechanics Problem Set # 1

Dr. Gassem Alzoubi The Hashemite University Department of Physics, Zarqa, Jordan

- 1. Show that $[\hat{H}, \hat{L}_z] = 0$ and $[\hat{H}, \hat{L}^2] = 0$, where $\hat{H} = \hat{p}^2/2m + V(r)$
- 2. The wavefunction of an electron in the Hydrogen atom is given by $\psi(r, \theta, \phi) = -B(x + iy) \exp(-r/2a_0)$, where B is a real constant and a_0 is the Bhor radius.
 - (a) Write down $\psi(r, \theta, \phi)$ in terms of $R_{nl}(r)$ and $Y_{l,m}(\theta, \phi)$ and find the values of the quantum numbers n, l, m
 - (b) Find the constant B that makes the state $\psi(r, \theta, \phi)$ normalized
 - (c) Find the mean value of r in this state
 - (d) Find the most probable value of r in this state
- 3. Consider an electron in the Hydrogen atom that is being represented by the following mixed state

$$\Psi(r,\theta,\phi) = 2\psi_{1,0,0} + \psi_{2,1,0}$$

- (a) Normalize the wavefunction
- (b) What is the probability of finding the electron in the state n = 3
- (c) What are the possible results of individual measurements of energy, angular momentum, and the zcomponent of angular momentum
- (d) What are the probabilities of the possible results of individual measurements of energy, angular momentum, and the z-component of angular momentum
- 4. Consider a particle of mass m in a three dimensional delta function potential well given by

$$V(r) = -g\delta(r-a)$$

where g is a constant. What is the range of values of the constant g that support a bound state. hint: take l = 0

5. Work out the schrodinger equation in polar coordinates ρ and ϕ , with $x = \rho \cos \phi$, $y = \rho \sin \phi$ for a potential that depends only on ρ . If the solution of the equation $\Psi(\rho, \phi)$ is written as $R(\rho)\Phi(\phi)$, what is the equation obeyed by $\Phi(\phi)$. What is the equation for $R(\rho)$.

Good Luck