Part III: MECHANICAL PROPERTIES

Chapter 11: Cohesion of Solids

Dr. Gassem Alzoubi

What holds crystal together?.

Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. Forming a crystal implies that the energy of the crystal is lower than the energy of the free atoms. The amount of energy which is required to decompose the crystal into a set of free atoms is called the cohesive energy of the crystal, so

Cohesive energy = energy of free atoms - crystal energy

= NEatom - Esolid(N); where Eat is the energy of an isolated atom, Esolid (N) energy of blue of E>0, solid is stable E(0; solid is unstable and honce easity be formed. E varies for different solids from 1 to 10 eV/atom except inortgases in which E/N is ~ o.l ev/abom. The cohesiven energy (&) controls blue melbing temperature us a solid 11.2: Von der waals boneling in inert gasses:

consider an inert gas crystal composed of Nations. consider a pair of aboms separated by a distance visi When blue internation energy between the tow aboms is siven by of (risi)

who total interaction (Potantial) energy
af all aloms is given by

(i)
(i) E = N \(\Po\text{(Vij)} \); but potential energy of is -> \(\text{ixi and run over} \) atom i si is blu samesas potantial energy of isi so to avoid double counting, we divide by 2 =) $E = \frac{N}{2} \sum_{ij} \Phi(r_{ij}); \text{ with } \Phi(r) = -HE \left[\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^7 \right]$ where

or = characterstic length

Tennard-Jones 6-12 Potential

con be measured

experimentally.

HE = characterstic energy.) experimentally. on the control of the first of (den to dif-difo internetions)

(van der waals)

~ - \frac{1}{16} from Ashand Fig 20.1

so for large separation r>ro, blue force is attraction, tending to pull the abouts to gether. on the other hand, for r<ro, the force belowes refulsive, rending to publishe atoms a part. The repulsive and attractive hordes cancel each other exactly at v=vo i.e FA+FR=b, which is bhe equilibrium separation distance. The origin of the repulsive hore is mainly due to Paule exclusion principle, two deetrons can not occupy but same orbital. As aboms approach each other, the orbits of the dectrons begin to overlap. That is harbidden by Pauli principle, as it increases the total energy of the systems Historically, whis term was proposed to be ~ 1/12 what quite well fits experimental data of inert gas crystals. - the 2nd term ~ 16 originates from dif-dif inhemeding recall bhat the charge distribution in a single about is spherically symmetric. here its difole moment P=0. However, at any moment of time, where may be non-zero destric dipole moment bhat is caused by fluctuations of the electronic charge around Whe atom. According to EM bhovey, whis differ moment produce au dectric hield given by

This field inbevacts with a selond inbevacts with a selond dipole placed at a distance r with an intersection energy (totantial) given by Pi y $\phi(\vec{r}) = -\vec{r}_2 \cdot \vec{E}_{dip}$ $=-\frac{1}{41280}\int_{V^3}\left[3(\vec{P_1}\cdot\hat{r})(\vec{P_2}\cdot\hat{r})-\vec{P_1}\cdot\vec{P_2}\right]$ $=\frac{1}{42\cos \sqrt{3}}\left[\vec{P_1}\cdot\vec{P_2}-3(\vec{P_1}\cdot\hat{r})(\vec{P_2}\cdot\hat{r})\right]$ textbook uses Ganssian units

(wibh 1 - 1) (with the = 1) from the 1082 expression, we see that the energy of interaction is proportional to the product of the dipole moments and inversely proportional to the cube of the distance i 1'c $\phi \sim -\frac{P_1P_2}{\gamma^3}$ P_1 : electric dilate at about (1) caused by charge fluctuations of alrow (2)
2:
which is induced by blue field of blue first dipole. NOW P2 = X2 Edip ~ X2 P1 } rime-average $\Rightarrow \phi \sim -\alpha_2 \frac{P_1^2}{V_0^2}; \text{ Note bhat albhough } \langle P_1(b) \rangle = 0/2$ $\sim -\frac{1}{2}, \qquad \langle P_1^2(b) \rangle + \frac{1}{2}$ ~ - 1 => for formal derivation, See trittel chapter 3

coming back to L-J (6-12) Potential given by $\phi(r) = -42\left[\left(\frac{\sigma}{r}\right)^6 - \left(\frac{\sigma}{r}\right)^{12}\right]$; σ, ξ an measured experimentally for inert gases in the gaseous state and in the low density limit, and the corresponding values for inent gas crystals are deduced from Nobel 205 He Ne Ar Hr Xe

Nobel 205 He No Ar Hr Xe

E(ev) 8.6 x10⁻⁴ 0.0031 0.0104 0.0104 0.020

Or (A) 2.56 2.74 3.4 3.65 3.98 3.98 Table 11.3 in text book. Now consider an inert gas crystal with N atoms. Pick up an about located at the origin (R=D) and assuming bhat bhis aboun interact with all other alons (R + D) bhrough L-J Potential, when the total energy i's given by i d $\varepsilon = \frac{1}{2} N \lesssim \phi(\vec{R})$ = \frac{1}{2} N HE \frac{2}{R^2 \div 0} \left(\frac{\pi}{R} \right)^{12} - \left(\frac{\pi}{R} \right)^6 \right] 4 3D Bravais Lattice of inert gas crystal => energy for atom R: Bravais Lattice $\frac{\mathcal{E}}{N} = 2 \mathcal{E} \left[\left(\frac{O}{R} \right)^{12} - \left(\frac{O}{R} \right)^{6} \right]$ vector d: nearest neighbor distance This can be written as

$$E/N = 2E \sum_{R \neq 0} \left(\frac{\sigma}{d}\right)^{12} \left(\frac{d}{R}\right)^{12} - \left(\frac{\sigma}{d}\right)^{6} \left(\frac{d}{R}\right)^{6}$$

$$= 2E \left(\frac{\sigma}{d}\right)^{12} \sum_{R \neq 0} \left(\frac{d}{R}\right)^{2} - \left(\frac{\sigma}{d}\right)^{6} \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6}$$

$$= 2E \left(\frac{d}{R}\right)^{12} - \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right), where$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right)$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right)$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right)$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right)$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} \right)$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \right)$$

$$Al = \sum_{R \neq 0} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} \left(\frac{d}{R}\right)^{6} + \frac{d}{R} \left(\frac{d}{R}\right)^{6} +$$

Notice that A12 is dominated by the nearest Notice that A12 is dominated by the nearest 8 in bcc) weigh bours (12 in fee and het, and 8 in bcc) but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neigh bours affect A6. To find but more distant neighbours affect A6. To find but more distant neighb

$$\frac{d(4)}{dd} = 0 = 12 \in \left[-2 \frac{A_{12}}{do}\right]^{12} \cdot \frac{1}{do} + A_{1}\left(\frac{\sigma}{do}\right)^{6} \cdot \frac{1}{do}$$

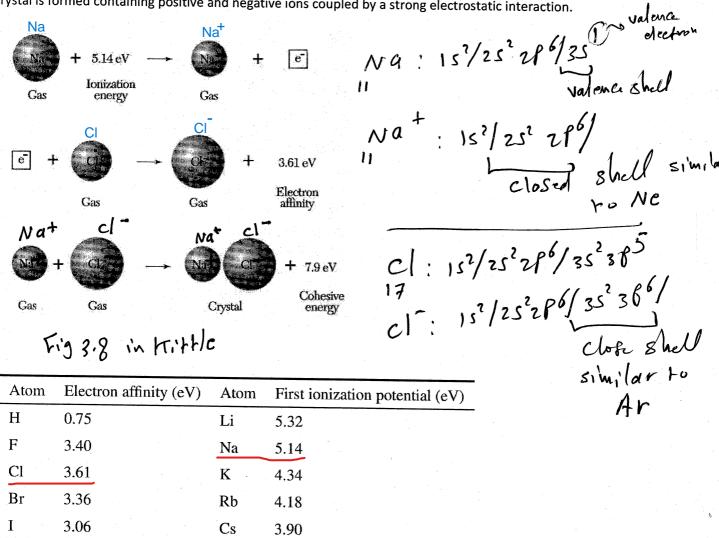
$$= \frac{12 \cdot \epsilon}{d^{3}} \left[A_{1}\left(\frac{\sigma}{do}\right)^{6} - 2 \frac{A_{12}}{do}\right]^{12} \right] = 0$$

$$\Rightarrow A_{1}\left(\frac{\sigma}{do}\right)^{6} = 2 \frac{A_{12}}{do}\left[\frac{\sigma}{do}\right]^{12} \Rightarrow A_{6} = 2 \frac{A_{12}}{do}\left[\frac{\sigma}{do}\right]^{6}$$

$$\Rightarrow \frac{\sigma}{do} = \left(\frac{A_{12}}{A_{12}}\right)^{1/6} \Rightarrow \frac{\sigma}{do} = \left(\frac{2 \frac{A_{12}}{A_{12}}\right)^{1/6}}{\frac{A_{12}}{A_{12}}} \Rightarrow \frac{\sigma}{do} = \left(\frac{A_{12}}{A_{12}}\right)^{1/6}$$

$$= 2 \cdot \epsilon \left(\frac{A_{12}}{A_{12}}\right)^{1/6} \Rightarrow \frac{\sigma}{do} = \frac{2 \cdot \epsilon}{A_{12}} \left(\frac{A_{12}}{A_{12}}\right)^{1/6} \Rightarrow \frac{\sigma}{do} = \frac{\sigma}$$

NOW for any thermodynamic system, the internal energy $\mathcal{E} = \mathcal{E}(S, V, N)$ = or U = U(S, V, N) in other textbooks dE = dU = Tds - Pdv +MdN for fixed N and at T=0 => dE=-PdV $\Rightarrow P = -\left(\frac{\partial \mathcal{E}}{\partial V}\right) \Rightarrow \left(\frac{\partial P}{\partial V}\right)_{T} = -\frac{\partial^{2} \mathcal{E}}{\partial V^{2}}$ => $B = -V\left(\frac{\partial P}{\partial V}\right)_T = V\frac{\partial^2 E}{\partial V^2}$; let us calculate B for an fee Lattice, that has U atom/whiteell nearest-neighbour $do = \frac{\sqrt{2}9}{2} \times \frac{\sqrt{2}}{\sqrt{2}}$ $=\frac{2\sqrt{2}}{2\sqrt{2}}a = \frac{9}{\sqrt{2}}$ Volume Per about = $\frac{a^3}{4} = \frac{V}{N}$ $\Rightarrow \frac{1}{N} = \frac{a^{3}}{1} = \frac{(\sqrt{2} d_{0})^{3}}{1} = \frac{3}{2} \frac{1}{2} \frac{1}{3} \Rightarrow \frac{3}{2} \frac{1}{3} \frac{1}{2} \frac{1}{N}$ = V2 N $\Rightarrow do = 2^{\frac{1}{6}} \frac{\sqrt{1/3}}{\sqrt{1/3}}, 50$ $E = 2NE \left[A_{12} \left(\frac{\sigma}{J_0} \right)^{12} - A_6 \left(\frac{\sigma}{J_0} \right)^6 \right]$ $=2NE\left[\frac{A_{12}O^{12}N^{4}}{4V^{4}}-A_{6}\frac{a^{6}N^{2}}{2V^{2}}\right]$ $= \frac{5^{2} \varepsilon}{50^{2}} = 2N \varepsilon \left[A_{12} \frac{200^{12} N^{4}}{40^{6}} - A_{6} \frac{60^{6} N^{2}}{2V^{4}} \right]$


Table 11.5. Properties of noble gases compared with predictions of Lennard-Jones potentials

Noble Gas	Ne	Ar	Kr	Xe
Experimental d_0 (Å)	3.13	3.75	3.99	4.33
d_0 from Eq. (11.10) (Å)	2.99	3.71	3.98	4.34
Experimental \mathcal{E}/N (eV/atom)	-0.02	-0.08	-0.11	-0.17
\mathcal{E}/N from Eq. (11.11)	-0.027	-0.089	-0.120	-0.172
Experimental B (dyne/cm ²)	$1.1 \cdot 10^{10}$	$2.7 \cdot 10^{10}$	$3.5 \cdot 10^{10}$	$3.6 \cdot 10^{10}$
<i>B</i> from Eq. (<u>11.13</u>)	$1.81 \cdot 10^{10}$	$3.18 \cdot 10^{10}$	$3.46 \cdot 10^{10}$	$3.81 \cdot 10^{10}$

Results show agreement at roughly the 10% level. Source: Ashcroft and Mermin (1976), p. 401.

Ionic Bonding:

Crystals that can be pictured as formed by positive and negative ions are referred to as ionic crystals. An important quantity in the study of ionic crystals is the Coulomb interaction energy (Madelung energy) between ions of the crystals in the point ion approximation. The cohesive energy for an ionic crystal is the energy required to dissociate the lattice into positive and negative ions at infinite separation. Four common types of structures found in ionic crystals are NaCl structure which is face-centered cubic and CsCl which is body-centered cubic, zincblende structure, and the wurtzite structure. Let us now consider the case NaCl which is one of the best examples of an ionic compound. In the crystalline state, each Na atom loses its single valence electron to a neighboring Cl atom, producing Na⁺ and Cl⁻ ions which have filled electronic shells. As a result an ionic crystal is formed containing positive and negative ions coupled by a strong electrostatic interaction.

The ionization energy of Na is 5.1 eV and the electron affinity (the energy gained when the atom gains an electron) of a Cl atom is 3.6 eV. These events are unfavorable on their own.

The cohesive energy for one pair of NaCl is conventionally taken to be the energy needed to separate the ions of NaCl into free ions (Na+ and Cl-) at rest and at infinite separation.

In the NaCl crystal, the total cohesive energy results from two contributions: the long-range Coulomb interactions between the charged ions and the short-range core—core repulsion due to the Pauli principle prevents the crystal from collapsing

Whe cohesive energy per i'on pair takes the form Nion Pair = - $\propto \frac{e^2}{d} + \frac{C}{d!^2}$; $\propto is called$ Nadeling constant
(dimension less)

E (Madeling energy)

E (C)

E (Madeling energy)

E (C)

E (D)

E (Alled

Dased on

Experimental

observations)

to hind \propto Now let us see how to hind a to hind a (1) 1D chain 1D chain $\frac{2d}{d} = \frac{1}{d} + \frac{1}{d} + \frac{1}{d} = \frac{1}{d} = \frac{1}{d} + \frac{1}{d} = \frac{1$ $= \frac{e^2}{d} \left[2 \left(-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \cdots \right) \right]$ $= -\frac{e^2}{d} \left[2 \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \right) \right] = - \alpha \frac{e^2}{d}$ when x = 2 (1-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ---) = 2 ln 2 = 1.386 relad that ln(1+x) = x-x2+x3-... => let x=1 => $l_{1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots$ \times always > 0

3D Lattice:

of 1st nn = 6 at adistance of

1, 2 nn = 12 at distance \(\frac{1}{2} \) d

1 3d nn = 8 at \square

" " " nn = 6 at JA d= 2d

1 5th nn = 211 at 15 d

and so on,

the coulomb energy of the

wat i'm placed at bhe

origin is the sum

$$\sqrt{3}$$
 d $\sqrt{6}$ d $\sqrt{5}$ d $\sqrt{5}$ d $\sqrt{6}$

$$\mathcal{E} = -\frac{6e^2}{d} + \frac{12e^2}{\sqrt{2}d} - \frac{8e^2}{\sqrt{3}d} + \frac{6e^2}{\sqrt{4}d} - \frac{24e^2}{\sqrt{5}d} + \cdots$$

$$= -\frac{e^2}{J} \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{12}} - \frac{6}{\sqrt{14}} + \frac{24}{\sqrt{5}} - \cdots \right) = -\frac{e^2}{J}$$

tohe value of a is deformined by tohe Deometry of the lattice only and independent of the ionic vactions and charge. The above & coulis actually to he

coulomb energy of one pair of Nacl. The total

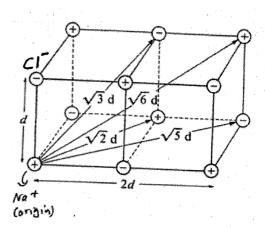

contomb energy is Exot = - Njon pairs of

Table 11.7. Madelung constants α for the most common ionic crystal structures

Structure		Made	lung const	ant α			
Cesium chloride	1.76268						
Sodium chloride	1.74757						
Wurtzite	1.638704						
Zincblende		1.638		- Company of the Comp			
$\frac{\mathcal{E}}{N_{ion}} = -\frac{1}{N_{ion}}$ $= \frac{1}{N_{ion}} \left(\frac{\mathcal{E}}{N_{ion}}\right)$		ط <u>د</u> ۱۷/۵	d Pairs	hind do and A equilibrium distante			
01 01		$\frac{xe^2}{J_0^2} - \frac{12C}{J_0^{13}} =$					
s) i.e do:	$= \frac{12C}{e^2\pi} = $	$\frac{c}{d_0''} = \frac{e^2 a}{12}$	<u>'</u> =>	$\frac{C}{do^{12}} = \frac{e^2 \kappa}{12 do}$			
=) E Nion-Bair	- xe2 +	$\frac{de^{2}}{12do} = \frac{de^{2}}{do}$ $\frac{de^{2}}{do} = \frac{de^{2}}{do}$ $\frac{de^{2}}{do$	$\frac{1}{12}$	$-1) = -\frac{11}{12} \propto \frac{e^2}{J_0}$ 11.8 (11.26)			
ave compare							
			[T.]	; where ke = 9x109			
Compound	•	l Experimental	Eq. (1				
	d_0 (Å)	$\mathcal{E}/N_{\text{ion pairs}}$ (eV)	$\mathcal{E}/N_{\rm ior}$	pairs (eV)			
LiF	2.01	10.83	11.45				
LiCl	2.57	8.85	8.98				
LiBr	2.75	8.51	8.39				
LiI	3.01	7.92	7.66				
NaCl	2.82	8.18		for detailed calculation of cohesive			
NaF	2.32		8.18	energy per NaCl molecule, see problem			
* ***	have a J have	9.62	9.96	4 in HW#7			

Calculation of Madelung constant for NaCl numerically:

rake ble Natas areference ion (but not the reference one) is $\vec{R} = N_1 d \vec{c} + N_2 d \vec{j} + N_3 d \vec{k}$ Na+
(ongin)

= d(nii+ nzj+ nzh); when d is the NN distance => $|\vec{R}| = d\sqrt{N_1^2 + N_1^2 + N_3^2} => |\vec{R}| = \sqrt{N_1^2 + N_2^2 + N_3^2}$, with M1, M2, M3 = ±1, ±2, ±3, ---- . Note 6 hab Nhe sign of each ion is given by (-1) M1+M2+M3, 50 the general definition of Madelung constant & is

See blat ble term (-1) NI+MZ+M3 alternate ble sign and the term $\sqrt{N_1^2 + N_2^2 + N_3^2}$ is the distance between any ion and the reference ion located at the origin. d is defined such that the electrostatic Potantial energy (coulomb energy) i's given by

. d must be positive Ecoul = - he et x quantity

bub bhz sum i'n $\alpha = \sum_{n_1,n_2,n_3}^{\infty} \frac{(-1)^{n_1+n_2+n_3}}{\sqrt{n_1^2+n_2^2+n_3}}$ of ten

results in a negative value because attractive forces dominate refulsive forces. Thus to allign with whe standard definition of $\alpha > 0$, we take the absolute value of α , in case it is negative. Technically, α is the value obtained when the size of crystal $L \to \infty$, but practically, one get a good approximation by truncating the sum at large value of L. Let us assume a cubic box around the reference ion (Nat) located at (01010), with n ions in each direction, so

-~ < N1 < +M , -N < M2 < +M , -N < M3 < M =>

$$\frac{(-1)^{N_1+N_2+N_3}}{\sqrt{N_1^2+N_2^2+N_3^2}}$$

n1: -100 to 100; sum over 200 lattice points along a1 direction

n2: -100 to 100; sum over 200 lattice points along a2 direction

n3: -100 to 100 ; sum over 200 lattice points along a3 direction

overall, the sum is over 200*200*200 = 8,000,000 lattice points

Whe next mathematica code assumes N = 100 and the obtained value of X is X = 1.7418 very close to 1.7476 given in realbook