The Hashemite University	Real Analysis I, First Exam	November 3, 2013
1^{st} semester 2013/2014 Student Name:		Time: One Hour Serial Number:

* Show your work in details, no credit will be given for answers without details.

- 1. (8 points) **State** the following results:
 - (a) The Density Theorem of the rational numbers.
 - (b) The Completeness Property of the Real numbers.
 - (c) Archimedean Property.
 - (d) Bernoulli's Inequality.
- 2. (5 points) Let S and T be a bounded nonempty subsets of \mathbb{R} , and define

$$S - T = \{s - t : s \in S, t \in T\}.$$

Show that $\sup(S - T) = \sup(S) - \inf(T)$.

- 3. (3 points) For any $\alpha > 0$, $\beta > 0$, there exist $n \in \mathbb{N}$ such that $\frac{\alpha}{n} < \beta$.
- 4. (9 points) Determine whether these statements are true or false, and justify (shortly) why a statement is false.
 - 1. (T F) If $a \in \mathbb{R}$ such that $0 < a < \epsilon$ for every $\epsilon > 0$, then a = 0.
 - 2. $(T \ F)$ If $0 \le a < b$, then $a^2 < ab < b$.
 - 3. $(T \ F)$ The set $S = \bigcup_{n=1}^{\infty} (n, n + \frac{1}{2})$ is bounded below by 1.
 - 4. $(T \ F)$ If A is a nonempty subset of \mathbb{R} that is bounded below, then $\inf(A) = -\sup\{-a : a \in A\}$.
 - 5. (T F) Between any two real numbers there is a unique rational number.
 - 6. (T F) Let $f : \mathbb{R} \to \mathbb{R}$ be bounded. Then $\sup\{f(x^2) : x \in \mathbb{R}\} = \sup\{f(x) : x \in \mathbb{R}\}$.

Good Luck