## **Hashemite** University

# Faculty of Science Department of Basic Science Support





#### **Course Syllabus**

Calculus (1) (110108101) **3 Credit Hours** 

**Pre-requisite:** None

First Semester 2014/2015

| Course Information    |                                                                                                                                                                                              |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Instructor            | Mohammad Alkhalaileh                                                                                                                                                                         |  |
| Office Location       | IT 224                                                                                                                                                                                       |  |
| Office Hours          | 11–12 Sunday, Tuesday and Thursday                                                                                                                                                           |  |
|                       | 9:30-11 Monday and Wensday                                                                                                                                                                   |  |
| Text Book : Calculus, | edition: Calculus, Stewart, Inc. 7 <sup>th</sup>                                                                                                                                             |  |
| References(s)         | 1. Calculus, by Thomas and Finney, 1996, Addison - Wesley publishing Company                                                                                                                 |  |
|                       | <ol> <li>Calculus with Analytic Geometry, by Sowkowiski, 1979, Prindle weber and sehmidl.</li> <li>Calculus with Analytic Geometry, by Leithold, 1986, Harper and Row publishers.</li> </ol> |  |
|                       | Grading plan                                                                                                                                                                                 |  |
| First Exam            | 25 %                                                                                                                                                                                         |  |
| Second Exam           | 25 %                                                                                                                                                                                         |  |

### **Course Objectives**

50 %

To study functions, limits of functions, continuity, derivatives, some applications on derivatives, integration and some applications on integration.

#### **Teaching and Learning Methods**

- 1. Introducing new definitions and using examples to illustrate new concepts.
- 2. Introducing theorems, and their applications.

Final Exam

- 3. Discussing some of the students' solutions of some sample assignment.
- 4. Making a discussion of the problems of each exam.

Course contents

| Sec. In<br>Text | Topics                                                                         | Week  |  |
|-----------------|--------------------------------------------------------------------------------|-------|--|
| 1.1             | Four Ways to Represent a Functions                                             | 1     |  |
| 1.2             | Mathematical Models: A Catalog of Essential Functions                          |       |  |
| 1.3             | New Functions From Old Functions                                               |       |  |
| 1.5             |                                                                                |       |  |
| 1.6             | Exponential Functions                                                          |       |  |
| 2.2             | Inverse Functions and Logarithmic                                              |       |  |
|                 | The Limit of Functions                                                         |       |  |
| 2.3             | Calculating Limits Using the Limit Laws                                        |       |  |
| 2.5             | Continuity                                                                     |       |  |
| 2.6             | Limits at Infinity; Horizontal Asymptotes                                      |       |  |
| 2.7             | Derivatives and Rates of Change                                                |       |  |
| 2.8             | The Derivative as a Function                                                   | 7     |  |
| 3.1             | Derivatives of Polynomials and Exponential Functions                           |       |  |
| 3.2             | The Product and Quotient Rules Introduction to Techniques of Differentiation   |       |  |
| 3.3             | Derivatives of Trigonometric Functions                                         | 8     |  |
| 3.4             | The Chain Rule                                                                 |       |  |
| 3.5             | Implicit Differentiation                                                       | 9     |  |
| 3.6             | Derivative of Logarithmic Functions  Local Linear Approximation, Differentials |       |  |
| 3.10            | Hyperbolic Functions                                                           |       |  |
| 4.1             | Maximum and Minimum Values                                                     | 9-10  |  |
| 4.2             | The Mean-Value Theorem                                                         |       |  |
| 4.3             | How Derivatives Affect the Shape of a Graph                                    |       |  |
| 4.4             | Indeterminate Forms and L'Hôpital's Rule                                       | 11    |  |
| 4.5             | Summary of Curve Sketching                                                     |       |  |
| 4.9             | Antiderivatives                                                                |       |  |
| 5.1             | Areas and Distances                                                            | 12    |  |
| 5.2             | The Definite Integral                                                          |       |  |
| 5.3             | The Fundamental Theorem of Calculus                                            |       |  |
| 5.4             | Indefinite Integrals and the Net Change Theorem                                | 13    |  |
| 5.5             | The Substitution Rule                                                          |       |  |
| 6.1             | Area Between Curves                                                            |       |  |
| 6.2             | Volumes                                                                        | 14-15 |  |
| 6.3             | Volumes by Cylindrical Shells                                                  |       |  |
| 6.5             | Average Value of a Function                                                    |       |  |
|                 |                                                                                |       |  |
|                 |                                                                                |       |  |

Attendance is absolutely mandatory. Students who miss a 15% class sessions without a compelling excuse will qualifies the student to be dismissal.