The gradient obeys the following laws:

\[\nabla (f + g) = \nabla f + \nabla g, \quad \text{(3.10)} \]
\[\nabla (fg) = f \nabla g + g \nabla f ; \quad \text{(3.11)} \]

that is, with the \(\nabla \) symbol,

\[\nabla (f + g) = \nabla f + \nabla g, \quad \nabla (fg) = f \nabla g + g \nabla f. \quad \text{(3.12)} \]

These hold, provided \(\nabla f \) and \(\nabla g \) exist in the domain considered. The proofs are left for the problems.

If \(f \) is a constant \(c \), (3.11) reduces to the simpler condition:

\[\nabla (cg) = c \nabla g \quad (c = \text{const}). \quad \text{(3.13)} \]

If the terms in \(z \) are dropped, the preceding discussion specializes at once to two dimensions. Thus for \(f = f(x, y) \), one has

\[\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}, \]
\[\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j}. \quad \text{(3.14)} \]

PROBLEMS

1. Sketch the following vector fields:

 a) \(\mathbf{v} = (x^2 - y^2)\mathbf{i} + 2xy\mathbf{j}, \)

 b) \(\mathbf{u} = (x - y)\mathbf{i} + (x + y)\mathbf{j}, \)

 c) \(\mathbf{v} = -yi + x\mathbf{j} + k. \)

 d) \(\mathbf{v} = -xi - y\mathbf{j} - zk. \)

2. Sketch the level curves or surfaces of the following scalar fields:

 a) \(f = xy, \)

 b) \(f = x^2 + y^2 - z^2, \)

 c) \(f = e^{x+y-z}. \)

3. Determine \(\nabla f \) for the scalar fields of Problem 2 and sketch several of the corresponding vectors.

4. Show that the gravitational field (3.2) is the gradient of the scalar

 \[f = \frac{km^m}{r}. \]

5. Show that the force field (3.4) is the gradient of the scalar

 \[f = \log \frac{\sqrt{(x - 1)^2 + y^2}}{\sqrt{(x + 1)^2 + y^2}}. \]

6. Prove (3.10) and (3.11).

7. Prove: If \(f(x, y, z) \) is a composite function \(F(u) \), where \(u = g(x, y, z) \), then \(\nabla f = F'(u) \nabla g \).

8. Prove: \(\nabla \frac{f}{g} = \frac{1}{g} [g \nabla f - f \nabla g] \).

9. If \(f = f(x_1, \ldots, x_n) \), then the **Hessian matrix** of \(f \) is the matrix

 \[H = \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right). \]