The Hashemite University De Ordinary Differential Equations (1)	First Exar	n	Time: 60 Minutes
Name (in Arabic): Section number or lecture time:	Student Number:	Injohnustas	_ Serial Number:
		_ Instructor	name:
Question one Circle the law			
Question one: Circle the letter t		orrect answer (2 points each).
1. The differentia equation $yy' = x$	fraction of the second of the second		
a. separable b. linear	homo	ogeneous	d. second order
2. A general solution to $y' = (3x + y)$			
a. $tan^{-1}(3x + y) + x = c$ c. $tan^{-1}(2x + y) + 3x = c$	b. $tan^{-1}(x+y) - tan^{-1}(3x+y)$	3x = c $(x) - x = c$	
3. If $\frac{dy}{dt} = -\ln(t^y)$, $y > 0$ with $y(1)$			
a. 4	c. 4e d.	$\frac{1}{4}e^2$	
4. If $F(x,y) = c$ is a general solution $(2x+4y-2)dx+(y-x-2)dy = c$	0 15		
a. $F(x-1, y+1) = c$ b $F(x-1, y+1) = c$	$+1, y-1) = c \qquad c$	F(x-3,y+2)	f(x) = c d. $F(x+3, y-2) = c$
5. An integrating factor (of the form			
(a) $\mu(x,y) = x + \sqrt[2]{y^{-1}}$ b. c. $\mu(x,y) = \sqrt[2]{x^{-1}} + y$ d.	$\mu(x,y) = x^{-3} + \sqrt[2]{y}$ $\mu(x,y) = \sqrt[2]{x^{-3}} + y$,-3 -3	
6. The particular solution of $(\cos x - $ condition $y = 1$ when $x = 2\pi$ is	$x\sin x + y^2)dx + 2xy$	y dy = 0 that	satisfies the initial
a. $xy^2 - x\cos x = 0$ b. $xy^2 + x\cos x = 4\pi$	$xy^2 - x\cos x = 2\pi$ $xy^2 + x\cos x = 0$		
Question two: Show that $y^2 + (x^2 + y^2)$	$+1)y - 3x^3 - 6 = 0$	is solution for	the following IVP (3 points)
$2xy^2 - 9x^2$	$^{2}y + (2y^{2} + x^{2}y + y)$	$\frac{dy}{dx} = 0, y(0)$) = -3
24y/+ (x2+1)y/+	(2x)y - 9x2=	. } (
(2y+x2+1)y'+	$-2xy-9x^2$	=07	
$(2y+x^2+1)y'+$ $(2y^2+x^2y+y)y'$	$y' + z \times y^2 - 9$	$x^2y=0$	· soly to D.E.
of satisfies I. (onel.: (-3			
	7 -3	-6 =	•

multip by Question three: Consider the following differential equation (4 points)

$$(2e^{3xy} + 3xye^{3xy})dx + (3x^2e^{3xy} - x^{-1})dy = 0$$
(1)

(a) Show that equation (1) is non-exact.

(b) Find an integrating factor $[\mu(x)]$ of equation (1).

Question four: Find a general solution to the following equation (6 points)

$$\nabla = y^{1-\frac{1}{2}} = y^{5}$$

$$\nabla' = 5y^{4}y'$$

$$\nabla' + V = \frac{1}{e^{2x} + 1}$$

$$V' + V = \frac{1}{e$$

Question three: Consider the following differential equation (4 points)

$$(3y^2e^{3xy} - y^{-1})dx + (2e^{3xy} + 3xye^{3xy})dy = 0$$
(1)

(a) Show that equation (1) is non-exact

(b) Find an integrating factor $[\mu(y)]$ of equation (1).

$$\frac{N_{\chi}-M_{y}}{M} = \frac{3ye^{3xy}-y^{-2}}{3y^{2}e^{3xy}-y^{-1}} = \frac{1}{y}$$

$$\frac{\int_{y}^{1}dy}{y} = \frac{|y|}{2}$$

$$M = e = e = |y| = \frac{1}{2}$$

Question four: Find a general solution to the following equation (6 points)

The Hashemite University De Ordinary Differential Equations (1) Name (in Arabic): Section number or lecture time:	First I Student Numl	Exam per:	Time: 1 hour Serial Number
Question one: Circle the letter t	hat represents tl	ne correct answer	(2 points each).
1. The differentia equation $xy'=y$			
a. separable b. linear	c. s		d homogeneous
2. A general solution to $y' = (2x + y)$	$(x)^2 - 1$ is		(9)
a. $tan^{-1}(2x + y) + x = c$ C. $tan^{-1}(2x + y) - x = c$		y) - 2x = c $+ y) + 2x = c$	
3. If $\frac{dy}{dt} = \ln(t^y)$, $y > 0$ with $y(1) =$	e, then $y(2) =$		
(a) 4 b. $\frac{1}{4}$	c. $4e^2$	d. $\frac{1}{4}e^2$	
4. If $F(x,y) = c$ is a general solut $(2x+4y+2)dx + (y-x+2)dy =$	ion to $(2x + 4y = 0)$ is)dx + (y - x)dy	= 0, then a general solution to
(a) $F(x-1, y+1) = c$ b. $F(x+1) = c$	-1, y-1) = c	c. $F(x+2, y-2)$	= c d. $F(2x+4y, y-x) = c$
5. An integrating factor (of the form a. $\mu(x,y) = x + \sqrt[2]{y^{-1}}$ c. $\mu(x,y) = \sqrt[2]{x^{-1}} + y$ d.	$\mu(x,y) = x^p +$	y^q) for $2ydx - xdy$	
6. The particular solution of $(\cos x - \cos x)$	$x\sin x + y^2)dx - \frac{1}{2}(x^2 + y^2)dx - \frac{1}$	$+2xy\ dy=0$ that	satisfies the initial

Question two: Show that $y^2 + (x^2 + 1)y - 3x^3 - 12 = 0$ is solution for the following IVP (3 points)

 $2xy^{2} - 9x^{2}y + (2y^{2} + x^{2}y + y)\frac{dy}{dx} = 0, \quad y(0) = 3$

condition y = 1 when $x = \pi$ is

a. $xy^2 - x \cos x = 0$ b. $xy^2 - x \cos x = 2\pi$ c. $xy^2 + x \cos x = 4\pi$ b. $xy^2 - x \cos x = 2\pi$ d) $xy^2 + x \cos x = 0$

The Hashemite University Ordinary Differential Equations (Name (in Arabic): Section number or lecture time: _	1) First I Student Numb	Exam	October 24, 2012 Fime: 1 hour. Serial Number: me:	
Question one: Circle the lett			points each).	
1. The differentia equation x^2y	$y' = y^2(\ln x - \ln y),$	is		
a. separable bho	mogeneous	c. second order	d. linear	
2. A general solution to $y' = (4x)^2$	$(x^2 + y)^2 - 3$ is			
a $tan^{-1}(4x+y) - x = c$ c. $tan^{-1}(5x+y) + 4x = c$	$h tan^{-1}(x)$	y) - 4x = c $+ y) + x = c$		
3. If $\frac{dy}{dt} = \ln(t^y)$, $y > 0$ with $y(1)$	$)=e^{2}, \text{ then } y(2)=$			
a. 4 b. $\frac{1}{4}$	© 4e	1		
4. If $F(x,y) = c$ is a general so $(2x+4y+2)dx+(y-x+5)d$	9 0 10			
a. $F(x-1, y+1) = c$ b. $F(x-1, y+1) = c$	F(x+1,y-1) = c	F(x-3,y+2) =	= c d. $F(x+3, y)$	-2) = c
5. An integrating factor (of the f	form $\mu(x,y) = x^p + y$	y^q) for $-udx + 2rdy$	= 0 is	
a. $\mu(x,y) = x + \sqrt[2]{y^{-1}}$ c. $\mu(x,y) = \sqrt[2]{x^{-1}} + y$	b. $\mu(x,y) = x^{-3} + \frac{1}{4}$ d $\mu(x,y) = \sqrt[2]{x^{-3}}$	$\sqrt[2]{y^{-3}} + y^{-3}$	- 0 13	
c m				

6. The particular solution of $(\cos x - x \sin x + y^2)dx + 2xy dy = 0$ that satisfies the initial condition y = 2 when $x = \pi$ is

a.
$$xy^2 - x \cos x = 2\pi$$

c. $xy^2 - x \cos x = 0$
b. $xy^2 + x \cos x = 3\pi$
d. $xy^2 + x \cos x = 0$

Question two: Show that $y^2 + (x^2 + 1)y - 3x^3 - 12 = 0$ is solution for the following IVP (3 points)

$$2xy^{2} - 9x^{2}y + (2y^{2} + x^{2}y + y)\frac{dy}{dx} = 0, \quad y(0) = 3$$

The Hashemite University De Ordinary Differential Equations (1) Name (in Arabic): Section number or lecture time:	First Exam	Time: 60 Minutes.
Question one: Circle the letter that 1. The differentia equation $y^2y'=x^2$	$x^2(\ln y - \ln x)$, is	(2 points each).
(a) homogeneous b. lin 2. A general solution to $y' = (5x + y)$	1	d. second order
a. $tan^{-1}(5x + y) + x = c$ c. $tan^{-1}(4x + y) + 5x = c$	(b) $tan^{-1}(5x + y) - x = c$ d. $tan^{-1}(x + y) - 5x = c$	
3. If $\frac{dy}{dt} = -\ln(t^y)$, $y > 0$ with $y(1)$	=e, then $y(2)=$	
a. 4 b. $\frac{1}{4}$	c. $4e$ d) $\frac{1}{4}e^2$	
4. If $F(x,y) = c$ is a general solution $(2x + 4y - 2)dx + (y - x - 5)dy =$		
a. $F(x-1, y+1) = c$ b. $F(x+1) = c$	-1, y-1) = c c. $F(x-3, y+2)$	F(x+3, y-2) = c
5. An integrating factor (of the form	$\mu(x,y) = x^p + y^q$ for $ydx + 2xdy$	=0 is
a. $\mu(x,y) = x + \sqrt[2]{y^{-1}}$ b. c. $\mu(x,y) = \sqrt[2]{x^{-1}} + y$ d.	$\mu(x,y) = x^{-3} + \sqrt[2]{y^{-3}}$ $\mu(x,y) = \sqrt[2]{x^{-3}} + y^{-3}$	

6. The particular solution of $(\cos x - x \sin x + y^2)dx + 2xy dy = 0$ that satisfies the initial

Question two: Show that $y^2 + (x^2 + 1)y - 3x^3 - 6 = 0$ is solution for the following IVP (3 points)

 $2xy^{2} - 9x^{2}y + (2y^{2} + x^{2}y + y)\frac{dy}{dx} = 0, \quad y(0) = -3$

condition y = 2 when $x = 2\pi$ is

(a) $xy^2 + x \cos x = 10\pi$ c. $xy^2 + x \cos x = 0$ b. $xy^2 - x \cos x = 2\pi$ d. $xy^2 - x \cos x = 0$