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Unix Descriptor TableUnix Descriptor Table

D i t T blD i t T blDescriptor TableDescriptor Table

0 Data structure for file 0Data structure for file 0

1
2 Data structure for file 1Data structure for file 1
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4 Data structure for file 2Data structure for file 2

int fd;
int cc, nbytes;
char *buf;

fd = open (my filename O RDONLY );fd = open (my_filename, O_RDONLY ); 
cc = write (fd, buf, nbytes); 
cc = read (fd, buf, nbytes);

Socket Descriptor Data StructureSocket Descriptor Data Structure

D i t T blD i t T blDescriptor TableDescriptor Table

0 Family:  PF_INETFamily:  PF_INET
Service: SOCK STREAMService: SOCK STREAM1

2
Service:  SOCK_STREAMService:  SOCK_STREAM
Local IP:  111.22.3.4Local IP:  111.22.3.4
Remote IP:  123.45.6.78Remote IP:  123.45.6.78
Local Port: 2249Local Port: 22493

4
Local Port:  2249Local Port:  2249
Remote Port:  3726Remote Port:  3726

int s, family, type, protocol;
s = socket(family, type, protocol);
etc...
cc = read(s, buf, nbytes); 

Socket DescriptorsSoc et esc pto s
•Operating system maintains a set of socket descriptors for each process
•Three data structures

S k t d i t t bl  S k t d t t t Add d tSocket descriptor table  Socket data structure Address data 
structure

AF_INET_
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Client-Server ModelClient-Server Model
 Server

 Create a socket with the socket() system call 
 Bind the socket to an address using the bind() system 

call For a server socket on the Internet an addresscall. For a server socket on the Internet, an address 
consists of a port number on the host machine. 

 Listen for connections with the listen() system call () y
 Accept a connection with the accept() system call. 

This call typically blocks until a client connects with 
ththe server. 

 Send and receive data 

Client-Server ModelClient-Server Model
 Client
Create a socket with the socket() system call 
Connect the socket to the address of the 

server using the connect() system call 
Send and receive data. There are a number 

of ways to do this, but the simplest is to use 
the read() and write() system calls. 

socket()socket()
 The socket() system call returns a 

socket descriptor (small integer) or  -1 on 
error.

 socket() allocates resources needed for socket() allocates resources needed for 
a communication endpoint - but it does not
deal with endpoint addressingdeal with endpoint addressing.

Creating a SocketCreating a Socket

int socket(int family,int type,int proto);

 family specifies the protocol family 
 AF INET: IPv4 protocols AF_INET: IPv4 protocols
 AF_INET6: IPv6 protocols
 AF_ROUTE: Routing sockets

 type specifies the type of service
 SOCK_STREAM
 SOCK_DGRAM
 SOCK_RAW

 protocol specifies the specific protocol (usually 0, which means 
the default).

 IPPROTO_TCP: TCP transport protocol
 IPPROTO_UDP: UDP transport protocol



Specifying an Endpoint AddressSpecifying an Endpoint Address
 Remember that the sockets API is generic

 There must be a generic way to specify 
endpoint addressesendpoint addresses.

 TCP/IP requires an IP address and a port 
number for each endpoint address.

bind()bind()
 calling bind() assigns the address 

specified by the sockaddr structure to 
the socket descriptor.

 It binds a socket to a local socket address 
by adding the local socket address to an 
alread created socketalready created socket

bind( mysock, 
(struct sockaddr*) &myaddr,
sizeof(myaddr) );

connect()connect()
 connect() is used by a process (usually 

a client) to establish an active connection 
to a remote process (normally server)

 Client have to call the socket 
function first 

listen()listen()
 listen() is called by the TCP server. It 

t i k t f t dcreates a passive socket from an unconnected 
socket.

 It informs the OS that the server is ready to It informs the OS that the server is ready to 
accept connection through this socket
 sockfd: is the socket descriptor
 backlog: is the number of requests that can be 

queued for this connection 



accept()accept()
 accept()is called by the TCP server to 

remove the first connection request from 
the corresponding queue. 

 If there are no requests it is put to sleep
 clientaddr is the pointer to the address of the client 

that has requested the connectionthat has requested the connection
 clinetaddrlen is a pointer to the client address length

sendto()()
 sendto()is used by process using UDP to send a 

message to another process running on a remotemessage to another process running on a remote 
machine.
 sockfd: is the socket descriptor
 buf: is a pointer to the buffer holding the message to be 

sent
 buflen: defines the length of the buffer buflen: defines the length of the buffer
 Flags: specifies out-of-band data or lookahead 

message (normally set to zero)
t dd i i t t th k t dd f th i toaddr: is a pointer to the socket address of the receiver 

recvfrom()()
 recvfrom() extracts the next message that arrives at a socket. It 

also extracts the sender’s socket address.also extracts the sender s socket address.
 It is mostly used by UDP process

 sockfd: is the socket descriptor
 buf: is a pointer to the buffer where the message will be stored buf: is a pointer to the buffer where the message will be stored
 buflen: defines the length of the buffer
 Flags: specifies out-of-band data or lookahead message (normally 

set to zero)set to zero)
 fromaddr: is a pointer to the socket address of the sender 

read()()
 read() is used by a process to receive data from another process 

running on a remote machine.running on a remote machine. 
 This function assumes that there is already an open connection 

between two machines  TCP
 sockfd: is the socket descriptorp
 buf: is a pointer to the buffer where data will be stored
 buflen: defines the length of the buffer



write()()
 write() is used by a process to send data from another process 

running on a remote machine.running on a remote machine. 
 This function assumes that there is already an open connection 

between two machines  TCP
 sockfd: is the socket descriptorp
 buf: is a pointer to the buffer where data to be sent is stored
 buflen: defines the length of the buffer

close()()
 close() is used by a process to close a socket and 

terminate a TCP connectionterminate a TCP connection
 The socket descriptor is not valid after calling this function

TCP/IP AddressesTCP/IP Addresses
 We don’t need to deal with sockaddr 

structures since we will only deal with a real 
protocol family.

 We can use sockaddr_in structures.

BUT: The C functions that make up the sockets 
API t t t f tAPI expect structures of type sockaddr.

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);
int connect(int sockfd struct sockaddr *serv addr int addrlen);int connect(int sockfd, struct sockaddr serv_addr, int addrlen);

sockaddrsockaddr sockaddr_insockaddr_in
sin_lensa_len

sa_family AF_INET
sin_port

i dd
sa_data

sin_addr

sin_zero



Assigning an address to a socketAssigning an address to a socket

 The bind() system call is used to assign 
an address to an existing socket.

int bind( int sockfd, 
const struct sockaddr *myaddr,   
int addrlen);

 bind returns 0 if successful or -1 on error.

bind() Examplebind() Example
int mysock,err;
t t k dd i ddstruct sockaddr_in myaddr;

mysock = socket(PF INET,SOCK STREAM,0);mysock  socket(PF_INET,SOCK_STREAM,0);
myaddr.sin_family = AF_INET;  
myaddr.sin_port = htons( portnum );
myaddr.sin_addr = htonl( ipaddress);

err=bind(mysock (sockaddr *) &myaddrerr=bind(mysock, (sockaddr ) &myaddr, 
sizeof(myaddr));

Uses for bind()Uses for bind()
 There are a number of uses for bind():
Server would like to bind to a well knownServer would like to bind to a well known 

address (port number).

Client can bind to a specific port.

Client can ask the OS to assign any 
available port number.p

Port schmo - who cares ?Port schmo - who cares ?
 Clients typically don’t care what port they are 

assigned.

 When you call bind you can tell it to assign you 
any available port: Why htons? 0 is 1 byteWhy htons? 0 is 1 byte

myaddr.port = htons(0);

 1-1024: reserved port (assigned by 
privileged processes)privileged processes)



What is my IP address ?What is my IP address ?
 How can you find out what your IP address is so 

you can tell bind() ?

 There is no realistic way for you to know the 
right IP address to give bind() - what if the 

t h lti l t k i t f ?computer has multiple network interfaces?

if th IP dd thi specify the IP address as: INADDR_ANY, this 
tells the OS to take care of things. 1 byte, Why htonl?

myaddr.sin_addr.s_addr = htonl(INADDR_ANY);

IPv4 Address Conversion
int inet_aton( char *, struct in_addr *);

Convert ASCII dotted-decimal IP address to 
network byte order 32 bit value. Returns 1 y
on success, 0 on failure.

char *inet_ntoa(struct in_addr);

Convert network byte ordered value to 
ASCII dotted-decimal (a string).

Other socket system callsy

 General Use •• ConnectionConnection--orientedoriented
read()
write()

ConnectionConnection oriented oriented 
(TCP)(TCP)
–– connect()connect()()

close()
connect()connect()

–– listen()listen()
–– accept()accept()accept()accept()

•• Connectionless (UDP)Connectionless (UDP)•• Connectionless (UDP)Connectionless (UDP)
–– send()send()
recv()recv()–– recv()recv()

Value-Result Arguments (1)
•Length of socket passed as an argument
•Method by which length is passed depends on which 
di ti th t t i b i d (f tdirection the structure is being passed (from process to 
kernel, or vice versa)

•Value-only: bind, connect, sendto (from process to kernel)

struct sockaddr in serv; struct sockaddr_in serv; 
connect (sockfd, (struct sockaddr *)  &serv, sizeof (serv));

H  th  K l i  d b th th  i t  d th  i  f h t th  Here the Kernel is passed both the pointer and the size of what the 
pointer points, knows exactly how much data to copy from the process 
into the kernel
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Value-Result Arguments (2)

•Value-Result: accept, recvfrom, getsockname, getpeername
(f k l t i t t i t(from kernel to process, pass a pointer to an integer 
containing size)
Tells process how much information kernel actually 
stored

struct sockaddr in clientaddr ; struct sockaddr_in clientaddr ; 
socklen_t len;
int listenfd, connectfd;, ;

len = sizeof (clientaddr); 
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connectfd = accept (listenfd, (SA *) &clientaddr, &len);


