
Network Programming

Dr. Thaier Hayajneh
Computer Engineering Department

Sockets 3

1

Unix Descriptor TableUnix Descriptor Table

D i t T blD i t T blDescriptor TableDescriptor Table

0 Data structure for file 0Data structure for file 0

1
2 Data structure for file 1Data structure for file 1

3
4 Data structure for file 2Data structure for file 2

int fd;
int cc, nbytes;
char *buf;

fd = open (my filename O RDONLY);fd = open (my_filename, O_RDONLY);
cc = write (fd, buf, nbytes);
cc = read (fd, buf, nbytes);

Socket Descriptor Data StructureSocket Descriptor Data Structure

D i t T blD i t T blDescriptor TableDescriptor Table

0 Family: PF_INETFamily: PF_INET
Service: SOCK STREAMService: SOCK STREAM1

2
Service: SOCK_STREAMService: SOCK_STREAM
Local IP: 111.22.3.4Local IP: 111.22.3.4
Remote IP: 123.45.6.78Remote IP: 123.45.6.78
Local Port: 2249Local Port: 22493

4
Local Port: 2249Local Port: 2249
Remote Port: 3726Remote Port: 3726

int s, family, type, protocol;
s = socket(family, type, protocol);
etc...
cc = read(s, buf, nbytes);

Socket DescriptorsSoc et esc pto s
•Operating system maintains a set of socket descriptors for each process
•Three data structures

S k t d i t t bl  S k t d t t t Add d tSocket descriptor table  Socket data structure Address data
structure

AF_INET_

4

Client-Server ModelClient-Server Model
 Server

 Create a socket with the socket() system call
 Bind the socket to an address using the bind() system

call For a server socket on the Internet an addresscall. For a server socket on the Internet, an address
consists of a port number on the host machine.

 Listen for connections with the listen() system call () y
 Accept a connection with the accept() system call.

This call typically blocks until a client connects with
ththe server.

 Send and receive data

Client-Server ModelClient-Server Model
 Client
Create a socket with the socket() system call
Connect the socket to the address of the

server using the connect() system call
Send and receive data. There are a number

of ways to do this, but the simplest is to use
the read() and write() system calls.

socket()socket()
 The socket() system call returns a

socket descriptor (small integer) or -1 on
error.

 socket() allocates resources needed for socket() allocates resources needed for
a communication endpoint - but it does not
deal with endpoint addressingdeal with endpoint addressing.

Creating a SocketCreating a Socket

int socket(int family,int type,int proto);

 family specifies the protocol family
 AF INET: IPv4 protocols AF_INET: IPv4 protocols
 AF_INET6: IPv6 protocols
 AF_ROUTE: Routing sockets

 type specifies the type of service
 SOCK_STREAM
 SOCK_DGRAM
 SOCK_RAW

 protocol specifies the specific protocol (usually 0, which means
the default).

 IPPROTO_TCP: TCP transport protocol
 IPPROTO_UDP: UDP transport protocol

Specifying an Endpoint AddressSpecifying an Endpoint Address
 Remember that the sockets API is generic

 There must be a generic way to specify
endpoint addressesendpoint addresses.

 TCP/IP requires an IP address and a port
number for each endpoint address.

bind()bind()
 calling bind() assigns the address

specified by the sockaddr structure to
the socket descriptor.

 It binds a socket to a local socket address
by adding the local socket address to an
alread created socketalready created socket

bind(mysock,
(struct sockaddr*) &myaddr,
sizeof(myaddr));

connect()connect()
 connect() is used by a process (usually

a client) to establish an active connection
to a remote process (normally server)

 Client have to call the socket
function first

listen()listen()
 listen() is called by the TCP server. It

t i k t f t dcreates a passive socket from an unconnected
socket.

 It informs the OS that the server is ready to It informs the OS that the server is ready to
accept connection through this socket
 sockfd: is the socket descriptor
 backlog: is the number of requests that can be

queued for this connection

accept()accept()
 accept()is called by the TCP server to

remove the first connection request from
the corresponding queue.

 If there are no requests it is put to sleep
 clientaddr is the pointer to the address of the client

that has requested the connectionthat has requested the connection
 clinetaddrlen is a pointer to the client address length

sendto()()
 sendto()is used by process using UDP to send a

message to another process running on a remotemessage to another process running on a remote
machine.
 sockfd: is the socket descriptor
 buf: is a pointer to the buffer holding the message to be

sent
 buflen: defines the length of the buffer buflen: defines the length of the buffer
 Flags: specifies out-of-band data or lookahead

message (normally set to zero)
t dd i i t t th k t dd f th i toaddr: is a pointer to the socket address of the receiver

recvfrom()()
 recvfrom() extracts the next message that arrives at a socket. It

also extracts the sender’s socket address.also extracts the sender s socket address.
 It is mostly used by UDP process

 sockfd: is the socket descriptor
 buf: is a pointer to the buffer where the message will be stored buf: is a pointer to the buffer where the message will be stored
 buflen: defines the length of the buffer
 Flags: specifies out-of-band data or lookahead message (normally

set to zero)set to zero)
 fromaddr: is a pointer to the socket address of the sender

read()()
 read() is used by a process to receive data from another process

running on a remote machine.running on a remote machine.
 This function assumes that there is already an open connection

between two machines  TCP
 sockfd: is the socket descriptorp
 buf: is a pointer to the buffer where data will be stored
 buflen: defines the length of the buffer

write()()
 write() is used by a process to send data from another process

running on a remote machine.running on a remote machine.
 This function assumes that there is already an open connection

between two machines  TCP
 sockfd: is the socket descriptorp
 buf: is a pointer to the buffer where data to be sent is stored
 buflen: defines the length of the buffer

close()()
 close() is used by a process to close a socket and

terminate a TCP connectionterminate a TCP connection
 The socket descriptor is not valid after calling this function

TCP/IP AddressesTCP/IP Addresses
 We don’t need to deal with sockaddr

structures since we will only deal with a real
protocol family.

 We can use sockaddr_in structures.

BUT: The C functions that make up the sockets
API t t t f tAPI expect structures of type sockaddr.

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);
int connect(int sockfd struct sockaddr *serv addr int addrlen);int connect(int sockfd, struct sockaddr serv_addr, int addrlen);

sockaddrsockaddr sockaddr_insockaddr_in
sin_lensa_len

sa_family AF_INET
sin_port

i dd
sa_data

sin_addr

sin_zero

Assigning an address to a socketAssigning an address to a socket

 The bind() system call is used to assign
an address to an existing socket.

int bind(int sockfd,
const struct sockaddr *myaddr,
int addrlen);

 bind returns 0 if successful or -1 on error.

bind() Examplebind() Example
int mysock,err;
t t k dd i ddstruct sockaddr_in myaddr;

mysock = socket(PF INET,SOCK STREAM,0);mysock socket(PF_INET,SOCK_STREAM,0);
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(portnum);
myaddr.sin_addr = htonl(ipaddress);

err=bind(mysock (sockaddr *) &myaddrerr=bind(mysock, (sockaddr) &myaddr,
sizeof(myaddr));

Uses for bind()Uses for bind()
 There are a number of uses for bind():
Server would like to bind to a well knownServer would like to bind to a well known

address (port number).

Client can bind to a specific port.

Client can ask the OS to assign any
available port number.p

Port schmo - who cares ?Port schmo - who cares ?
 Clients typically don’t care what port they are

assigned.

 When you call bind you can tell it to assign you
any available port: Why htons? 0 is 1 byteWhy htons? 0 is 1 byte

myaddr.port = htons(0);

 1-1024: reserved port (assigned by
privileged processes)privileged processes)

What is my IP address ?What is my IP address ?
 How can you find out what your IP address is so

you can tell bind() ?

 There is no realistic way for you to know the
right IP address to give bind() - what if the

t h lti l t k i t f ?computer has multiple network interfaces?

if th IP dd thi specify the IP address as: INADDR_ANY, this
tells the OS to take care of things. 1 byte, Why htonl?

myaddr.sin_addr.s_addr = htonl(INADDR_ANY);

IPv4 Address Conversion
int inet_aton(char *, struct in_addr *);

Convert ASCII dotted-decimal IP address to
network byte order 32 bit value. Returns 1 y
on success, 0 on failure.

char *inet_ntoa(struct in_addr);

Convert network byte ordered value to
ASCII dotted-decimal (a string).

Other socket system callsy

 General Use •• ConnectionConnection--orientedoriented
read()
write()

ConnectionConnection oriented oriented
(TCP)(TCP)
–– connect()connect()()

close()
connect()connect()

–– listen()listen()
–– accept()accept()accept()accept()

•• Connectionless (UDP)Connectionless (UDP)•• Connectionless (UDP)Connectionless (UDP)
–– send()send()
recv()recv()–– recv()recv()

Value-Result Arguments (1)
•Length of socket passed as an argument
•Method by which length is passed depends on which
di ti th t t i b i d (f tdirection the structure is being passed (from process to
kernel, or vice versa)

•Value-only: bind, connect, sendto (from process to kernel)

struct sockaddr in serv; struct sockaddr_in serv;
connect (sockfd, (struct sockaddr *) &serv, sizeof (serv));

H th K l i d b th th i t d th i f h t th Here the Kernel is passed both the pointer and the size of what the
pointer points, knows exactly how much data to copy from the process
into the kernel

28

Value-Result Arguments (2)

•Value-Result: accept, recvfrom, getsockname, getpeername
(f k l t i t t i t(from kernel to process, pass a pointer to an integer
containing size)
Tells process how much information kernel actually
stored

struct sockaddr in clientaddr ; struct sockaddr_in clientaddr ;
socklen_t len;
int listenfd, connectfd;, ;

len = sizeof (clientaddr);

29

connectfd = accept (listenfd, (SA *) &clientaddr, &len);

