" N

Network Programming

Dr. Thaier Hayajneh

Computer Engineering Department

Sockets 3

" NS
Unix Descriptor Table

Descriptor Table

Hh WO DN P O

int fd;
int cc, nbytes;
char *buf;

fd = open (my_filename, O_RDONLY);
cc = write (fd, buf, nbytes);
cc =read (fd, buf, nbytes);

" S
Socket Descriptor Data Structure

Descriptor Table

Family: PF_INET

Service: SOCK_ST
Local IP: 111.22.3
Remote IP: 12
Local Port:
Remote P

Hh WO NP, O

int s, family, type, protocol;
s = socket(family, type, protocol);
etc...

cc = read(s, buf, nbytes);

"
Socket Descriptors

*Operating system maintains a set of socket descriptors for each process
*Three data structures

» Socket descriptor table > Socket data structure > Address data

structure
Socket Socket Data
Descriptor Structure
Table | . --
7| AF_INET
0: — Address Data
1: service: Structure
2 SOCK_STREAM address family:
local address: -¥| AF_INET

remote address: host IP:
128.173.88.85
port:

80

* JEE * J
Client-Server Model Client-Server Model
m Server m Client
Create a socket with the socket() system call Create a socket with the socket() system call
Bind the socket to an address using the bind() system Connect the socket to the address of the
call. For a server socket on the Internet, an address)
consists of a port number on the host machine. server using the connect() system call
Listen for connections with the listen() system call Send and receive data. There are a number
Accept a connection with the accept() system call. of ways to do this, but the simplest is to use
This call typically blocks until a client connects with the read() and write() system calls.
the server.
Send and receive data
* JE * J
socket() Creating a Socket

m The socket() system call returns a
socket descriptor (small integer) or -1 on
error.

m socket() allocates resources needed for
a communication endpoint - but it does not
deal with endpoint addressing.

int socket(int family,int type,int proto);

m TFamily specifies the protocol family
s AF_INET: IPv4 protocols
= AF_INET6: IPv6 protocols
s AF_ROUTE: Routing sockets
m type specifies the type of service
= SOCK_STREAM
= SOCK_DGRAM
= SOCK_RAW
m protocol specifies the specific protocol (usually 0, which means
the default).
s |[PPROTO_TCP: TCP transport protocol
= IPPROTO_UDP: UDP transport protocol

* JEE
Specifying an Endpoint Address

m Remember that the sockets APl is generic

m There must be a generic way to specify
endpoint addresses.

m TCP/IP requires an IP address and a port
number for each endpoint address.

bind()

m calling bind() assigns the address
specified by the sockaddr structure to
the socket descriptor.

m |t binds a socket to a local socket address
by adding the local socket address to an
already created socket

bind(mysock,
(struct sockaddr*) &myaddr,
sizeof(myaddr));

* JEE
connect()

m connect() is used by a process (usually
a client) to establish an active connection
to a remote process (normally server)

m Client have to call the socket
function first

int connect (int sockfd , const struct sockaddress *serveraddr , socklen_t serveraddrlen) ;

Returns 0 if successful: -1 if error.

=
listen()

m listen() is called by the TCP server. It
creates a passive socket from an unconnected
socket.

m |t informs the OS that the server is ready to
accept connection through this socket

sockfd: is the socket descriptor

backlog: is the number of requests that can be
gueued for this connection

int listen (int sockfd , int backlog) ;

Returns 0 if successful; -1 if error.

* JEE * JEE
accept() sendto()
m accept()is called by the TCP server to m sendto()is useﬁ by process using UDP to send a
. : message to another process running on a remote
remove the first connection request from machine.
the correspondlng queue. sockfd: is the socket descriptor
m If there are no requests it is put to sleep buf: is a pointer to the buffer holding the message to be
clientaddr is the pointer to the address of the client sent ‘
that has requested the connection buflen: defines the length of the buffer
clinetaddrlen is a pointer to the client address length Flags: specifies out-of-band data or lookahead
message (normally set to zero)
toaddr: is a pointer to the socket address of the receiver
int accept (int sockfd , struct sockaddress *clientaddr , socklen_t *clientaddrlen) ; ssize_t sendto (int sockfd | const void *buf , size_{ buflen , int flags |
const struct sockaddress *toaddr , socklen_t toaddrlen) ;
Returns a socket descriptor if successful; -1 if error.
Returns number of bytes sent if successful; -1 if error.
* JEE * JEE
recvfrom() read()

m recvfrom() extracts the next message that arrives at a socket. It
also extracts the sender’s socket address.

m Itis mostly used by UDP process
sockfd: is the socket descriptor
buf: is a pointer to the buffer where the message will be stored
buflen: defines the length of the buffer

Flags: specifies out-of-band data or lookahead message (normally
set to zero)

fromaddr: is a pointer to the socket address of the sender

ssize_t recvfrom (int sockfd , void *buf, size_t buflen, int flags,
struct sockaddress *fromaddr , socklen_t *fromaddrlen) ;

Returns number of bytes received if successful; -1 if error.

m read() is used by a process to receive data from another process
running on a remote machine.

m This function assumes that there is already an open connection
between two machines > TCP

sockfd: is the socket descriptor
buf: is a pointer to the buffer where data will be stored
buflen: defines the length of the buffer

ssize_t read (int sockfd , void *buf, size_t buflen) ;

Returns number of bytes read if successful; 0 for end of file; -1 if error.

write() close()
] wri!:e() is used by a process to send data from another process m close() is used by a process to close a socket and
running on a remote machine. terminate a TCP connection
m This function assumes that there is already an open connection
between two machines = TCP m The socket descriptor is not valid after calling this function

sockfd: is the socket descriptor
buf: is a pointer to the buffer where data to be sent is stored
buflen: defines the length of the buffer

int close (int sockfd) ;

ssize_t write (int sockfd, const void *buf , size_t buflen) ; Returns 0 if successful; -1 if error.

Returns number of bytes written if successful; -1 if error.

" JE = JEE
TCP/IP Addresses

m We don’t need to deal with sockaddr

sockaddr sockaddr_in

structures since we will only deal with a real sa len sin_len
protocol family. sa_family AF_INET
sin_port
m We can use sockaddr_in structures.
sin_addr
BUT: The C functions that make up the sockets sa_data
API expect structures of type sockaddr.
int bind(int sockfd, struct sockaddr *my_addr, int addrlen); Si n_zero

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

S
Assigning an address to a socket

m The bind() system call is used to assign
an address to an existing socket.

int bind(1nt sockfd,

const struct sockaddr *myaddr,
int addrlen);

m bi1nd returns 0 if successful or -1 on error.

o
bind() Example

int mysock,err;
struct sockaddr_in myaddr;

mysock = socket(PF_INET,SOCK STREAM,0);
myaddr.sin_family = AF_INET;
myaddr.sin_port htons(portnum);
myaddr.sin_addr htonl (ipaddress);

err=bind(mysock, (sockaddr *) &myaddr,
sizeof(myaddr));

S
Uses for bind()

m There are a number of uses for bind():

Server would like to bind to a well known
address (port number).

Client can bind to a specific port.

Client can ask the OS to assign any
available port number.

"
Port schmo - who cares ?

m Clients typically don’t care what port they are
assigned.

m When you call bind you can tell it to assign you
any available port:

myaddr _.port = htons(0); .~

1-1024: reserved port (assigned by
privileged processes)

* JEE
What is my IP address ?

m How can you find out what your IP address is so
you can tellbind() ?

m There is no realistic way for you to know the
right IP address to give bind() - what if the
computer has multiple network interfaces?

m specify the IP address as: INADDR_ANY, this
tells the OS to take care of things.

myaddr.sin_addr.s_addr = htonl(l NADDR_ANY)?

1 byte, Why htonl?

N
IPv4 Address Conversion

int inet_aton(char *, struct in_addr *);

Convert ASCII dotted-decimal IP address to
network byte order 32 bit value. Returns 1
on success, 0 on failure.

char *inet_ntoa(struct iIn_addr);

Convert network byte ordered value to
ASCII dotted-decimal (a string).

I
Other socket system calls

sLength of socket passed as an argument

*Method by which length is passed depends on which
direction the structure is being passed (from process to
kernel, or vice versa)

*Value-only: bind, connect, sendto (from process to kernel)

struct sockaddr_in serv;
connect (sockfd, (struct sockaddr *) &serv, sizeof (serv));

Here the Kernel is passed both the pointer and the size of what the

pointer points, knows exactly how much data to copy from the process
into the kernel

28

*Value-Result: accept, recvfrom, getsockname, getpeername
(from kernel to process, pass a pointer to an integer
containing size)
»Tells process how much information kernel actually
stored

struct sockaddr_in clientaddr ;
socklen_t len;
int listenfd, connectfd;

len = sizeof (clientaddr);
connectfd = accept (listenfd, (SA*) &clientaddr, &len);

29

