Network Programming Transport Layer

Our goals:

0 understand principles O learn about transport
behind transport layer protocols in the
layer services: Internet:

o multiplexing/demultipl O UDP: connectionless
Dr. Thaier Hayajneh exing transport
Computer Engineering Department o reliable data transfer O TCP: connection-oriented
o flow control fransport

o congestion control O TCP congestion control

Transport Layer
UDP Protocol

Transport services and protocols Transport vs. network layer

O provide /ogical communication I) o
between app processes O network layer: logical communication between hosts
running on different hosts e ' O transport layer: logical communication between

processes
O relies on, enhances, network layer services

O transport protocols run in
end systems
O send side: breaks app
messages into segments,
passes to network layer
O rcv side: reassembles
segments into messages, =)

passes to app layer 20—

O more than one transport B
protocol available to apps & &

o Internet: TCP and UDP !
I

! Process to process

Processes Processes

Node to node: Data link layer
Host to host: Network layer
Process to process: Transport layer

[@ication|

transport

data link

Node to : Node to

node | node
T

[

| |

[

I Node to : Node to :
J ! node | node |

' T

I

Node to node
Host to host

Transport Protocols

O Lowest level end-
to-end protocol.
O Header generated
by sender is

interpreted only
by the destination

TransportR,

O Routers view
fransport header
as part of the

P

Datalinl

et

»

fwrrwrwry

rrrrrmry.

Transport
IP

Datalink

~
al

Internet transport-layer protocols

O reliable, in-order
delivery (TCP)

—| physical
O congestion control = By 6, etk ’c‘/
o flow control o T
O connection setup 13) ¢
0 unreliable, unordered Nt | oy 2
delivery: UDP - i
O no-frills extension of T

"best-effort” IP
0 services not available:

ansp
networ
data link

S5C data link
- — =i P physical
FA

application

«®

data link

physical W™ network

icafion

anspo
networ!
data [in
physical

payload Physical pauuung R o delay guarantees B® . “‘Kg@/
router O bandwidth guarantees
6
Port numbers 16 bits IP addresses versus port numbers
l ———————————————————— |
Daytime Daytime : D D == D |
client server I eT ;
7 ' ' Port numbe
W T 7 T i 13 H selec?(rs tzirgrccress

52,000 /——r bl 13 L | :
r i Transport Iaye’r-‘ ﬂ'ransport layer }-I I =T E

| Data | 13 |52,000

ﬂ 13 |52,000' Data]

A=)
________ ? _19314.267

IP header
193.14.26.7

IP address
selects the host

[13
|

Transport layer
header

ITANA ranges

Registered
0 1023 ‘ 49,152 65,535
|

I 11 E I 1
t 1024 49,151 "

Well known Dynamic

Port Numbers in UNIX

In UNIX, the well-known ports are stored in a file called
/etc/services. Each line in this file gives the name of the
server and the well-known port number. We can use the
grep utility to extract the line corresponding to the desired
application. The following shows the port for FTE Note
that FTP can use port 21 with either UDP or TCP,

$grep ftp /etc/services
ftp 21/tcp
ftp 21/udp

10

Socket adadress

IP address| 200.23.56.8 | [69 Jrortnumber

I I

Socket address 200.23.56.8 6 |

11

Multiplexing/demultiplexing

Demultiplexing at rcv host: Multiplexing at send host:
delivering received segments_‘ gathering data from multiple

sockets, enveloping data with
fo correct socket header (later used for
demultiplexing)

[1 =socket O = process

application (P3O (P1) application <> 4D application
transport “Fransport fransport

network network network

|

link link link

physical physicat physical

host 1 host 2 host 3

12

How demultiplexing works

O host receives IP datagrams
O each datagram has source
IP address, destination IP
address
O each datagram carries 1
transport-layer segment
O each segment has source,
destination port number
O host uses IP addresses & port application
numbers fo direct segment to data
appropriate socket (message)

+«— 32 bits

source port #| dest port #

other header fields

TCP/UDP segment format

13

Connectionless demultiplexing

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket();
DatagramSocket mySocket2 = new

DatagramSocket(12535);

0 UDP socket identified by
two-tuple:

(desT IP address, dest port number)

0 When host receives UDP
segment:

o checks destination port
number in segment

o directs UDP segment to
socket with that port
number

0 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

14

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client ~|DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

SP provides “return address”

15

Connection-oriented demux

O TCP socket identified
by 4-tuple:
O source IP address
O source port number
O dest IP address
O dest port number

O recv host uses all four
values to direct
segment to appropriate
socket

O Server host may support

many simultaneous TCP
sockets:

O each socket identified by
its own 4-tuple

O Web servers have

different sockets for
each connecting client

O non-persistent HTTP will
have different socket for
each request

16

Connection-oriented demux

(cont)

Connection-oriented demux:
Threaded Web Server

DD, — = =
SP: 5775 SP: 5775
DP: 80 DP: 80
S-IP: B S-IP: B
D-IP:C D-IP:C
d L
SP: 9157 SP: 9157 SP: 9157 SP: 9157
client | DP:80 server OP: 80 Client client | DP:80 server OP: 80 Client
IP: A S-IP: A IP: C S-IP: B IP:B IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C D-IP:C D-IP:C
17 18
Position of UDP, TCP, and SCTP in TCP/IP suite OSTI Model
appﬁcqﬁon
[Application user details
o 3l Presentation Application process
‘“‘PP"‘T"“" SMTP FTP TFTP DNS SNMP S Session Sockets
ayer XTI
Ll Transport
) Network IPv4, IPv6 kemel |
rA Datalink Device driver °°m3“eﬂ2'n°§“°"
Transport scTp TP I8 Physical and Hardware
layer OSI Model Internet protocol
suite
Figure 1.14 Layers on OSI model and Internet protocol suite
Net}’:‘:ﬁ P o Why do both sockets and XTI provide the interface from the upper
three layers of the OSI model into the transport layer?
« First, the upper three layers handle all the details of the application and
Data link The lower four layers handle all the communication details.
layer Underlying LAN or WAN » Second, the upper three layers is called a user process while the lower
Bl technology four layers are provided as part of the operating system kernel.
ysica

layer

20

UDP: User Datagram Protocol [RFC 768]

3 "no frills,” "bare bones" Internet transport
protocol

0 “best effort” service, UDP segments may be:
O lost
o delivered out of order to app

O connectionless:
O no handshaking between UDP sender,

Why is there a UDP?

no connection establishment (which can add

delay)

simple: no connection state at sender, receiver

small segment header

no congestion control: UDP can blast away as

fast as desired

often used for streaming multimedia apps

>loss tolerant

receiver »>rate sensitive
o) eg;:‘h LSJDP segment handled independently of other UDP uses = DNS and SNMP
other . . .
+ Suitable for multicasting
21 22
UDP: more UDP checksum
32 bits Goal: detect "errors” (e.g., flipped bits) in fransmitted
segment
Length, in |Source port #| dest port #
bytes of UDP [~ length checksum Sender: Receiver:
segment, Lolrel . Reccelvel .
including O treat segment contents 0O compute checksum of
header as sequence of 16-bit received segment

O reliable transfer over
UDP: add reliability at

. Application
application layer data
o application-specific (message)

error recovery!

UDP segment format

23

intfegers

0 checksum: addition (1's
complement sum) of
segment contents

O sender puts checksum

value into UDP checksum
field

a

check if computed checksum
equals checksum field value:
o NO - error detected
o YES - no error detected.
But maybe errors
nonetheless? More later

24

Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1110011001 10011
110101010101010

wr'apar'ound@IOI110111011101

sum 1 011101110111 10
checksum 0100010001 0O0O0OO01

25

Queues in UDP
Daytime Daytime
client server

h £
/3

Outgoing , ‘ Incoming

QOutgoing Incoming
queue queue queue E E queue
UDP Port 52000 uDpP Port 13

26

ipplication application buffer

upp socket send buffer (S0_sSNDBUF)

UDP datagram
\l

MTU-sized IPv4 or IPv6 packets
\j
output queue
datalink

Figure 2.12 Steps and buffers involved when application writes to a UDP socket.

27

UDP is suitable for:

0 A process that requires simple request-
response communication with little concern
for flow and error control - FTP

0 A process with internal flow and error
control mechanisms - TFTF

3 Multicasting
0 Management processes - SNMP
0 Some rout updating protocols - RIP

28

