Network Programming

Dr. Thaier Hayajneh

Computer Engineering Department

TCP Sockets

Qutline

*TCP Sockets

» Information to write a complete TCP client and server

> Concurrent TCP sockets

Typical Scenario between TCP client/server

TCP Server

TCFP Client

o
sockekb {F From clivnt

Figure 4.1 Sockoet functions for elementary TCT cliemt—scrver.

socket Function
#include <sys/socket.h>
int socket (int family, int type, int protocol)
Il returns non-negative descriptor if OK, -1 on error

family
protocol family (AF_INET - IPv4 protocols, AF_INET6 -
IPv6 Protocols) (see Fig. 4.2)

type
(SOCK_STREAM - stream socket, SOCK_DGRAM ->
Datagram socket) (see Fig. 4.3)

protocol

Use 0 to get system’s default given combination of family and
type (see Fig. 4.4)

4

connect Function 1

#include <sys/socket.h>

int connect (int sockfd, const struct sockaddr * servaddr , socklen_t
addrlen)

/I returns 0 if OK, -1 on error

*No need to specify client’s source IP address or port

» Kernel will choose an ephemeral port and source IP if
necessary

*Connect function initiates TCP’s three-way handshake

*Function returns only when connection is established or an error
occurs

connect Function 2s
Several possible errors (The following numbers for 4.4 BSD)
Send SYN....& after 6 seconds..& after 24 seconds
/T after a total of 75 seconds no SYN-ACK received
»ETIMEOQUT is returned
/T server responds with RST
> N0 process waiting at port - hard error
»ECONNREFUSED is returned
/T a router returns ICMP destination unreachable (soft error)

>send after 6 and 24 seconds and if no connection after 75
seconds

»EHOSTUNREACH is returned

*You can't reconnectthe socket to another address unless you close
and call socket again.

6

connect Function as
*Try it out with the daytime TCP client/server
»Successful connection
> P address on local subnet, but host nonexistent
v’ Connection timed out
»Correct local IP address, not running a daytime server
v’ Connection refused
»Unreachable Internet IP address
v'Intermediate router will return ICMP error
v'No route to host

*Reasons for RST segment
»SYN arrives for a port with no listening server
»TCP wants to abort an existing condition
»TCP receives a segment for a connection that does not exist

bind Function 12

#include <sys/socket.h>

int bind (int sockfd, const struct sockaddr * myaddr , socklen_t
addrlen)

Il assigns a local protocol address=> returns 0 if OK, -1 on error

Server (see gdaytimetcpsrv3.cin intro chapter)
»Normally bind to a well know port & INADDR ANY
»Using port 0: kernel choose a free port and we use getsocknameto
find the selected port
»When a connection is accepted, the address of the connection is
fixed and we use getsocknameto find the interface IP address
»You can bind to specific IP address instead of INADDR_ANY, only
connections to this address are accepted
»Can generate EADDRINUSE error

bind Function 2

Client (see daytimetcpcli3.cin intro chap)
»Normally do not bind to any specific port or address
» As part of connect > bindis implicitly called
» Any ephemeral port and interface IP address is filled based on
the routing table
»Use getsocknameto find out the port and address

struct sockaddr_in servaddr, cliaddr;

len = sizeof(cliaddr);

Getsockname(sockfd, (SA *) &cliaddr, &len);

printf("local addr: %s\n", sock_ntop((SA *) &cliaddr, sizeof(cliaddr)));

_ listen Function ws
#include <sys/socket.h>

int listen (int sockfd, int backlog)
lIreturns 0 if OK, -1 on error

*When a socket created - assumed active socket
» A client socket that will issue a connect
slisten converts an unconnected socket into a passive socket

sbacklog specifies maximum number of connections the kernel
should queue for this socket

*If the queues are full when client SYN arrives, TCP server ignore
the SYN, it does not send RST.

*Kernel maintains 2 queues
»Incomplete connection queue (only SYN received from client)
»Completed connection queue (three-way handshake done)

listen Function 24

listen Function s

1

12

listen Function a4

*Berkeley-derived implementations add a fudge-factor to the
backlog (multiplied by 1.5 - backlog of 5 allows up to 8 queued
entries). See figure 4.10

*A backlog of 0 is not recommended (different implementations)
*Specifying a backlog inside source code is a problem! (growing
number of connections to handle)

> Specify a value larger than supported by kernel - kernel truncates value
to maximum value that it supports

» Textbook uses an environment variable for backlog (see lib/wrapsock.c)
*If queues are full when client SYN arrives

> Ignore arriving SYN but do not send a RST (Why?)
Data that arrives after 3WHS, but before a call to accept should be
queued by TCP server

13

accept Function

#include <sys/socket.h>
int accept (int sockfd, struct sockaddr * cliaddr, socklen_t * addrlen)
Ilreturns non-negative descriptor if OK, -1 on error

«cliaddr and addrlen used to return protocol address of connected
peer process

*Set to null if not interested in identifying client
«addrlen is a value-result argument
Difference between /istening socketand connected socket

14

Server Concurrency

Servers use concurrency to achieve functionality and performance
eConcurrency is inherent in the server
»must be explicitly considered in server design

*Exact design and mechanisms depend on support provided by the
underlying operating system

*Achieved through
»Concurrent processes

»Concurrent threads (maybe cover later)

15

E Socket interface
] [- | for connection-oriented
- concurrent server

16

Server
socket (..)

bind (...)

A parent server creates many children;
each child server serves only one client.

Repeat
as needed

write (...) Repeat
listen (...) as needed
Client i r:ql:-csl- N
socket (...) read (...)
Connection request Process
connect (.. R e e M e |
write (...)
response e
4 - m | = =
read (...) e
close
I (accepting)
close close
(listening) (accepling) —
Child server
[. close (...) 18
Client
Client Server and
Server =N
% Parent % Parent Child
a. After connect, before accept
Parent d. After parent closes ephemeral port
—h,
Parent i
b. After accept] Child
% Parent % Child
e. After child closes well-known port
¢. After fork 1 .

fork Function Concurrent servers s
#include <unistd.h>

pid_t fork (void) pid_c pid;
. . g int listenfd, connfd;
Ilreturns 0 in child, process ID of child in parent, -1 on error

listenfd = Socket(...):

/* £ill in sockaddr_in{) with server's well-known port */

. . . . Bind(1i £ R

*A child has only 1 parent, can obtain parent ID by calling getppid u»lmﬁ::.nm. L:;mm:

*Parent can not obtain IDs of its children unless keep track from for (::) {

connfd = Accept(listenfd, ...); /* probably blocks */
return of fork
. . . if ((pid = Fork()) == 0) (
All descriptors open in parent before call to fork are shared with Close(listenfd); / child closes listening socket */
. doit (connfd) ; /* process the request */
child after fork returns (connected socket shared between parent Close (conntd) ; /* done with this client */
and Chl|d) exit (0); /* ¢hild terminates */
}
Use fork to Close(connfd) ; / parent closes connected socket */ 7
»Process makes a copy of itself (typical for network servers) :
>Process wants to execute another program (call fork then exec) s b s
21 22
Concurrent Servers 23 Concurrent Servers s
Why close of connfd by parent does not terminate connection with s)
- liscentd connection_{ connect ()

the client? i
*Every file or socket has a reference count i
*Reference count: A count of the number of descriptors that are L iy
currently open that refer to this file or socket e

connfd
Figure 4.16 Status of clicnt-server after fork returms.

server (parent) S

listenfd

connect ()

Figure 4.14 Status of client-server before call o accept.

. #

server (child)
server

listenfd g O

connfd
connfd

Fisure 4.17 mwmmmummmm
Figure 4.15 Status of client-server after return from accept. ")

Port Numbers and Concurrent Servers 1.

*Main server loop EeatTe

spawns a child to
handle each new
connection

*What happens if
child continues to
use the well-
known port

number while ‘ ';-r;;iia’é:f‘i,:?%?_:i_?-_ﬂ _ .
serving a long :
request?

Figure 2.8 Cnmnecmn request from client to server.

Figure 29 Concurrent server has child handle client.

25

Port Numbers and Concurrent Servers 2.

*Another client process on client host requests a connection with

the same server

4% 206,62.226.35 . -
206762.226.66 - ¢ 198.69.10.%

¥
s
I
1

92.63.30.2.1500,

06.62.226.35.21)

[

connected socket %\ i (F05 §2.26.35.21,

{198.%9.10.2.1501,
L\ -198.69.10.2.1500)

206.672.326.35.21) 1

|
I
.l
]
I
I

. {child2)
comectedsockehﬂ—-—(ws 62.226.35.21,
o 158.69.10.2,1501}

Figure 230 Second client connection with same server.

26

close Function

#include <unistd.h>
int close (int sockfd)
llreturns 0 if OK, -1 on error

*Will try to send any data that is already queued to be sent to the
other side, then normal TCP connection termination sequence takes
place (send FIN)

*Can use an option to discard unsent data (later)

27

getsockname and getpeername Functions
#include <sys/socket.h>

int getsockname (int sockfd, struct sockaddr* localaddr, socklen_t *
addrlen)

Int getpeername (int sockfd, struct sockaddr* peeraddr, socklen_t
* addrlen)

getsockname returns local protocol address associated with a
socket

sgetpeername returns the foreign protocol address associated with a
socket

sgetsockname will return local IP/Port if unknown (TCP client
calling connect without a bind, calling a bind with port 0, after
accept to know the connection local IP address, but use connected
socket)

28

» Project Phase 3 is available at:

http://www.eis.hu.edu.jo/ACUploads/10799/Project_
P3_F2011.pdf

29

