Chapter 23

WY Data Communications
> a"dNetworking Fourth Edition

Forouzan

23-1 PROCESS-TO-PROCESS DELIVERY

The transport layer is responsible for process-to-
process delivery—the delivery of a packet, part of a
message, from one process to another. Two processes
communicate in a client/server relationship, as we will

Process-to-Process Delivery:

UDP, TCP, and SCTP

23 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

see later.

Topics discussed in this section:

Client/Server Paradigm

Multiplexing and Demultiplexing

Connectionless Versus Connection-Oriented Service

Reliable Versus Unreliable
Three Protocols

23.2

Transport services and protocols

m provide /ogical communication
between app processes running
on different hosts

= transport protocols run in end
systems

= send side: breaks app
messages into segments,
passes to network layer

= rcv side: reassembles
segments into messages,
passes to app layer

= more than one transport
protocol available to apps

= Internet: TCP and UDP

Transport vs. network layer

. logical
communication between
hosts

. logical
communication between
processes

= relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

= processes = kids

= app messages = letters
in envelopes

= hosts = houses

= transport protocol =
Ann and Bill

= network-layer protocol
= postal service

Internet transport-layer protocols

= reliable, in-order delivery
(TCP)
= congestion control
= flow control
= connection setup

= unreliable, unordered
delivery: UDP

= no-frills extension of “best-
effort” IP

= Services not available:
= delay guarantees
= bandwidth guarantees

Note I

The transport layer is responsible for
process-to-process delivery.

23.6

Figure 23.1 Types of data deliveries

Processes Processes

Node to node: Data link layer
Host to host: Network layer
Process to process: Transport layer

Node to : Node to

node | node

Node to : Node to :
|
| | ~ 1

node | node Node to node
T
! | Host to host

! Process to process

23.7

Figure 23.2 Port numbers 16 bits

Daytime Daytime
client server
H 52,000 ——| — 13 H
r i Transport Iaye’r-‘ Transport layer

[Data | 13 | 52,000 >
<= 13 [52000] Data |

23.8

Figure 23.3 IP addresses versus port numbers

193.14.26.7

Port number

selects the process

Figure 23.4 IANA ranges

Registered
0 1023 49,152 65,535
l 11 11 |
I 11 11 1
t 1024 49,151 '
Well known Dynamic

IP header
193.14.26.7

IP address
selects the host

Transport layer | 13
header
23.9 23.10
Figure 23.5 Socket address Figure 23.6 Multiplexing and demultiplexing
Processes Processes
IP address| 200.23.56.8 | [69 [Port number
‘ ‘ \ Multlplexer / / Demultlplexer \

Socket address| 200.23.56.8 6o | v A

IP IP

23.11

O ey =

23.12

Multiplexing/demultiplexing

Demultiplexing at rcv host: Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[1 =socket O = process
applicati o application @ plication
] []
transport tra aﬁ' transport
network nefwork network
link ink link
physical physical physical

How demultiplexing works

= host receives IP datagrams

= each datagram has source
IP address, destination IP
address
= each datagram carries 1
transport-layer segment
= each segment has source,
destination port number
= host uses IP addresses & port
numbers to direct segment to
appropriate socket

+—— 32bits ——M

source port # dest port #

other header fields

application
data
(message)

TCP/UDP seament format

Figure 23.7 Error control

Error is checked in these paths by the data link layer
= Error is not checked in these paths by the data link layer

Transport Transport
Network Network
Data link | - Data link
Physical |__ |__ |__ l__ Physical

1

23.15

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

Application SMTP FTP TETP DNS SNMP
layer
Transport SCTP Tcp
layer
IGMP ICMP
Network P
layer
Data link
layer
re Underlying LAN or WAN
technol
Physical o
layer

23.16

23-2 USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a
connectionless, unreliable transport protocol. It does
not add anything to the services of IP except to provide
process-to-process communication instead of host-to-
host communication.

Topics discussed in this section:

Well-Known Ports for UDP
User Datagram

Checksum

UDP Operation

Use of UDP

23.17

UDP: User Datagram Protocol [RFC 768]

= “no frills,” “bare bones”

Internet transport protocol

= “best effort” service, UDP

segments may be:
= lost
= delivered out of order to
app

m connectionless:

= no handshaking between
UDP sender, receiver

= each UDP segment

handled independently of
others

Why is there a UDP?

= No connection establishment
(which can add delay)

= simple: no connection state
at sender, receiver

= small segment header

= o congestion control: UDP
can blast away as fast as
desired

UDP: more

= often used for streaming
multimedia apps

+—— 32bits ——M

= loss tolerant Length, in_| source port # dest port #
= rate sensitive bytes of UDP |7 |ength checksum
segment,
= other UDP uses including
= DNS header
= SNMP
= reliable transfer over UDP: Application
add reliability at application data
layer (message)
= application-specific error
recovery!

UDP seament format

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender:

= treat segment contents as
sequence of 16-bit integers

= checksum: addition (1's
complement sum) of
segment contents

= sender puts checksum

value into UDP checksum
field

Receiver:

compute checksum of received
segment
check if computed checksum
equals checksum field value:
= NO - error detected
= YES - no error detected.
But maybe errors
nonetheless? More later

Table 23.1 Well-known ports used with UDP

Internet CheCksum Example FPort Protocol Description
7 Eoho Erhoes o received dataoram hack 10 the gendar
= Note 7 | Echo Echoes a received datagram back to the sender
) 9 | Discard Discards any datagram that is received
= When adding numbers, a carryout from the T Users Active users
most Slgnlflcant bit needs to be added to 13 Daytime Returns the date and the time
the result 17 | Quote Returns a quote of the day
- Example: add two 16-bit integers 19 Chargen Returns a string of characters
53 Nameserver Domain Name Service
67 BOOTPs Server porl Lo download boolstrap information
1110011001100110 68 | BOOTPe Client port to download bootstrap information
1101010101010101 69 | TFTP “Trivial File Transfer Protocol
wraparound @1 011101110111011 111 RPC Remote Procedure Call
123 NTP Network Time Protocol
sum 1011101110111100 161 SNMP Simple Network Management Protocol
checksum 01000100010000121 162 SNMP Simple Network Management Protocol (trap)
23.22
Figure 23.9 User datagram format
8 bytes
e Note I
H Header Data
UDP length
—)
Source port number Destination port number = IP Iength IP header S Iength
16 bits 16 bits
Total length Checksum
16 bits 16 bits

23.25

23.26

Figure 23.12 Queues in UDP

Daytime Daytime
client server

h £

Outgoing , ‘ Incoming Qutgoing , ‘ Incoming

queue }:| queue queue |:| g queue
vt Tt
UDP 'Part-'SZDOO uDP Port 13

23.30

UDP is suitable for:

A process that requires simple request-response
communication with little concern for flow and
error control — FTP

A process with internal flow and error control
mechanisms — TFTF

Multicasting
Management processes — SNMP
Some rout updating protocols - RIP

23.31

TCP is a connection-oriented protocol; it creates a
virtual connection between two TCPs to send data. In
addition, TCP uses flow and error control mechanisms
at the transport level.

Topics discussed in this section:

TCP Services
TCP Features
Segment

A TCP Connection
Flow Control
Error Control

23.32

TCP: Overview recs: 793, 1122, 1323, 2018,

2581
= point-to-point: » full duplex data:

= one sender, one receiver = bi-directional data flow in
= reliable, in-order byte same connection

steam: = MSS: maximum segment
. size
= NO “message boundaries”
» pipelined:
= TCP congestion and flow
control set window size

= connection-oriented:
= handshaking (exchange of
control msgs) init's
sender, receiver state
before data exchange
s flow controlled:

 wae = sSender will not overwhelm
oot receiver

m send & receive buffers

socket
door

TCP segment structure

Table 23.2 Well-known ports used by TCP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
32 bit P . s .
s 9 | Discard Discards any datagram that is received
URG: urgent data countin -
(generally not used)\ source port # | dest port # by byteg 1T | Users Aclive users
sequence number of data 13 | Daytime Returns the date and the time
ACK: ACK # (not segments!) -
va”d\\a@gwedgemem number 17 | Quote Returns a quote of the day
head |[not) ; 19 | Chargen Returns a string of characters
PSH: push data now len UIA|IP Receive window 3
(generally not used) - # bytes 200 | FTP, Data File Transfer Protocol (data connection)
W Urg data pointer revr willing
to accept 21 | FTP. Control | File Transfer Protocol (control connection)
= / p
RST, SYN, FIN: Optign§ (variable length 3 I srminal Network
conmection estah p (gth) 23 | TELNET Terminal Network
(setup, teardown 25 | SMTP Simple Mail Transfer Protocol
commands)
L 53 | DNS Domain Name Server
application
data 67 | BOOTP Bootstrap Protocol
Internet iable | th
checksum (variable length) 79 | Finger Finger
(as in UDP) -
80 | HTTP Hypertext Transfer Protocol
111 RPC Remote Procedure Call
23.35
Figure 23.13 Stream delivery Figure 23.14 Sending and receiving buffers
Sending Receiving
process process
Sending Receiving
process process
A
TCP TCP
Next byte Next byte
] to write to read
TCP i i TCP
Sent
Next byte Next byte
to send = to receive
23.36 23.37

Figure 23.15 TCP segments

Sending Receiving
process process
A
TCP TCP
Next byte Next byte
to accept to deliver

Segment N Segment 1

Q0008H| --- EOEH

Next byte
to be sent

Next byte
to receive

23.38

TCP provides:

= Full duplex communication

= Connection oriented service:

= The two TCPs establish a connection between them

= Data are exchanged in both directions

= The connection is terminated

= Reliable service

= Flow control

= Error Control

= Congestion control

23.39

T

Note I

The bytes of data being transferred in
each connection are numbered by TCP.
» Sequence number
» Acknowledgment number
The numbering starts with a randomly
generated number.

23.40

i Example 23.3

The file is 5000 bytes, the first byte is numbered 10,001
each segment caries 1000 byte

The following shows the sequence number for each

segment:

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

AERR

Sequence Number
Sequence Number
Sequence Number
Sequence Number
Sequence Number

: 10,001 (range: 10,001 to 11,000)
: 11,001 (range: 11,001 to 12,000)
: 12,001 (range: 12,001 to 13,000)
: 13,001 (range
: 14,001 (range

: 13,001 to 14,000)
: 14,001 to 15,000)

23.41

TCP seq. #'s and ACKs

Seq. #'s:
= byte stream
“number” of first
byte in segment’s
data
ACKs:
= seq # of next byte
expected from other
side
= cumulative ACK
Q: how receiver handles
out-of-order segments
= A: TCP spec doesn’t
say, - up to
implementer

simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP

timeout value?
longer than RTT
= but RTT varies

too short: premature
timeout
= unnecessary
retransmissions

too long: slow reaction
to segment loss

Q: how to estimate RTT?

. measured time from
segment transmission until ACK
receipt

= ignore retransmissions

= SampleRTT will vary, want
estimated RTT “smoother”

= average several recent

measurements, not just current
SampleRTT

T

Note I

The value in the sequence number field
of a segment defines the
number of the first data byte
contained in that segment.

23.44

T

Note I

The value of the acknowledgment field

in a segment defines
the number of the next byte a party
expects to receive.
The acknowledgment number is
cumulative.

23.45

Figure 23.16 TCP segment format

q Header Data

Source port address

Destination port address

16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN Reserved Window size
4 bits 6 bits 16 bits
Checksum Urgent pointer
16 bits 16 bits
Options and Padding
23.46

Figure 23.17 Control field

URG: Urgent pointer is valid
ACK: Acknowledgment is valid
PSH: Request for push

RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: Terminate the connection

URG

ACK

PSH

RST

SYN

FIN

23.47

23.48

Table 23.3 Description of flags in the control field

Flag Description

URG | The value of the urgent pointer field is valid.

ACK | The value of the acknowledgment field is valid.
PSH Push the data.

RST | Reset the connection.

SYN | Synchronize sequence numbers during connection.
FIN Terminate the connection.

Figure 23.18 Connection establishment using three-way handshaking

Client

Active
open

A: ACK flag
S: SYN flag

Passive
open

23.49

T

Note I

A SYN segment cannot carry data, but it
consumes one sequence number.

23.50

T

Note I

A SYN + ACK segment cannot
carry data, but does consume one
sequence number.

23.51

T

Note I

An ACK segment, if carrying no data,
consumes no sequence number.

» Simultaneous open
* SYN flooding attack

23.52

Figure 23.19 Data transfer

Cl
Az ACK flag
g P: PSH flag

- E Data
bytes: 1500117000

Time Time

23.53

Figure 23.20 Connection termination using three-way handshaking

Server
Client ==
Coa]
|;.£I:__ A: ACK flag li]
NS F: FIN flag | — |
pcive [
L
close ‘E_
WA
FIN
ﬂ_ Passive
e ki1 1 [close
—
-] FIN + ACK
ACK
Y Y
Time Time

23.54

T

Note I

The FIN segment consumes one
sequence number if it does
not carry data.

23.55

T

Note I

The FIN + ACK segment consumes
one sequence number if it
does not carry data.

23.56

Figure 23.21 Half-close

Server
Client
C|
E;! A ACK flag =
R e =
Active
R
=] S —
FIN
. o -
fient
fpm Data segments from gerver tocll
Ackn,
owledgments from client 1o -
M Passive
close
A G
= FIN
T —
Ack
: Y

23.57

Figure 23.22 Sliding window

| Window size = minimum (rwnd, cwnd)

Shrinking

Sliding window

Closing Opening

23.58

T

Note I

A sliding window is used to make
transmission more efficient as well as
to control the flow of data so that the

destination does not become
overwhelmed with data.
TCP sliding windows are byte-oriented.

23.59

i Example 23.4

What is the value of the receiver window (rwnd) for host
A if the receiver, host B, has a buffer size of 5000 bytes
and 1000 bytes of received and unprocessed data?

Solution

The value of rwnd = 5000 — 1000 = 4000. Host B can
receive only 4000 bytes of data before overflowing its
buffer. Host B advertises this value in its next segment to
A.

23.60

i Example 23.5

What is the size of the window for host A if the value of
rwnd is 3000 bytes and the value of cwnd is 3500 bytes?

Solution
The size of the window is the smaller of rwnd and cwnd,

which is 3000 bytes.

23.61

i Example 23.6

Figure 23.23 shows an unrealistic example of a sliding
window. The sender has sent bytes up to 202. We assume
that cwnd is 20 (in reality this value is thousands of
bytes). The receiver has sent an acknowledgment number
of 200 with an rwnd of 9 bytes (in reality this value is
thousands of bytes). The size of the sender window is the
minimum of rwnd and cwnd, or 9 bytes. Bytes 200 to 202
are sent, but not acknowledged. Bytes 203 to 208 can be
sent without worrying about acknowledgment. Bytes 209
and above cannot be sent.

23.62

Figure 23.23 Example 23.6

Window size = minimum (20,9) =9

Sent, not
acknowledgedl Can be sent immediately
Ll

| -+ [199]200] 201] 202] 203]204]205] 206207 [208 | 209] ... |

Sent and
acknowledged

Can't be
sent until window
opens

Next byte to be sent

23.63

T

Some points about TCP sliding windows:

A The size of the window is the lesser of rwnd and
cwnd.

A The source does not have to send a full window’s
worth of data.

1 The window can be opened or closed by the
receiver, but should not be shrunk.

[The destination can send an acknowledgment at
any time as long as it does not result in a shrinking
window.

[The receiver can temporarily shut down the
window; the sender, however, can always send a
segment of 1 byte after the window is shut down.

23.64

T

Note I

ACK segments do not consume
sequence numbers and are not
acknowledged.

23.65

T T

Note I Note I

In modern implementations, a No retransmission timer is set for an
retransmission occurs if the ACK segment.

retransmission timer expires or three
duplicate ACK segments have arrived.

23.66 23.67
i Figure 23.24 Normal operation
Server
Client ==
* Retransmission after RTO = =
» Retransmission after three duplicate ST
*ACK segments. i = —
’ :]
Data may arrive out of order and be oom
temporarily stored by the receiving TCP, — [Aot femp.
Seq: 5001-6000
‘but TCP guarantees that no out-of-order - = e |
segment is delivered to the process. . s |
A

Time Time

23.68 23.69

Figure 23.25 Lost segment

Sender

Receiver

o

L _
(= =]) [==_=])
e Note I
Ack: x -]
Seq: 601-700 o .
Akx [——emao -] The receiver TCP delivers only ordered
RTO
@ T e 1o - data to the process.
: -y
E Ack: x (Ack:701 |
'g Resent Out of order
i 5 I I
Y Y
Time Time
23.70 23.71
Figure 23.26 Fast retransmission
Sender Receiver
= —= N Stream Control Transmission Protocol (SCTP) is a
[, uter new reliable, message-oriented transport layer
Seq 201500 protocol. SCTP, however, is mostly designed for
x k: 301 == - . .
- Internet applications that have recently been
o introduced. These new applications need a more
— pooi— EHE sophisticated service than TCP can provide.
< > b;6(!0
M e Topics discussed in this section:
— s SCTP Services and Features
3ACKs - -
Rasert peETor—| W] Packet Format
) Y An SCTP Association

Time

23.72

Flow Control and Error Control

23.73

Table 23.4 Some SCTP applications
Protocol Port Number Deseription
Note I IUA 9990 ISDN over IP
M2UA 2904 SS87 telephony signaling
. . . M3UA 2905 SS87 telephony signaling
SCTPIs a message-orlented, reliable H.248 2945 Media gateway control
protocol that combines the best features H.323 1718, 1719, 1720, 11720 | IP telephony
Of U DP and TCP SIP 5060 IP telephony
23.74 23.75
Figure 23.27 Multiple-stream concept i
Sending Receiving
process Process Note I
\ j \ An association in SCTP can involve
A .
\ | multiple streams.
SCTP %— SCTP
23.76 23.77

Figure 23.28 Multihoming concept - fault tolerance i

Server
Client = Note I

- SCTP association allows multiple IP
IP3 addresses for each end.

1P2 IP4

23.78 23.79

T T

Note I

« SCTP provides Full-duplex
communication

‘e« Connection-oriented service

To distinguish between different
streams, SCTP uses an SlI.

e Reliable service

e In SCTP, a data chunk is numbered
using a TSN.

23.80 23.81

T

Note I

To distinguish between different data
chunks belonging to the same stream,
SCTP uses SSNs.

23.82

T

Note I

TCP has segments; SCTP has packets.

23.83

Figure 23.29 Comparison between a TCP segment and an SCTP packet

Options

o Source port address |Desﬂnation port address Source port address lDestinatien port address

-% Sequence number Verification tag

g Acknowledgment number Checksum

& [HL Window size il
i Checksum Urgent pointer =l
b

e

=

g

(=]

A segment in TCP A packet in SCTP

Data Control Header

23.84

T

Note I

In SCTP, control information and data
information are carried in separate
chunks.

23.85

Figure 23.30 Packet, data chunks, and streams

Fourth packet

Header
Control chunks

~
E
]
o
A

Third packet

Header

Control chunks

TSN: 107
Sk SSN: 2

Stream 1

Second packet

First packet

Header

Header

Control chunks

TSN: 105
Sk1

SSN: 0

Stream 0

TSN: 106
Sk 1

SSN: 1

»

Flow of packets from sender to receiver

Control chunks

23.86

T

Note I

Data chunks are identified by three
items: TSN, SI, and SSN.
TSN is a cumulative number identifying
the association; Sl defines the stream;
SSN defines the chunk in a stream.

23.87

T

Note I

In SCTP, acknowledgment numbers are
used to acknowledge only data chunks;
control chunks are acknowledged by
other control chunks if necessary.

23.88

Figure 23.31 SCTP packet format

General header
(12 bytes)

Chunk 1
(variable length)

ChunkN
(variable length)

23.89

Note I

In an SCTP packet, control chunks come
before data chunks.

Figure 23.32 General header

Source port address
16 bits

Destination port address
16 bits

Verification tag
32 bits

Checksum
32 bits

23.90 23.91
Table 23.5 Chunks
Type Chunk Description
0 DATA User data
1 INIT Sets up an association
2 INIT ACK Acknowledges INIT chunk Note I
3 SACK Selective acknowledgment
4 HEARTBEAT Probes the peer for fiveliness A conn eCtI on I n SCTP IS Cal | ed an
5 HEARTBEAT ACK Acknowledges HEARTBEAT chunk . .
6 ABORT Aborts an association aSSOCl atl on.
7 SHUTDOWN Terminates an association
8 SHUTDOWN ACK Acknowledges SHUTDOWN chunk
9 ERROR Reports errors without shutting down
10 COOKIE ECHO Third packet in association establishment
11 COOKIEACK Acknowledges COOKIE ECHO chunk
14 SHUTDOWN COMPLETE | Third packet in association termination
192 FORWARD TSN For adjusting cumulative TSN

23.92

23.93

h

Note I

No other chunk is allowed in a packet
carrying an INIT or INIT ACK chunk.
A COOKIE ECHO or a COOKIE ACK

chunk can carry data chunks.

23.94

Figure 23.33 Four-way handshaking

Server

=
| I |
L]
INIT
COOKIE ECHO -
J m_—
Time

Time

23.95

h

Note I

In SCTP, only DATA chunks
consume TSNs;
DATA chunks are the only chunks
that are acknowledged.

23.96

Figure 23.34 Simple data transfer

Server
Client

==
a =
— TSN:7105
DATA chunk
TSN: 7106 o
DATA chunk
TSN: 7107
DATA chunk
TSN: 7108 2
DATA chunk
cumTSN: 7108
- g TSN: 121
. DATA chunk
TSM: 122
et DATA chunk
cumTSN: 122 l
SACK chunk —
Y Y
Time

Time

23.97

Note I

The acknowledgment in SCTP defines
the cumulative TSN, the TSN of the last
data chunk received in order.

23.98

Figure 23.35 Association termination

Server
Client ==
(s
—_— ==
TS |
SHUTDOWN
Active
close cum TSN
SHUTDOWN ACK Passive
_ close
SHUTDOWN
COMPLETE
=N
Y Y
Time Time

23.99

Figure 23.36 Flow control, receiver site

winSize

To process

Received Fe

1

Receiving queue

26

1000

20

cumTSN
winSize
lastACK

23.100

Figure 23.37 Flow control, sender site

From process

Qutstanding chunks

R

T
36|

mim i} [1] [l
ﬂﬂaas;‘ ﬁaoz Ezgzg — To send
Sending queue + 37
2000
700

curTSN
rwnd

inTransit

23.101

Figure 23.38 Flow control scenario

Figure 23.39 Error control, receiver site

Seﬁr Receiver
= -;]_'Q E= -;-._lQ
1| curTSN To process
cumTSN s
E@@E]I 20(;30 i"‘.‘l".l’.';':mit DATA winSize (2000 I Receiving queue
— = lastACK = -
| I
AR] o L s ———4 it HH I: e
2000 | rwnd s L : l
Fooo] i : winSize | 1000 L-L- L-L-
1 inTransit DATA JastACK EI -
_TSN: 2 1000 bytes o 51 S 23 cumTSN
3 | curTSN guim I g 1000 |winSize
winSize 0
EEJEJE]I 2000} rwnd sack | 12StACK 2l chhitt 20 | lastACK
| gm{AcK2 wndi0 :
3 | curTSN cumTSN 2
@@E]E]I 0 | rwnd winSize | 2000 |
0| inTransit SACK | lastACK [3 Duplicate OutOfOrder
Process writes ___«m 2 rwnd: 2&'— Process reads
Sand6 : land2
Time : Time
23.102 23.103
Figure 23.40 Error control, sender site
From piocass Outstanding chunks |
Sending queue
37 curTSN
2000 |rwnd
1400 inTransit

SACKs are received.

Add when timer
expires or three — —To send

Retransmission
queue

23.104

