Network Programming

Dr. Thaier Hayajneh

Computer Engineering Department

TCP Protocol

QOutline

O Connection-oriented transport: TCP
O segment structure
O reliable data transfer
o flow control

O connection management
O Principles of congestion control

O TCP congestion control

TCP: Overview recs: 793, 1122, 1323, 2018, 2581

O point-to-point: 0 full duplex data:

O one sender, one receiver o bi-directional data flow

O reliable, in-order byte in same connection
steam: O MSS: maximum segment
size
O connection-oriented:
O handshaking (exchange

O no “message boundaries”
O pipelined:

O TCP congestion and flow
control set window size

0O send & receive buffers

socket
door

of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

wse O sender will not

door

overwhelm receiver

TCP segment structure

32 bits

URG: urgent data
(generally not used)™_ source port # | dest port #

ACK: ACK # sequence number

valid ~{—ackaowledgement number

PSH: push data now head "S_/‘IEI‘;L APRIS|F| Receive window
(generally not used)—"| W Urg data pnter

RST, SYN, FIN:— | Op% (variable length)
connection estab

(setup, teardown

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

commands) application
Internet data
checksum (variable length)
(as in UDP)

TCP seq. #'s and ACKs

Seq. #'s:
O byte stream
“number” of first TUSer Se9=42, pc
byte in segment's vPes W
data host ACKs
ACKs: =S O etnoss
O seq # of next byte ,79‘1\0““‘3’63 back 'C

expected from
other side host ACKs

o cumulative ACK receipt

Se, =43 A
Q: how receiver handles of e,CCP,‘“d Ckx‘
out-of-order segments
O A: TCP spec doesn't

say, - up to
implementor

time
simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0 SampleRTT: measured time from

O longer than RTT segment transmission until ACK
o but RTT varies r‘ecgp‘r o

7 too short: premature O ignore refransmissions
timeout 0 SampleRTT will vary, want
O unnecessary estimated RTT "smoother”

retransmissions O average several recent

measurements, not just

O too long: slow reaction
g ! current SampleRTT

to segment loss

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

O Exponential weighted moving average
O influence of past sample decreases exponentially fast
O typical value: a = 0.125

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -

300 -

N
a
S

RTT (milliseconds)

N
S
3

150 -

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—&—SampleRTT —&— RTT

TCP Round Trip Time and Timeout

Setting the timeout

O EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

0 first estimate of how much SampleRTT deviates from

EstimatedRTT:

DevRTT = (1-B)*DevRTT +

pB*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

TCP reliable data transfer

O TCP creates rdt
service on top of IP's
unreliable service

O Pipelined segments
0 Cumulative acks

O TCP uses single
retransmission timer

O Retransmissions are
triggered by:
O timeout events
O duplicate acks
3 Initially consider
simplified TCP sender:

O ignore duplicate acks

o ignore flow control,
congestion control

10

TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unacked segment)

O expiration interval:
TimeOutlnterval

timeout:

O retransmit segment
that caused timeout

O restart timer
Ack rcvd:

0 If acknowledges
previously unacked
segments

O update what is known to
be acked

o start timer if there are
outstanding segments

11

NextSegNum = InitialSegNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1=71;
y=73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

12

TCP: retransmission scenarios

@Hosf A Host B[

Se =
9292 8 bytes dats
100
‘y
X

loss

Seq=
9792, 8 bytes dats

AC =400

«~——timeout——

SendBase
= 100

time
lost ACK scenario

i

3

£

+

o

o

g')_

v

i

Sendbase]

=100 5

SendBase 3

=120 £

o

o

I;';

)

SendBase i
=120 premature timeout

time

13

TCP retransmission scenarios (more)

) ost A Host 8 | [l

Seq:g

2

“““““‘gﬁﬂzsigifiTrﬁ
+= =A0
3 Seq= (g
S <45100, 29 P‘Sd
£ atg
= X

loss
SendBase P\o\@ﬂo
=120

time

Cumulative ACK scenario

14

TCP ACK generation [rRFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send aduplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

15

Fast Retransmit

O Time-out period often
relatively long:
O long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

o Sender often sends
many segments back-to-
back

O If segment is lost,
there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires

16

Host A

timeout

time

Resending a segment after triple duplicate ACK

[eseng 2nd
ngmen
t

Host B

17

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for

fast retransmit
already ACKed segment

18

TCP Flow Control

O receive side of TCP
connection has a
receive buffer:

— RevWindow —

v
data from 4/ 5 %%/// application

P * process

L
f——— RevBuffer ————#

O app process may be

slow at reading from
buffer

-flow control
sender won't overflow
receiver's buffer by
transmitting oo much,
too fast

0 speed-matching
service: matching the
send rate to the
receiving app's drain
rate

19

TCP Flow control: how it works

f— RevWindow —f .
7 O Rcvr advertises spare

777 : .

data. Fromn 1k i room by including value
s T of ReviVindow in
segments

0 Sender limits unACKed
data to RcvWindow

O guarantees receive
buffer doesn't overflow

7
#7 RevBuffer 4’4

(Suppose TCP receiver
discards out-of-order
segments)

O spare room in buffer

RevWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

20

TCP Connection Management

Recall: TCP sender, receiver ~ Three way handshake:
establish “"connection”

before exchanging data Step 1: client host sends TCP
segments SYN segment to server
O initialize TCP variables: O specifies initial seq #
O seq. #s O no data
o buffers, flow control Step 2: server host receives

info (e.g. RevWindow) SYN, replies with SYNACK
O client: connection initiator segment
O server allocates buffers
O specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

O server: contacted by client

21

TCP Connection Management (cont.)

Closing a connection: 18 client server @D

. close
client closes socket: FIN

clientSocket.close();

Step 1: client end system

pok
close
sends TCP FIN control e
segment to server _
k‘

+

Step 2: server receives K

FIN, replies with ACK. 3

Closes connection, sends E
FIN. closed ™

22

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server)

replies with ACK. closing
F

o Enters “timed wait" - w
will respond with ACK
to received FINs pOK closing
3

Step 4: server, receives

ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

d wait

closed

o time

close

23

TCP Connection Management (cont)

____ client application
“~._ initiates 2 TCP conne ction
. send SV
. L]
WEM—TI | srnsent |
recesw FIN eive SYN & ACH
end ACK rd ACH
FIN_WAIT_2 | ESI‘.E:'EHEB TCP ser‘ver‘
_-"I client application “feCyC'e
/" initistas eloss connaction
ered Ot ~gend FIN CLOSED — cr:;r:;;:l‘:lpll::t:et
TCP client \
lifecycle .

LAST_ACK | ki |
send EIN ad SYN & #
CLOSE_WAIT SYN_RCVD

/ reciv
Geane M ESTABLISHED |<-

24

Principles of Congestion Control

Congestion:
3 informally: "too many sources sending oo much
data too fast for network to handle”

O different from flow control!
O manifestations:
O lost packets (buffer overflow at routers)
0O long delays (queueing in router buffers)
3 a top-10 problem!

25

Causes/costs of congestion: scenario 1

Host A

A, : original data

3 two senders, two
receivers
unlimited shared

J one POUTCP, output link buffers
infinite buffers

0 no retransmission

O large delays
when congested
O maximum
| achievable
N cr2 throughput

in

kouf
delay

26

Causes/costs of congestion: scenario 2

0 one router, finite buffers
O sender retransmission of lost packet

HostA Ay - original

Py data
- M\, : original data, plus 4
retransmitted data

out

[B

Host B finite shared output
link buffers

— NN

27

Causes/costs of congestion: scenario 2

O always: A, = k (goodpuf)
in
O “perfect” r‘eTr‘ansmlssmn only when loss: }L > k

O refransmission of delayed (not lost) packef makes 7\. larger
(than perfect case) for same), .
ou

“costs" of congestion:
O more work (retrans) for given “"goodput”

O unneeded retransmissions: link carries multiple copies of pkt
28

Causes/costs of congestion: scenario 3

O four senders Q: what happens asi.

O multihop paths and M\ increase ?
O timeout/retransmit n

Host A - A,
_ A, - original data out

\ «— A, . original data, plus -

retransmitted data [

finite shared output
lipk buffers

Q i
- — L L E -
e

29

Causes/costs of congestion: scenario 3

C/l24

?\'ou’r

;\‘l
in
Another "cost” of congestion:

0 when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

30

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted

control: congestion control:

O no explicit feedback from O routers provide feedback
network to end systems

O congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

O approach taken by TCP ATM)

O explicit rate sender
should send af

31

behavior: probing

TCP congestion control: additive increase,
multiplicative decrease
O Approach..increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS
every RTT unftil loss detected

o multiplicative decrease: cut CongWin in half after
loss

24 Kbytes —|

Saw tooth

16 Kbytes —

for bandwidth

8 Kbytes —

congestion window size

time

32

TCP Congestion Control: details

How does sender
perceive congestion?

O sender limits transmission:
LastByteSent-LastByteAcked

< CongWin O loss event = timeout
3 Roughly, 3 duplicate acks
. CongWin 0 TCP sender reduces
rate RTT byfes/sec rate (CongWin) afte
7 CongWin is dynamic, function loss event .
of perceived network three mechanisms:
o AIMD

congestion
O slow start
O conservative after
timeout events

or

r

33

TCP Slow Start

3 When connection begins, O When connection begins,
CongWin =1MSS increase rate
o Example: MSS = 500 exponentially fast until
bytes & RTT = 200 msec first loss event
O initial rate = 20 kbps
3 available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

34

TCP Slow Start (more)

3 When connection
begins, increase rate
exponentially until
first loss event:

RTT

O double CongWin every

O done by incrementing
CongWin for every ACK
received

O Summary: initial rate
is slow but ramps up
exponentially fast ’riine

35

Refinement: inferring loss

0 After 3 dup ACKs:
o CongWin is cut in half

— Philosophy:
O window then grows
linearly
7 But after timeout event:
o CongWin instead set to
1 MSS;
O window then grows
exponentially

0 3 dup ACKs indicates
network capable of
delivering some segments
O timeout indicates a
"more alarming”
congestion scenario

O to a threshold, then
grows linearly

36

Refinement

Q: When should the
exponential
increase switch to 145
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout. I

_| Threshold

Transmission round

TCP Series 2 Reno

Threshold

O||||||
123456

Implementation:
O Variable Threshold

O At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

T T 1T T T T 1
8 9 10111213 14 15

Transrrission round

Summary: TCP Congestion Control

[When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

3 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

O When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

3 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

37 38
TCP sender congestion control TCP throughput
State Event TCP Sender Action Commentary
o) | o previouay | 1f Comgwin s Toreabaid) | Comawin v RET 7 What's the average throughout of TCP as a
| Avodancer e function of window size and RTT?
Coeton [¢t | o ~CrgSS | ste se > Ignore slow start
© o HMSS every RTT O Let W be the window size when loss occurs.
SSTEA | Geteced by | CongWi = Threshald, implementing multplicatve 0 When window is W, throughput is W/RTT
é\zp'jt mcldanees oo drop below 1SS, 0 Just after loss, window drops to W/2,
SSorCA | Timeout Threshold = CongWin/2, Enter slow start ThrOUQhPUT to W/2RTT.
Set sate 10 "Slow Star 0 Average throughout: .75 W/RTT
SSorCA Ilig[}J(licate]Icg::rseergﬁ]nelriubpelllizt(;?kils count ((::ho:l?g;/:;n and Threshold not
39 40

TCP Futures: TCP over “long, fat pipes”

0 Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

0 Requires window size W = 83,333 in-flight
segments

O Throughput in terms of loss rate:
1.22-MSS
RTTVL

0= L=2101 Wow
3 New versions of TCP for high-speed

41

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

TCP@ bo‘rﬂineck
connection 2 router
capacity R

42

Why is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

43

Fairness (more)

Fairness and UDP Fairness and parallel TCP

0 Multimedia apps often connections

do not use TCP O nothing prevents app from
O do not want rate opening 'par'allel
throttled by congestion connections between 2
control hosts.

0 Instead use UDP: 3 Web browsers do this

° Pumaau]fﬁo/fvfdiol at ., 0 Example: link of rate R
constant rate, Tolerare supporting 9 connections;

packet loss Srsiiuiiaied
0 Research area: TCP O e R T . gefs
friendly O new app asks for 11 TCPs,

gets R/2 |

44

