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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s

Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data-Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM]  Getting Started with Stata for Mac
GSU]  Getting Started with Stata for Unix
GSW]  Getting Started with Stata for Windows

[

[

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

MV]  Stata Multivariate Statistics Reference Manual

P] Stata Programming Reference Manual

SEM]  Stata Structural Equation Modeling Reference Manual

SVY] Stata Survey Data Reference Manual

ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
TS] Stata Time-Series Reference Manual

[1] Stata Quick Reference and Index

M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/


http://www.stata-press.com/manuals/




Title

intro — Introduction to longitudinal-data/panel-data manual

Description

This entry describes this manual and what has changed since Stata 11.

Remarks

This manual documents the xt commands and is referred to as [XT] in cross-references.

Following this entry, [XT] xt provides an overview of the xt commands. The other parts of this
manual are arranged alphabetically. If you are new to Stata’s xt commands, we recommend that you
read the following sections first:

[XT] xt Introduction to Xt commands
[XT] xtset Declare a dataset to be panel data
[XT] xtreg Fixed-, between-, and random-effects, and population-averaged linear models

Stata is continually being updated, and Stata users are always writing new commands. To find
out about the latest cross-sectional time-series features, type search panel data after installing the
latest official updates; see [R] update.

What’s new
This section is intended for previous Stata users. If you are new to Stata, you may as well skip it.

1. MI support for panel-data and multilevel models includes xtcloglog, xtgee, xtlogit,
xtmelogit, xtmepoisson, xtmixed, xtnbreg, xtpoisson, xtprobit, xtrc, and xtreg. See
[MI] estimation.

2. Survey feature support for multilevel models, xtmixed, including multilevel sampling weights
and robust variance estimators. See [XT] xtmixed.

3. Documentation for xtmixed, xtmelogit, and xtmepoisson has been modified to adopt the
standard “level” terminology from the literature on hierarchical models. For example, what in
previous Stata versions was considered a one-level model is now called a two-level model with
the observations now being counted as “level one”; see the Introduction section of Remarks in
both [XT] xtmixed and [XT] xtmelogit for more details.

4. Contrasts, which is to say, tests of linear hypotheses involving factor variables and their interactions
from the most recently fit model, and that model can be virtually any model that Stata can fit.
Tests include ANOVA-style tests of main effects, simple effects, interactions, and nested effects.
Effects can be decomposed into comparisons with reference categories, comparisons of adjacent
levels, comparisons with the grand mean, and more. New commands contrast and margins,
contrast are available after most xt estimation commands. See [R] contrast and [R] margins,
contrast.

5. Pairwise comparisons of means, estimated cell means, estimated marginal means, predictive
margins of linear and nonlinear responses, intercepts, and slopes. In addition to ANOVA-style
comparisons, comparisons can be made of population averages. New commands pwcompare and
margins, pwcompare are available after most xt estimation commands. See [R] pwcompare and
[R] margins, pwcompare.
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6. Graphs of margins, marginal effects, contrasts, and pairwise comparisons. Margins and effects
can be obtained from linear or nonlinear (for example, probability) responses. New command
marginsplot is available after all xt estimation commands; see [R] marginsplot.

7. xtmixed now uses maximum likelihood (ML) as the default method of estimation, where
previously it used restricted maximum likelihood (REML). REML is still available with the reml
option, and previous behavior is preserved under version control.

8. Estimation output improved.

a. Implied zero coefficients now shown. When a coefficient is omitted, it is now shown as being
zero and the reason it was omitted—collinearity, base, empty—is shown in the standard-error
column. (The word “omitted” is shown if the coefficient was omitted because of collinearity.)

b. You can set displayed precision for all values in coefficient tables using set cformat, set
pformat, and set sformat. Or you may use options cformat (), pformat (), and sformat ()
now allowed on all estimation commands. See [R] set cformat and [R] estimation options.

c. Estimation commands now respect the width of the Results window. This feature may be
turned off by new display option nolstretch. See [R] estimation options.

d. You can now set whether base levels, empty cells, and omitted are shown using set
showbaselevels, set showemptycells, and set showomitted. See [R] set showbaselevels.

9. Robust and cluster—robust SEs after fixed-effects xtpoisson. See [XT]| xtpoisson.

10. New residual covariance structures for multilevel models include exponential, banded, and
Toeplitz. See [XT] xtmixed.

11. Probability predictions now available. predict after random-effects and population-averaged
count-data models, such as xtpoisson and xtgee, can now predict the probability of any count
or count range. See [XT] xtpoisson postestimation, [XT] xtgee postestimation, and [XT] xtnbreg
postestimation.

12. Option addplot() now places added graphs above or below. Commands that allow option
addplot () can now place the added plots above or below the command’s plots. Affected is the
command xtline; see [XT] xtline.

For a complete list of all the new features in Stata 12, see [U] 1.3 What’s new.

Also see
[U] 1.3 What’s new

[R] intro — Introduction to base reference manual
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Xt — Introduction to xt commands

Syntax

xtemd . ..

Description

The xt series of commands provides tools for analyzing panel data (also known as longitudinal
data or in some disciplines as cross-sectional time series when there is an explicit time component).
Panel datasets have the form x;;, where x;; is a vector of observations for unit ¢ and time t. The
particular commands (such as xtdescribe, xtsum, and xtreg) are documented in alphabetical order
in the entries that follow this entry. If you do not know the name of the command you need, try
browsing the second part of this description section, which organizes the xt commands by topic. The
next section, Remarks, describes concepts that are common across commands.

The xtset command sets the panel variable and the time variable; see [XT] xtset. Most xt
commands require that the panel variable be specified, and some require that the time variable also
be specified. Once you xtset your data, you need not do it again. The xtset information is stored
with your data.

If you have previously tsset your data by using both a panel and a time variable, these settings
will be recognized by xtset, and you need not xtset your data.

If your interest is in general time-series analysis, see [U] 26.16 Models with time-series data and
the Time-Series Reference Manual.

Data management and exploration tools

xtset Declare data to be panel data
xtdescribe Describe pattern of xt data

xtsum Summarize xt data

xttab Tabulate xt data

xtdata Faster specification searches with xt data
xtline Panel-data line plots

Linear regression estimators

xtreg Fixed-, between-, and random-effects, and population-averaged linear models
Xtregar Fixed- and random-effects linear models with an AR(1) disturbance

xtmixed Multilevel mixed-effects linear regression

xtgls Panel-data models by using GLS

xtpcse Linear regression with panel-corrected standard errors

xthtaylor  Hausman-—Taylor estimator for error-components models

xtfrontier Stochastic frontier models for panel data

xtrc Random-coefficients regression

xtivreg Instrumental variables and two-stage least squares for panel-data models
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Unit-root tests
xtunitroot Panel-data unit-root tests

Dynamic panel-data estimators

xtabond Arellano—Bond linear dynamic panel-data estimation
xtdpd Linear dynamic panel-data estimation
xtdpdsys Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation

Censored-outcome estimators

xttobit Random-effects tobit models
xtintreg Random-effects interval-data regression models

Binary-outcome estimators

xtlogit Fixed-effects, random-effects, and population-averaged logit models
xtmelogit Multilevel mixed-effects logistic regression

xtprobit Random-effects and population-averaged probit models

xtcloglog Random-effects and population-averaged cloglog models

Count-data estimators

xtpoisson Fixed-effects, random-effects, and population-averaged Poisson models
xtmepoisson Multilevel mixed-effects Poisson regression
Xtnbreg Fixed-effects, random-effects, & population-averaged negative binomial models

Multilevel (hierarchical) mixed-effects estimators

xtmelogit Multilevel mixed-effects logistic regression
xtmepoisson Multilevel mixed-effects Poisson regression
xtmixed Multilevel mixed-effects linear regression

Generalized estimating equations estimator
xtgee Population-averaged panel-data models by using GEE

Remarks

Consider having data on n units—individuals, firms, countries, or whatever—over T periods. The
data might be income and other characteristics of n persons surveyed each of 71" years, the output and
costs of n firms collected over 1" months, or the health and behavioral characteristics of n patients
collected over T years. In panel datasets, we write x;; for the value of x for unit ¢ at time ¢. The xt
commands assume that such datasets are stored as a sequence of observations on (i, %, ).

For a discussion of panel-data models, see Baltagi (2008), Greene (2012, chap. 11), Hsiao (2003),
and Wooldridge (2010). Cameron and Trivedi (2010) illustrate many of Stata’s panel-data estimators.
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> Example 1

If we had data on pulmonary function (measured by forced expiratory volume, or FEV) along with
smoking behavior, age, sex, and height, a piece of the data might be

. list in 1/6, separator(0) divider

pid | yr_visit fev | age sex | height smokes
1. 1071 1991 | 1.21 25 1 69 0
2. 1071 1992 | 1.52 26 1 69 0
3. 1071 1993 | 1.32 28 1 68 0
4. 1072 1991 | 1.33 18 1 71 1
5. 1072 1992 | 1.18 20 1 71 1
6. 1072 1993 | 1.19 21 1 71 0

The xt commands need to know the identity of the variable identifying patient, and some of the xt
commands also need to know the identity of the variable identifying time. With these data, we would

type

. xtset pid yr_visit

If we resaved the data, we need not respecify xtset.

Q Technical note

Panel data stored as shown above are said to be in the long form. Perhaps the data are in the wide
form with 1 observation per unit and multiple variables for the value in each year. For instance, a
piece of the pulmonary function data might be

pid
1071
1072

sex fev9l fev92

1
1

1.21
1.33

1.52
1.18

fevd3 age9l

1.32
1.19

25
18

age92  age93

26 28
20 21

Data in this form can be converted to the long form by using reshape; see [D] reshape.

a

> Example 2
Data for some of the periods might be missing. That is, we have panel data on ¢ = 1,...,n
and t =1,...,7, but only 7; of those observations are defined. With such missing periods—called

unbalanced data—a piece of our pulmonary function data might be

. list in 1/6, separator(0) divider

pid | yr_visit fev | age sex | height smokes
1. 1071 1991 | 1.21 25 1 69 0
2. 1071 1992 | 1.52 26 1 69 0
3. 1071 1993 | 1.32 28 1 68 0
4. 1072 1991 | 1.33 18 1 71 1
5. 1072 1993 | 1.19 21 1 71 0
6. 1073 1991 | 1.47 24 0 64 0
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Patient ID 1072 is not observed in 1992. The xt commands are robust to this problem.

Q Technical note

In many of the entries in [XT], we will use data from a subsample of the NLSY data (for Human
Resource Research 1989) on young women aged 14-26 years in 1968. Women were surveyed in
each of the 21 years 1968—1988, except for the six years 1974, 1976, 1979, 1981, 1984, and 1986.
We use two different subsets: nlswork.dta and union.dta.

For nlswork.dta, our subsample is of 4,711 women in years when employed, not enrolled in
school and evidently having completed their education, and with wages in excess of $1/hour but less
than $700/hour.

. use http://www.stata-press.com/data/ri12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)
. describe

Contains data from http://www.stata-press.com/data/r12/nlswork.dta

obs: 28,534 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 21 7 Dec 2010 17:02

size: 941,622
storage display value

variable name type format label variable label

idcode int %8.0g NLS ID

year byte %8.0g interview year

birth_yr byte %8.0g birth year

age byte 7%8.0g age in current year

race byte %8.0g 1=white, 2=black, 3=other

msp byte %8.0g 1 if married, spouse present

nev_mar byte %8.0g 1 if never married

grade byte %8.0g current grade completed

collgrad byte %8.0g 1 if college graduate

not_smsa byte  %8.0g 1 if not SMSA

c_city byte %8.0g 1 if central city

south byte 7%8.0g 1 if south

ind_code byte %8.0g industry of employment

occ_code byte %8.0g occupation

union byte 7%8.0g 1 if union

wks_ue byte %8.0g weeks unemployed last year

ttl_exp float %9.0g total work experience

tenure float %9.0g job tenure, in years

hours int %8.0g usual hours worked

wks_work int %8.0g weeks worked last year

1n_wage float %9.0g 1n(wage/GNP deflator)

Sorted by: idcode year
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. summarize
Variable Obs Mean Std. Dev. Min Max
idcode 28534 2601.284 1487 .359 1 5159
year 28534 77.95865 6.383879 68 88
birth_yr 28534 48.08509 3.012837 41 54
age 28510 29.04511 6.700584 14 46
race 28534 1.303392 .4822773 1 3
msp 28518 .6029175 .4893019 0 1
nev_mar 28518 .2296795 .4206341 0 1
grade 28532 12.53259 2.323905 0 18
collgrad 28534 .1680451 .3739129 0 1
not_smsa 28526 .2824441 .4501961 0 1
c_city 28526 .357218 .4791882 0 1
south 28526 .4095562 .4917605 0 1
ind_code 28193 7.692973 2.994025 1 12
occ_code 28413 4.777672 3.065435 1 13
union 19238 .2344319 .4236542 0 1
wks_ue 22830 2.548095 7.294463 0 76
ttl_exp 28534 6.215316 4.652117 0 28.88461
tenure 28101 3.123836 3.751409 0 25.91667
hours 28467 36.55956 9.869623 1 168
wks_work 27831 53.98933 29.03232 0 104
1n_wage 28534 1.674907 .4780935 0 5.263916

Many of the variables in the nlswork dataset are indicator variables, so we have used factor
variables (see [U] 11.4.3 Factor variables) in many of the examples in this manual. You will see
terms like c.age#c.age or 2.race in estimation commands. c.age#c.age is just age interacted
with age, or age-squared, and 2.race is just an indicator variable for black (race = 2).

Instead of using factor variables, you could type

. generate age2 = age*age
. generate black = (race==2)

and substitute age2 and black in your estimation command for c.age#c.age and 2.race, respec-
tively.

There are advantages, however, to using factor variables. First, you do not actually have to create
new variables, so the number of variables in your dataset is less.

Second, by using factor variables, we are able to take better advantage of postestimation commands.
For example, if we specify the simple model

. xtreg ln_wage age age2, fe
then age and age2 are completely separate variables. Stata has no idea that they are related—that

one is the square of the other. Consequently, if we compute the average marginal effect of age on
the log of wages,

. margins, dydx(age)

then the reported marginal effect is with respect to the age variable alone and not with respect to the
true effect of age, which involves the coefficients on both age and age2.
If instead we fit our model using an interaction of age with itself for the square of age,

. xtreg ln_wage age c.age#c.age, fe
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then Stata has a deep understanding that the coefficients age and c.age#c.age are related. After
fitting this model, the marginal effect reported by margins includes the full effect of age on the log
of income, including the contribution of both coefficients.

. margins, dydx(age)

There are other reasons for preferring factor variables; see [R] margins for examples.

For union.dta, our subset was sampled only from those with union membership information from
1970 to 1988. Our subsample is of 4,434 women. The important variables are age (16—46), grade
(years of schooling completed, ranging from 0 to 18), not_smsa (28% of the person-time was spent
living outside a standard metropolitan statistical area (SMSA), and south (41% of the person-time
was in the South). The dataset also has variable union. Overall, 22% of the person-time is marked
as time under union membership, and 44% of these women have belonged to a union.

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. describe

Contains data from http://www.stata-press.com/data/ri2/union.dta

obs: 26,200 NLS Women 14-24 in 1968
vars: 8 4 May 2011 13:54

size: 235,800

storage display value

variable name  type format label variable label

idcode int %8.0g NLS ID
year byte %8.0g interview year
age byte %8.0g age in current year
grade byte %8.0g current grade completed
not_smsa byte 7%8.0g 1 if not SMSA

south byte %8.0g 1 if south
union byte  %8.0g 1 if union
black byte %8.0g race black

Sorted by: idcode year

. summarize

Variable Obs Mean Std. Dev. Min Max
idcode 26200 2611.582 1484 .994 1 5159

year 26200 79.47137 5.965499 70 88

age 26200 30.43221 6.489056 16 46

grade 26200 12.76145 2.411715 0 18
not_smsa 26200 .2837023 .4508027 0 1
south 26200 .4130153 .4923849 0 1

union 26200 .2217939 .4154611 0 1

black 26200 .274542 .4462917 0 1

In many of the examples where the union dataset is used, we also include an interaction between
the year variable and the south variable—south#c.year. This interaction is created using factor-
variables notation; see [U] 11.4.3 Factor variables.

With both datasets, we have typed

. xtset idcode year
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Q Technical note

The xtset command sets the ¢ and 7 index for xt data by declaring them as characteristics of
the data; see [P] char. The panel variable is stored in _dta[iis] and the time variable is stored in
_dta[tis].

a

Q Technical note

xtmixed, xtmelogit, and xtmepoisson do not use the information pertaining to ¢ and ¢ that is
stored by xtset. Unlike the other xt commands, these can handle multiple nested levels of groups

and thus use their own syntax for specifying the group structure of the data.
a

Q Technical note

Throughout the entries in [XT], when random-effects models are fit, a likelihood-ratio test that
the variance of the random effects is zero is included. These tests occur on the boundary of the
parameter space, invalidating the usual theory associated with such tests. However, these likelihood-
ratio tests have been modified to be valid on the boundary. In particular, the null distribution of the
likelihood-ratio test statistic is not the usual x? but is rather a 50:50 mixture of a 2 (point mass at
zero) and a X%, denoted as Xg;. See Gutierrez, Carter, and Drukker (2001) for a full discussion, and
see [XT] xtmixed for a generalization of the concept as applied to variance-component estimation in
mixed models.

a
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Title

quadchk — Check sensitivity of quadrature approximation

Syntax

quadchk [#1 #2} [, nooutput nofrom]

Menu

Statistics > Longitudinal/panel data > Setup and utilities > Check sensitivity of quadrature approximation

Description

quadchk checks the quadrature approximation used in the random-effects estimators of the following
commands:

xtcloglog

xtintreg

xtlogit

xtpoisson, re with the normal option
xtprobit

xttobit

quadchk refits the model for different numbers of quadrature points and then compares the different
solutions.

#1 and #5 specify the number of quadrature points to use in the comparison runs of the previous
model. The default is to use (roughly) 2n,/3 and 4n,/3 points, where n, is the number of quadrature
points used in the original estimation.

Most options supplied to the original model are respected by quadchk, but some are not. These
are or, vce(), and the maximize_options.

Options
nooutput suppresses the iteration log and output of the refitted models.

nofrom forces the refitted models to start from scratch rather than starting from the previous estimation
results. Adaptive quadrature with intmethod (aghermite) is more sensitive to starting values than
nonadaptive quadrature, intmethod(ghermite), or the default method of adaptive quadrature,
intmethod (mvaghermite). Specifying the nofrom option can level the playing field in testing
estimation results.

Remarks

Remarks are presented under the following headings:

What makes a good random-effects model fit?
How do I know whether I have a good quadrature approximation?
What can I do to improve my results?

10
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What makes a good random-effects model fit?

Some random-effects estimators in Stata use adaptive or nonadaptive Gauss—Hermite quadrature
to compute the log likelihood and its derivatives. As a rule, adaptive quadrature, which is the default
integration method, is much more accurate. The quadchk command provides a means to look at the
numerical accuracy of either quadrature approximation. A good random-effects model fit depends on
both the goodness of the quadrature approximation and the goodness of the data.

The accuracy of the quadrature approximation depends on three factors. The first and second
are how many quadrature points are used and where the quadrature points fall. These two factors
directly influence the accuracy of the quadrature approximation. The number of quadrature points may
be specified with the intpoints() option. However, once the number of points is specified, their
abscissas (locations) and corresponding weights are completely determined. Increasing the number of
points expands the range of the abscissas and, to a lesser extent, increases the density of the abscissas.
For this reason, a function that undulates between the abscissas can be difficult to approximate.

Third, the smoothness of the function being approximated influences the accuracy of the quadrature
approximation. Gauss—Hermite quadrature estimates integrals of the type

/OC e f(z)dx

— 00

and the approximation is exact if f(z) is a polynomial of degree less than the number of integration
points. Therefore, f(x) that are well approximated by polynomials of a given degree have integrals
that are well approximated by Gauss—Hermite quadrature with that given number of integration points.
Both large panel sizes and high p can reduce the accuracy of the quadrature approximation.

A final factor affects the goodness of the random-effects model: the data themselves. For high
p, for example, there is high intrapanel correlation, and panels look like observations. The model
becomes unidentified. Here, even with exact quadrature, fitting the model would be difficult.

How do | know whether | have a good quadrature approximation?

quadchk is intended as a tool to help you know whether you have a good quadrature approximation.
As a rule of thumb, if the coefficients do not change by more than a relative difference of 10~
(0.01%), the choice of quadrature points does not significantly affect the outcome, and the results
may be confidently interpreted. However, if the results do change appreciably—greater than a relative
difference of 1072 (1%)—then quadrature is not reliably approximating the likelihood.

What can | do to improve my results?

If the quadchk command indicates that the estimation results are sensitive to the number of
quadrature points, there are several things you can do. First, if you are not using adaptive quadrature,
switch to adaptive quadrature.

Adaptive quadrature can improve the approximation by transforming the integrand so that the
abscissas and weights sample the function on a more suitable range. Details of this transformation
are in Methods and formulas for the given commands; for example, see [XT] xtprobit.

If the model still shows sensitivity to the number of quadrature points, increase the number of
quadrature points with the intpoints() option. This option will increase the range and density of
the sampling used for the quadrature approximation.
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If neither of these works, you may then want to consider an alternative model, such as a fixed-
effects, pooled, or population-averaged model. Alternatively, a different random-effects model whose
likelihood is not approximated via quadrature (for example, xtpoisson, re) may be a better choice.

> Example 1

Here we synthesize data according to the model

E(y) =0.05z1 + 0.08 x5 +0.08z3 + 0.1 24 + 0.1 25 + 0.1 26 + 0.1¢

1 ify>0
“TV0 ify<o

where the intrapanel correlation is 0.5 and the x1 variable is constant within panels. We first fit a
random-effects probit model, and then we check the stability of the quadrature calculation:

. use http://www.stata-press.com/data/r12/quadi

. Xtset id
panel variable: id (balanced)

. Xtprobit z x1-x6

(output omitted )
Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0
max = 20
Wald chi2(6) = 29.24
Log likelihood = -3347.1097 Prob > chi2 = 0.0001
z Coef . Std. Err. z P>|z| [95% Conf. Intervall
x1 .0043068 .0607058 0.07 0.943 -.1146743 .1232879
x2 .1000742 .066331 1.51  0.131 -.0299323 .2300806
x3 .1503539 .0662503 2.27 0.023 .0205057 .2802021
x4 .123015 .0377089 3.26 0.001 .0491069 .196923
x5 .1342988 .0657222 2.04 0.041 .0054856 .263112
x6 .0879933 .0455753 1.93 0.054 -.0013325 .1773192
_cons .0757067 .060359 1.25 0.210 -.0425948 .1940083
/1nsig2u -.0329916 .1026847 -.23425 .1682667
sigma_u .9836395 .0505024 .889474 1.087774
rho .4917528 .0256642 .4417038 .5419677

Likelihood-ratio test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000
. quadchk

]
o

Refitting model intpoints()
(output omitted )

Refitting model intpoints() = 16
(output omitted )
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Quadrature check

Fitted Comparison Comparison

quadrature quadrature quadrature

12 points 8 points 16 points

Log -3347.1097 -3347.1153 -3347.1099
likelihood -.00561484 -.00014288
1.678e-06 4.269e-08

z: .0043068 .0043068 .00430541
x1 8.983e-15 -1.388e-06
2.086e-12 -.00032222

z: .10007418 .10007418 .10007431
x2 2.540e-15 1.362e-07
2.538e-14 1.361e-06

z: .15035391 .15035391 .15035406
x3 6.356e-15 1.520e-07
4.227e-14 1.011e-06

z: .12301495 .12301495 .12301506
x4 4.149e-15 1.099e-07
3.373e-14 8.931e-07

z: .13429881 .13429881 .13429896
x5 4.913e-15 1.471e-07
3.658e-14 1.096e-06

z: .08799332 .08799332 .08799346
x6 3.358e-15 1.363e-07
3.817e-14 1.549e-06

z: .07570675 .07570675 .07570423
_cons 1.962e-14 -2.516e-06
2.592e-13 -.00003323
Insig2u: -.03299164 -.03299164 -.03298184
_cons 7.268e-14 9.798e-06
-2.203e-12 -.00029699

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

We see that the largest difference is in the x1 variable with a relative difference of 0.03% between
the model with 12 integration points and 16. This example is somewhat rare in that the differences
between eight quadrature points and 12 are smaller than those between 12 and 16. Usually the opposite
occurs: the model results converge as you add quadrature points. Here we have an indication that
perhaps some minor feature of the model was missed with eight points and 12 but seen with 16.
Because all differences are very small, we could accept this model as is. We would like to have a
largest relative difference of about 0.01%, and this is close. The differences and relative differences
are small, indicating that refitting the random-effects probit model with a few more integration points
will yield a satisfactory result. Indeed, refitting the model with the intpoints(20) option yields
completely satisfactory results when checked with quadchk.

Nonadaptive Gauss—Hermite quadrature does not yield such robust results.
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. xXtprobit z x1-x6, intmethod(ghermite) nolog

Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0

max = 20

Wald chi2(6) = 36.15

Log likelihood = -3349.6926 Prob > chi2 = 0.0000
z Coef.  Std. Err. z P>|z| [95% Conf. Intervall

x1 .1156763 .0554925 2.08 0.037 .0069131 .2244396

x2 .1005555 .066227 1.52  0.129 -.0292469 .230358

x3 .1542187 .0660852 2.33 0.020 .0246941 .2837433

x4 .1257616 .0375776 3.35 0.001 .0521108 .1994123

x5 .1366003 .0654696 2.09 0.037 .0082823 .2649182

x6 .0870325 .0453489 1.92 0.055 -.0018497 .1759147

_cons .1098393 .0500514 2.19 0.028 .0117404 .2079382
/1nsig2u -.0791821 .0971063 -.2695071 .1111428
sigma_u .9611824 .0466685 .8739313 1.057145

rho .4802148 .0242386 .4330281 .5277571

Likelihood-ratio test of rho
. quadchk, nooutput

Refitting model intpoints() =

Refitting model intpoints()

Quadrature check

=0: chibar2(01) =

8
= 16

Fitted Comparison Comparison

quadrature quadrature quadrature

12 points 8 points 16 points

Log -3349.6926 -3354.6372 -3348.3881
likelihood -4.9446636 1.3045063
.00147615 -.00038944

z: .11567633 .16153998 .07007833
x1 .04586365 -.045598
.39648262 -.39418608

z: .10055552 .10317831 .09937417
x2 .00262279 -.00118135
.02608297 -.01174825
z: .1542187 .15465369 .15150516
x3 .00043499 -.00271354
.00282062 -.0175954
z: .12576159 .12880254 .1243974
x4 .00304096 -.00136418
.02418032 -.01084739
z: .13660028 .13475211 .13707075
x5 -.00184817 .00047047
-.01352978 .00344411
z: .08703252 .08568342 .08738135
x6 -.0013491 .00034883
-.0155011 .00400809

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

Difference
Relative difference

1577.50 Prob >= chibar2 = 0.000
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z: .10983928 .11031299 .09654975
_cons .00047371 -.01328953
.00431274 -.12099067

Insig2u: -.07918212 -.18133821 -.05815644
_cons -.10215609 .02102568
1.2901408 -.26553572

Difference

Relative difference

Difference

Relative difference

Here we see that the x1 variable (the one that was constant within panel) changed with a relative
difference of nearly 40%! This example clearly demonstrates the benefit of adaptive quadrature

methods.

> Example 2

4

Here we rerun the previous nonadaptive quadrature model, but using the intpoints(120) option
to increase the number of integration points to 120. We get results close to those from adaptive
quadrature and an acceptable quadchk. This example demonstrates the efficacy of increasing the
number of integration points to improve the quadrature approximation.

. xtprobit z x1-x6, intmethod(ghermite) intpoints(120) nolog

Random-effects probit regression Number of obs 6000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0

max = 20

Wald chi2(6) = 29.24

Log likelihood = -3347.1099 Prob > chi2 = 0.0001
z Coef . Std. Err. z P>|z| [95% Conf. Intervall

x1 .0043059 .0607087 0.07 0.943 -.114681 .1232929

x2 .1000743 .0663311 1.51  0.131 -.0299322 .2300808

x3 .1503541 .0662503 2.27 0.023 .0205058 .2802023

x4 .1230151 .0377089 3.26 0.001 .049107 .1969232

x5 .134299 .0657223 2.04 0.041 .0054856 .2631123

x6 .0879935 .0455753 1.93 0.054 -.0013325 .1773194

_cons .0757054 .0603621 1.256  0.210 -.0426021 .1940128
/1nsig2u -.0329832 .1026863 -.2342446 .1682783
sigma_u .9836437 .0505034 .8894764 1.08778

rho .491755 .0256646 .4417052 .5419706

Likelihood-ratio test of rho=0: chibar2(01)

1682.67 Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 80
Refitting model intpoints() = 160

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
120 points 80 points 160 points
Log -3347.1099 -3347.1099 -3347.1099
likelihood -.00007138 2.440e-07 Difference
2.133e-08 -7.289e-11 Relative difference
z: .00430592 .00431318 .00430553
x1 7.259e-06 -3.871e-07 Difference
.00168592 -.00008991 Relative difference
z: .10007431 .10007415 .10007431
x2 -1.519e-07 5.585e-09 Difference
-1.517e-06 5.580e-08 Relative difference
z: .15035406 .15035407 .15035406
x3 1.699e-08 7.636e-09 Difference
1.130e-07 5.078e-08 Relative difference
z: .12301506 .12301512 .12301506
x4 6.036e-08 5.353e-09 Difference
4.907e-07 4.352e-08 Relative difference
z: .13429895 .13429962 .13429896
x5 6.646e-07 4.785e-09 Difference
4.949e-06 3.563e-08 Relative difference
z: .08799345 .08799334 .08799346
x6 -1.123e-07 3.049e-09 Difference
-1.276e-06 3.465e-08 Relative difference
z: .07570536 .07570205 .07570442
_cons -3.305e-06 -9.405e-07 Difference
-.00004365 -.00001242 Relative difference
Insig2u: -.03298317 -.03298909 -.03298186
_cons -5.919e-06 1.304e-06 Difference
.00017945 -.00003952 Relative difference

> Example 3

Here we synthesize data the same way as in the previous example, but we make the intrapanel
correlation equal to 0.1 instead of 0.5. We again fit a random-effects probit model and check the
quadrature:
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. use http://www.stata-press.com/data/r12/quad2

. Xtset id
panel variable: id (balanced)

. xtprobit z x1-x6
Fitting comparison model:

Iteration 0: log likelihood = -4142.2915
Iteration 1: log likelihood = -4120.4109
Iteration 2: log likelihood = -4120.4099
Iteration 3: log likelihood = -4120.4099

Fitting full model:

rho = 0.0 log likelihood = -4120.4099
rho = 0.1 log likelihood = -4065.7986
rho = 0.2 log likelihood = -4087.7703
Iteration log likelihood = -4065.7986

0:
Iteration 1: log likelihood = -4065.3157
Iteration 2: log likelihood = -4065.3144
Iteration 3: log likelihood = -4065.3144

Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0

max = 20

Wald chi2(6) = 39.43

Log likelihood = -4065.3144 Prob > chi2 = 0.0000
z Coef. Std. Err. z P>|z| [95% Conf. Intervall

x1 .0246943 .025112 0.98 0.325 -.0245243 .0739129

X2 .1300123 .0587906 2.21  0.027 .0147847 .2452398

x3 .1190409 .0579539 2.05 0.040 .0054533 .2326284

x4 .139197 .0331817 4.19 0.000 .0741621 .2042319

x5 .077364 .0578454 1.34 0.181 -.036011 .1907389

x6 .0862028 .0401185 2.15 0.032 .007572 .1648336

_cons .0922653 .0244392 3.78 0.000 .0443653 .1401652
/1nsig2u -2.343939 .1575275 -2.652687 -2.035191
sigma_u .3097563 .0243976 .2654461 .3614631

rho .0875487 .0125839 .0658236 .1155574

Likelihood-ratio test of rho=0: chibar2(01) 110.19 Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points
Log -4065.3144 -4065.3144 -4065.3144
likelihood -2.268e-08 5.457e-12 Difference
5.578e-12 -1.342e-15 Relative difference
z: .02469427 .02469427 .02469427
x1 -3.645e-12 -8.007e-12 Difference
-1.476e-10 -3.242e-10 Relative difference
z: .13001229 .13001229 .13001229
x2 -1.566e-11 -6.879e-13 Difference
-1.204e-10 -5.291e-12 Relative difference
z: .11904089 .11904089 .11904089
x3 -6.457e-12 -3.030e-13 Difference
-5.425e-11 -2.545e-12 Relative difference
z: .13919697 .13919697 .13919697
x4 1.442e-12 1.693e-13 Difference
1.036e-11 1.216e-12 Relative difference
z: .07736398 .07736398 .07736398
x5 -5.801e-12 -4.556e-13 Difference
-7.499e-11 -5.890e-12 Relative difference
z: .08620282 .08620282 .08620282
x6 5.903e-12 3.191e-13 Difference
6.848e-11 3.702e-12 Relative difference
z: .09226527 .09226527 .09226527
_cons -2.850e-12 -1.837e-11 Difference
-3.089e-11 -1.991e-10 Relative difference
Insig2u: -2.3439389 -2.3439389 -2.3439389
_cons -2.946e-09 -2.172e-10 Difference
1.257e-09 9.267e-11 Relative difference

Here we see that the quadrature approximation is stable. With this result, we can confidently interpret
the results. Satisfactory results are also obtained in this case with nonadaptive quadrature.

4

Methods and formulas

quadchk is implemented as an ado-file.
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vce_options — Variance estimators

Syntax
estimation_cmd . . . [ , vce_options .. ]
vee_options Description
vce(oim) observed information matrix (OIM)
vce (opg) outer product of the gradient (OPG) vectors
vce(robust) Huber/White/sandwich estimator
vce(cluster clustvar) clustered sandwich estimator

vce (bootstrap [ , bootslrap_oplionsb bootstrap estimation
vce(jackknife [ , jackknzjf‘e_options]) jackknife estimation

nmp use divisor NV — P instead of the default IV

scale(x2|dev|phi|#) override the default scale parameter;
available only with population-averaged models

Description

This entry describes the vce_options, which are common to most xt estimation commands. Not
all the options documented below work with all xt estimation commands; see the documentation for
the particular estimation command. If an option is listed there, it is applicable.

The vce () option specifies how to estimate the variance—covariance matrix (VCE) corresponding
to the parameter estimates. The standard errors reported in the table of parameter estimates are the
square root of the variances (diagonal elements) of the VCE.

Options
SE/Robust

vce (oim) is usually the default for models fit using maximum likelihood. vce (oim) uses the observed
information matrix (OIM); see [R] ml.

vce (opg) uses the sum of the outer product of the gradient (OPG) vectors; see [R] ml. This is the
default VCE when the technique (bhhh) option is specified; see [R] maximize.

vce(robust) uses the robust or sandwich estimator of variance. This estimator is robust to some
types of misspecification so long as the observations are independent; see [U] 20.20 Obtaining
robust variance estimates.

If the command allows pweights and you specify them, vce(robust) is implied; see
[U] 20.22.3 Sampling weights.

19
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vce(cluster clustvar) specifies that the standard errors allow for intragroup correlation, relaxing
the usual requirement that the observations be independent. That is to say, the observations are
independent across groups (clusters) but not necessarily within groups. clustvar specifies to which
group each observation belongs, for example, vce(cluster personid) in data with repeated
observations on individuals. vce(cluster clustvar) affects the standard errors and variance—
covariance matrix of the estimators but not the estimated coefficients; see [U] 20.20 Obtaining
robust variance estimates.

vce(bootstrap [ , bootstrap_options]) uses a bootstrap; see [R] bootstrap. After estimation with
vce(bootstrap), see [R] bootstrap postestimation to obtain percentile-based or bias-corrected
confidence intervals.

vce(jackknife [, jackknife_options]) uses the delete-one jackknife; see [R] jackknife.

nmp specifies that the divisor N — P be used instead of the default N, where IV is the total number
of observations and P is the number of coefficients estimated.

scale(x2|dev|phi | #) overrides the default scale parameter. By default, scale (1) is assumed for
the discrete distributions (binomial, negative binomial, and Poisson), and scale(x2) is assumed
for the continuous distributions (gamma, Gaussian, and inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson chi-squared (or generalized chi-
squared) statistic divided by the residual degrees of freedom, which is recommended by McCullagh
and Nelder (1989) as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and for over- or
underdispersed discrete distributions.

scale(phi) specifies that the scale parameter be estimated from the data. xtgee’s default
scaling makes results agree with other estimators and has been recommended by McCullagh and
Nelder (1989) in the context of GLM. When comparing results with calculations made by other
software, you may find that the other packages do not offer this feature. In such cases, specifying
scale(phi) should match their results.

scale (#) sets the scale parameter to #. For example, using scale(1) in family(gamma) models
results in exponential-errors regression (if you assume independent correlation structure).

Remarks

When you are working with panel-data models, we strongly encourage you to use the
vce(bootstrap) or vce(jackknife) option instead of the corresponding prefix command. For
example, to obtain jackknife standard errors with xtlogit, type
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. use http://www.stata-press.com/data/r12/clogitid

. xtlogit y x1 x2, fe vce(jackknife)
(running xtlogit on estimation sample)

Jackknife replications (66)
{ 1 { 2 { 3 { 4 { 5
I I I I I
.................................................. 50
Conditional fixed-effects logistic regression Number of obs = 369
Group variable: id Number of groups = 66
Obs per group: min = 2
avg = 5.6
max = 10
F( 2, 65) = 4.58
Log likelihood = -123.41386 Prob > F = 0.0137
(Replications based on 66 clusters in id)
Jackknife
y Coef.  Std. Err. t P>|t] [95% Conf. Intervall
x1 .653363 .3010608 2.17 0.034 .052103 1.254623
X2 .0659169 .0487858 1.35 0.181 -.0315151 .1633489

If you wish to specify more options to the bootstrap or jackknife estimation, you can include them
within the vce () option. Below we refit our model requesting bootstrap standard errors based on 300
replications, we set the random-number seed so that our results can be reproduced, and we suppress
the display of the replication dots.

. xtlogit y x1 x2, fe vce(bootstrap, reps(300) seed(123) nodots)

Conditional fixed-effects logistic regression Number of obs = 369
Group variable: id Number of groups = 66
Obs per group: min = 2
avg = 5.6
max = 10
Wald chi2(2) = 8.52
Log likelihood = -123.41386 Prob > chi2 = 0.0141
(Replications based on 66 clusters in id)
Observed Bootstrap Normal-based
y Coef. Std. Err. p P>|z| [95% Conf. Intervall
x1 .653363 .3015317 2.17  0.030 .0623717 1.244354
X2 .0659169 .0512331 1.29 0.198 -.0344981 .1663319

Q Technical note

To perform jackknife estimation on panel data, you must omit entire panels rather than individual
observations. To replicate the output above using the jackknife prefix command, you would have
to type

. jackknife, cluster(id): xtlogit y x1 x2, fe
(output omitted )

Similarly, bootstrap estimation on panel data requires you to resample entire panels rather than
individual observations. The vce(bootstrap) and vce(jackknife) options handle this for you

automatically.
a
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Methods and formulas

By default, Stata’s maximum likelihood estimators display standard errors based on variance
estimates given by the inverse of the negative Hessian (second derivative) matrix. If vce (robust),
vce(cluster clustvar), or pweights are specified, standard errors are based on the robust variance
estimator (see [U] 20.20 Obtaining robust variance estimates); likelihood-ratio tests are not appropriate
here (see [SVY] survey), and the model 2 is from a Wald test. If vce (opg) is specified, the standard
errors are based on the outer product of the gradients; this option has no effect on likelihood-ratio
tests, though it does affect Wald tests.

If vce(bootstrap) or vce(jackknife) is specified, the standard errors are based on the chosen
replication method; here the model x? or F statistic is from a Wald test using the respective replication-
based covariance matrix. The ¢ distribution is used in the coefficient table when the vce (jackknife)
option is specified. vce (bootstrap) and vce(jackknife) are also available with some commands
that are not maximum likelihood estimators.

Reference

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall/CRC.

Also see
[R] bootstrap — Bootstrap sampling and estimation
[R] jackknife — Jackknife estimation
[R] ml — Maximum likelihood estimation

[U] 20 Estimation and postestimation commands


http://www.stata.com/bookstore/glm.html

Title

xtabond — Arellano—Bond linear dynamic panel-data estimation

Syntax

xtabond depvar [indepvars] [if} [m] [, Op[iOl’lS]

options Description
Model
noconstant suppress constant term
diffvars (varlist) already-differenced exogenous variables
inst (varlist) additional instrument variables
lags(#) use # lags of dependent variable as covariates; default is lags (1)
maxldep (#) maximum lags of dependent variable for use as instruments
maxlags (#) maximum lags of predetermined and endogenous variables for use
as instruments
twostep compute the two-step estimator instead of the one-step estimator

Predetermined

pre(varlist[. .. ])

Endogenous
endogenous (varlist[. .. ] )

predetermined variables; can be specified more than once

endogenous variables; can be specified more than once

SE/Robust
vce (veetype) vecetype may be gmm or robust
Reporting
level (#) set confidence level; default is 1level (95)
artests (#) use # as maximum order for AR tests; default is artests(2)

display_options

coeflegend

control spacing and line width

display legend instead of statistics

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.

indepvars and all varlists, except pre(varlist[ e ]) and endogenous (varlist[. - }), may contain time-series
operators; see [U] 11.4.4 Time-series varlists. The specification of depvar, however, may not contain time-series

operators.

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Arellano-Bond estimation

23
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Description

Linear dynamic panel-data models include p lags of the dependent variable as covariates and
contain unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level
effects are correlated with the lagged dependent variables, making standard estimators inconsistent.
Arellano and Bond (1991) derived a consistent generalized method of moments (GMM) estimator for
the parameters of this model; xtabond implements this estimator.

This estimator is designed for datasets with many panels and few periods, and it requires that
there be no autocorrelation in the idiosyncratic errors. For a related estimator that uses additional
moment conditions, but still requires no autocorrelation in the idiosyncratic errors, see [XT] xtdpdsys.
For estimators that allow for some autocorrelation in the idiosyncratic errors, at the cost of a more
complicated syntax, see [XT] xtdpd.

Options
Model

noconstant; see [R] estimation options.

diffvars(varlist) specifies a set of variables that already have been differenced to be included as
strictly exogenous covariates.

inst (varlist) specifies a set of variables to be used as additional instruments. These instruments are
not differenced by xtabond before including them in the instrument matrix.

lags(#) sets p, the number of lags of the dependent variable to be included in the model. The
default is p = 1.

maxldep(#) sets the maximum number of lags of the dependent variable that can be used as
instruments. The default is to use all 7; — p — 2 lags.

maxlags (#) sets the maximum number of lags of the predetermined and endogenous variables that
can be used as instruments. For predetermined variables, the default is to use all T; — p — 1 lags.
For endogenous variables, the default is to use all 7; — p — 2 lags.

twostep specifies that the two-step estimator be calculated.

Predetermined

pre(varlist[ , lagstruct (prelags, premaxlags) ]) specifies that a set of predetermined variables
be included in the model. Optionally, you may specify that prelags lags of the specified variables
also be included. The default for prelags is 0. Specifying premaxlags sets the maximum number
of further lags of the predetermined variables that can be used as instruments. The default is to
include T; — p — 1 lagged levels as instruments for predetermined variables. You may specify as
many sets of predetermined variables as you need within the standard Stata limits on matrix size.
Each set of predetermined variables may have its own number of prelags and premaxlags.

Endogenous

endogenous (varlist[ , lagstruct(endlags, endmaxlags)]) specifies that a set of endogenous
variables be included in the model. Optionally, you may specify that endlags lags of the specified
variables also be included. The default for endlags is 0. Specifying endmaxlags sets the maximum
number of further lags of the endogenous variables that can be used as instruments. The default
is to include T; — p — 2 lagged levels as instruments for endogenous variables. You may specify
as many sets of endogenous variables as you need within the standard Stata limits on matrix size.
Each set of endogenous variables may have its own number of endlags and endmaxlags.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that are robust to some kinds of misspecification; see Remarks below.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce (robust) uses the robust estimator. After one-step estimation, this is the Arellano—Bond robust
VCE estimator. After two-step estimation, this is the Windmeijer (2005) WC-robust estimator.

Reporting

level (#); see [R] estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtabond postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display_options: vsquish and nolstretch; see [R] estimation options.

The following option is available with xtabond but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Anderson and Hsiao (1981, 1982) propose using further lags of the level or the difference of
the dependent variable to instrument the lagged dependent variables that are included in a dynamic
panel-data model after the panel-level effects have been removed by first-differencing. A version of
this estimator can be obtained from xtivreg (see [XT] xtivreg). Arellano and Bond (1991) build upon
this idea by noting that, in general, there are many more instruments available. Building on Holtz-
Eakin, Newey, and Rosen (1988) and using the GMM framework developed by Hansen (1982), they
identify how many lags of the dependent variable, the predetermined variables, and the endogenous
variables are valid instruments and how to combine these lagged levels with first differences of the
strictly exogenous variables into a potentially large instrument matrix. Using this instrument matrix,
Arellano and Bond (1991) derive the corresponding one-step and two-step GMM estimators, as well
as the robust VCE estimator for the one-step model. They also found that the robust two-step VCE
was seriously biased. Windmeijer (2005) worked out a bias-corrected (WC) robust estimator for VCEs
of two-step GMM estimators, which is implemented in xtabond. The test of autocorrelation of order
m and the Sargan test of overidentifying restrictions derived by Arellano and Bond (1991) can be
obtained with estat abond and estat sargan, respectively; see [XT] xtabond postestimation.

> Example 1

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986) using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm ¢ and
time t. In this dataset, n;; is the log of employment in firm ¢ at time ¢, w;; is the natural log of
the real product wage, k;; is the natural log of the gross capital stock, and ys,, is the natural log
of industry output. The model also includes time dummies yr1980, yr1981, yr1982, yr1983, and
yr1984. In table 4 of Arellano and Bond (1991), the authors present the results they obtained from
several specifications.
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In column al of table 4, Arellano and Bond report the coefficients and their standard errors from
the robust one-step estimators of a dynamic model of labor demand in which n;; is the dependent
variable and its first two lags are included as regressors. To clarify some important issues, we will
begin with the homoskedastic one-step version of this model and then consider the robust case. Here
is the command using xtabond and the subsequent output for the homoskedastic case:

. use http://www.stata-press.com/data/r12/abdata
. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 4
avg = 4.364286
max = 6
Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 = 0.0000
One-step results
n Coef. Std. Err. P P>|z]| [95% Conf. Interval]
n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358
w
--. -.6078208 .0657694 -9.24 0.000 -.7367265 -.4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251
k
--. .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .0562747
L2. -.0199475 .0416274 -0.48 0.632 -.1015357 .0616408
ys
--. .6085073 .1345412 4.52 0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 -.3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912
yr1980 .0029062 .0212705 0.14 0.891 -.0387832 . 0445957
yr1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yr1982 -.0652767 .048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .0538664
yr1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061
year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

The coefficients are identical to those reported in column al of table 4, as they should be. Of
course, the standard errors are different because we are considering the homoskedastic case. Although
the moment conditions use first-differenced errors, xtabond estimates the coefficients of the level
model and reports them accordingly.

The footer in the output reports the instruments used. The first line indicates that xtabond used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991) and
Holtz-Eakin, Newey, and Rosen (1988); also see Methods and formulas in [XT] xtdpd. The second
and third lines indicate that the first difference of all the exogenous variables were used as standard
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instruments. GMM-type instruments use the lags of a variable to contribute multiple columns to the
instrument matrix, whereas each standard instrument contributes one column to the instrument matrix.
The notation L(2/.) .n indicates that GMM-type instruments were created using lag 2 of n from on
back. (L(2/4) .n would indicate that GMM-type instruments were created using only lags 2, 3, and
4 of n.)

After xtabond, estat sargan reports the Sargan test of overidentifying restrictions.

. estat sargan
Sargan test of overidentifying restrictions
HO: overidentifying restrictions are valid

chi2(25) = 65.81806
Prob > chi2 = 0.0000

Only for a homoskedastic error term does the Sargan test have an asymptotic chi-squared distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce (robust) model, xtabond does not compute it when vce (robust) is specified. The Sargan test,
reported by Arellano and Bond (1991, table 4, column al), comes from the one-step homoskedastic
estimator and is the same as the one reported here. The output above presents strong evidence against
the null hypothesis that the overidentifying restrictions are valid. Rejecting this null hypothesis
implies that we need to reconsider our model or our instruments, unless we attribute the rejection
to heteroskedasticity in the data-generating process. Although performing the Sargan test after the
two-step estimator is an alternative, Arellano and Bond (1991) found a tendency for this test to
underreject in the presence of heteroskedasticity. (See [XT] xtdpd for an example indicating that this
rejection may be due to misspecification.)

By default, xtabond calculates the Arellano—Bond test for first- and second-order autocorrelation
in the first-differenced errors. (Use artests () to compute tests for higher orders.) There are versions
of this test for both the homoskedastic and the robust cases, although their values are different. Use
estat abond to report the test results.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -3.9394 0.0001
2 |-.54239 0.5876

HO: no autocorrelation

When the idiosyncratic errors are independently and identically distributed (i.i.d.), the first-
differenced errors are first-order serially correlated. So, as expected, the output above presents strong
evidence against the null hypothesis of zero autocorrelation in the first-differenced errors at order 1.
Serial correlation in the first-differenced errors at an order higher than 1 implies that the moment
conditions used by xtabond are not valid; see [XT] xtdpd for an example of an alternative estimation
method. The output above presents no significant evidence of serial correlation in the first-differenced
errors at order 2.

N
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> Example 2
Consider the output from the one-step robust estimator of the same model:

. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) vce(robust)
> noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 41 Wald chi2(16) = 1727.45

Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust

n Coef. Std. Err. z P>|z| [95% Conf. Intervall]

n
L1. .6862261 .1445943 4.75 0.000 .4028266 .9696257
L2. -.0853582 .0560155 -1.52 0.128 -.1951467 .0244302

W
- -.6078208 .1782055 -3.41 0.001 -.9570972 -.2585445
L1. .3926237 .1679931 2.34 0.019 .0633632 .7218842

k
—-—. .3568456 .0590203 6.05 0.000 .241168 .4725233
L1. -.0580012 .0731797 -0.79 0.428 -.2014308 .0854284
L2. -.0199475 .0327126 -0.61 0.542 -.0840631 .0441681

ys
- .6085073 .1725313 3.53 0.000 .2703522 .9466624
L1. -.7111651 .2317163 -3.07 0.002 -1.165321 -.2570095
L2. .1057969 .1412021 0.75 0.454 -.1709542 .382548
yr1980 .0029062 .0158028 0.18 0.854 -.0280667 .0338791
yri1981 -.0404378 .0280582 -1.44 0.150 -.0954307 .0145552
yr1982 -.0652767 .0365451 -1.79 0.074 -.1369038 .0063503
yr1983 -.0690928 .047413 -1.46 0.145 -.1620205 .0238348
yri1984 -.0650302 .0576305 -1.13 0.259 -.1779839 .0479235
year .0095545 .0102896 0.93 0.353 -.0106127 .0297217

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

The coefficients are the same, but now the standard errors match that reported in Arellano and
Bond (1991, table 4, column al). Most of the robust standard errors are higher than those that assume
a homoskedastic error term.
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The Sargan statistic cannot be calculated after requesting a robust VCE, but robust tests for serial
correlation are available.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -3.5996 0.0003
2 [-.51603 0.6058

HO: no autocorrelation

The value of the test for second-order autocorrelation matches those reported in Arellano and
Bond (1991, table 4, column al) and presents no evidence of model misspecification.

N

> Example 3

xtabond reports the Wald statistic of the null hypothesis that all the coefficients except the constant
are zero. Here the null hypothesis is that all the coefficients are zero, because there is no constant in
the model. In our previous example, the null hypothesis is soundly rejected. In column al of table 4,
Arellano and Bond report a chi-squared test of the null hypothesis that all the coefficients are zero,
except the time trend and the time dummies. Here is this test in Stata:

. test 1.n 12.nw l.w k 1.k 12.k ys 1.ys 12.ys

(1) Ln=0

(2) L2.n=0

(3 w=0

(4) Lw=0

(B k=0

(6) Lk=0

(7) L2.k =0

(8 ys=0

(9) L.ys=0

(10) L2.ys =0

chi2( 10) = 408.29
Prob > chi2 = 0.0000
d
> Example 4

The two-step estimator with the Windmeijer bias-corrected robust VCE of the same model produces
the following output:
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. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) twostep
> vce(robust) noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 41 Wald chi2(16) = 1104.72

Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust

n Coef. Std. Err. z P>|z| [95% Conf. Intervall

n
L1. .6287089 .1934138 3.25 0.001 .2496248 1.007793
L2. -.0651882 .0450501 -1.45 0.148 —-.1534847 .0231084

W
- -.5257597 .1546107 -3.40 0.001 -.828791 -.2227284
L1. .3112899 .2030006 1.53 0.125 -.086584 .7091638

k
- .2783619 .0728019 3.82 0.000 .1356728 .4210511
L1. .0140994 .0924575 0.15 0.879 -.167114 .1953129
L2. -.0402484 .0432745 -0.93 0.352 -.1250649 .0445681

ys
-—. .5919243 .1730916 3.42 0.001 .252671 .9311776
L1. -.5659863 .2611008 -2.17 0.030 -1.077734 -.0542381
L2. .1005433 .1610987 0.62 0.533 -.2152043 .4162908
yr1980 .0006378 .0168042 0.04 0.970 -.0322978 .0335734
yr1981 -.0550044 .0313389 -1.76 0.079 -.1164275 .0064187
yr1982 -.075978 .0419276 -1.81 0.070 -.1581545 .0061986
yr1983 -.0740708 .0528381 -1.40 0.161 -.1776315 .02949
yr1984 -.0906606 .0642615 -1.41 0.158 -.2166108 .0352896
year .0112155 .0116783 0.96 0.337 -.0116735 .0341045

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Arellano and Bond recommend against using the two-step nonrobust results for inference on the
coefficients because the standard errors tend to be biased downward (see Arellano and Bond 1991
for details). The output above uses the Windmeijer bias-corrected (WC) robust VCE, which Windmei-
jer (2005) showed to work well. The magnitudes of several of the coefficient estimates have changed,
and one even switched its sign.
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The test for autocorrelation presents no evidence of model misspecification:

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -2.1255 0.0335
2 -.35166 0.7251

HO: no autocorrelation

Manuel Arellano (1957-) was born in Elda in Alicante, Spain. He earned degrees in economics
from the University of Barcelona and the London School of Economics. After various posts in
Oxford and London, he returned to Spain as professor of econometrics at Madrid in 1991. He
is a leading expert on panel-data econometrics.

Stephen Roy Bond (1963—) earned degrees in economics from Cambridge and Oxford. Following
various posts at Oxford, he now works mainly at the Institute for Fiscal Studies in London. His
research interests include company taxation, dividends, and the links between financial markets,
corporate control, and investment.

> Example 5

Thus far we have been specifying the noconstant option to keep to the standard Arellano—
Bond estimator, which uses instruments only for the differenced equation. The constant estimated by
xtabond is a constant in the level equation, and it is estimated from the level errors. The output
below illustrates that including a constant in the model does not affect the other parameter estimates.
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. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) twostep vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 42 Wald chi2(16) = 1104.72

Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust

n Coef. Std. Err. z P>zl [95% Conf. Intervall]

n
L1. .6287089 .1934138 3.25 0.001 .2496248 1.007793
L2. -.0651882 .0450501 -1.45 0.148 -.1534847 .0231084

w
- -.5257597 .1546107 -3.40 0.001 -.828791 -.2227284
L1. .3112899 .2030006 1.53 0.125 -.086584 .7091638

k
—-—. .2783619 .0728019 3.82 0.000 .1356728 .4210511
L1. .0140994 .0924575 0.15 0.879 -.167114 .1953129
L2. -.0402484 .0432745 -0.93 0.352 -.1250649 .0445681

ys
- .5919243 .1730916 3.42 0.001 .252671 .9311776
L1. -.5659863 .2611008 -2.17 0.030 -1.077734 -.0542381
L2. .1005433 .1610987 0.62 0.533 -.2152043 .4162908
yr1980 .0006378 .0168042 0.04 0.970 -.0322978 .0335734
yri1981 -.0550044 .0313389 -1.76 0.079 -.1164275 .0064187
yr1982 -.075978 .0419276 -1.81 0.070 -.1581545 .0061986
yr1983 -.0740708 .0528381 -1.40 0.161 -.1776315 .02949
yr1984 -.0906606 .0642615 -1.41 0.158 -.2166108 .0352896
year .0112155 .0116783 0.96 0.337 -.0116735 .0341045
_cons -21.53725 23.23138 -0.93 0.354 -67.06992 23.99542

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year
Instruments for level equation
Standard: _cons

Including the constant does not affect the other parameter estimates because it is identified only by
the level errors; see [XT] xtdpd for details. q

> Example 6

Sometimes we cannot assume strict exogeneity. Recall that a variable, x;, is said to be strictly
exogenous if E[z;ie;5] = 0 for all ¢ and s. If Elx;1€;5] # 0 for s < ¢ but E[z;:€;5] = 0 forall s > ¢,
the variable is said to be predetermined. Intuitively, if the error term at time ¢ has some feedback
on the subsequent realizations of ¢, x;; is a predetermined variable. Because unforecastable errors
today might affect future changes in the real wage and in the capital stock, we might suspect that
the log of the real product wage and the log of the gross capital stock are predetermined instead of
strictly exogenous. Here we treat w and k as predetermined and use lagged levels as instruments.
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. xtabond n 1(0/1).ys yr1980-yr1984 year, lags(2) twostep pre(w, lag(l,.))
> pre(k, lag(2,.)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 4
avg = 4.364286
max = 6
Number of instruments = 83 Wald chi2(15) = 958.30
Prob > chi2 = 0.0000
Two-step results
(Std. Err. adjusted for clustering on id)
WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881
w
-- .6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441
k
-- .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. .1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. .1025833 .0710886 -1.44 0.149 -.2419143 .0367477
ys
--. .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. .8773678 .2183085 -4.02 0.000 -1.305245 -.449491
yr1980 .0072451 .017163 -0.42 0.673 -.0408839 .0263938
yr1981 .0609608 .030207 -2.02 0.044 -.1201655  -.0017561
yr1982 .1130369 .0454826 -2.49 0.013 -.2021812  -.0238926
yr1983 .1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yri1984 .1623177 .0725434 -2.24 0.025 -.3045001  -.0201352
year .0264501 .0119329 2.22 0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on

back and from the first lag of L2.k on back.

Q Technical note

d

The above example illustrates that xtabond understands pre(w, lag(1l, .)) to mean that L.w
is a predetermined variable and pre(k, lag(2, .)) to mean that L2.k is a predetermined variable.

This is a stricter definition than the alternative that pre(w, lag(1,

.)) means only that w is

predetermined but includes a lag of w in the model and that pre(k, lag(2, .)) means only that
k is predetermined but includes first and second lags of k in the model. If you prefer the weaker
definition, xtabond still gives you consistent estimates, but it is not using all possible instruments;
see [XT] xtdpd for an example of how to include all possible instruments.

a
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> Example 7

We might instead suspect that w and k are endogenous in that E[z;.€;5] # 0 for s < ¢ but
Elz;te;s] = 0 for all s > t. By this definition, endogenous variables differ from predetermined
variables only in that the former allow for correlation between the x;; and the €;; at time ¢, whereas
the latter do not. Endogenous variables are treated similarly to the lagged dependent variable. Levels
of the endogenous variables lagged two or more periods can serve as instruments. In this example,
we treat w and k as endogenous variables.

. xtabond n 1(0/1).ys yr1980-yr1984 year, lags(2) twostep endogenous(w, lag(l,.))
> endogenous(k, lag(2,.)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 71 Wald chi2(15) = 967.61

Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust

n Coef . Std. Err. z P>zl [95% Conf. Intervall]

n
L1. .6640937 .1278908 5.19 0.000 .4134323 .914755
L2. -.041283 .081801 -0.50 0.614 -.2016101 .1190441

W
- -.7143942 .13083 -5.46 0.000 -.9708162 -.4579721
L1. .3644198 .184758 1.97 0.049 .0023008 .7265388

k
-—. .5028874 .1205419 4.17 0.000 .2666296 .7391452
L1. -.2160842 .0972855 -2.22 0.026 -.4067603 -.025408
L2. -.0549654 .0793673 -0.69 0.489 -.2105225 .1005917

ys
—-—. .5989356 .1779731 3.37 0.001 .2501148 .9477564
L1. -.6770367 .1961166 -3.45 0.001 -1.061418 -.2926553
yr1980 -.0061122 .0155287 -0.39 0.694 -.0365478 .0243235
yri1981 -.04715 .0298348 -1.58 0.114 -.1056252 .0113251
yr1982 -.0817646 .0486049 -1.68 0.093 -.1770285 .0134993
yr1983 -.0939251 .0675804 -1.39 0.165 -.2263802 .0385299
yri1984 -.117228 .0804716 -1.46 0.145 -.2749493 .0404934
year .0208857 .0103485 2.02 0.044 .0006031 .0411684

Instruments for differenced equation
GMM-type: L(2/.).n L(2/.).L.w L(2/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984
D.year

Although some estimated coefficients changed in magnitude, none changed in sign, and these
results are similar to those obtained by treating w and k as predetermined. 4

The Arellano—Bond estimator is for datasets with many panels and few periods. (Technically, the
large-sample properties are derived with the number of panels going to infinity and the number of
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periods held fixed.) The number of instruments increases quadratically in the number of periods. If
your dataset is better described by a framework in which both the number of panels and the number
of periods is large, then you should consider other estimators such as those in [XT] xtivreg or xtreg,
fe in [XT] xtreg; see Alvarez and Arellano (2003) for a discussion of this case.

> Example 8

Treating variables as predetermined or endogenous quickly increases the size of the instrument
matrix. (See Methods and formulas in [XT] xtdpd for a discussion of how this matrix is created and
what determines its size.) GMM estimators with too many overidentifying restrictions may perform
poorly in small samples. (See Kiviet 1995 for a discussion of the dynamic panel-data case.)

To handle these problems, you can set a maximum number of lagged levels to be included as
instruments for lagged-dependent or the predetermined variables. Here is an example in which a
maximum of three lagged levels of the predetermined variables are included as instruments:

. xtabond n 1(0/1).ys yr1980-yr1984 year, lags(2) twostep
> pre(w, lag(1,3)) pre(k, lag(2,3)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 67 Wald chi2(15) = 1116.89

Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust

n Coef. Std. Err. z P>zl [95% Conf. Intervall]

n
L1. .931121 .1456964 6.39 0.000 .6455612 1.216681
L2. -.0759918 .0854356 -0.89 0.374 -.2434425 .0914589

W
--. -.6475372 .1687931 -3.84 0.000 -.9783656 -.3167089
L1. .6906238 .1789698 3.86 0.000 .3398493 1.041398

k
- .3788106 .1848137 2.05 0.040 .0165824 .7410389
L1. -.2158533 .1446198 -1.49 0.136 -.4993028 .0675962
L2. -.0914584 .0852267 -1.07 0.283 -.2584997 .0755829

ys
- . 7324964 .176748 4.14 0.000 .3860766 1.078916
L1. -.9428141 .2735472 -3.45 0.001 -1.478957 -.4066715
yr1980 -.0102389 .0172473 -0.59 0.553 -.0440431 .0235652
yr1981 -.0763495 .0296992 -2.57 0.010 —-.1345589 -.0181402
yr1982 -.1373829 .0441833 -3.11 0.002 -.2239806 -.0507853
yr1983 -.1825149 .0613674 -2.97 0.003 -.3027928 -.0622369
yr1984 -.2314023 .0753669 -3.07 0.002 -.3791186 -.083686
year .0310012 .0119167 2.60 0.009 .0076448 .0543576

Instruments for differenced equation
GMM-type: L(2/.).n L(1/3).L.w L(1/3).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year 4
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> Example 9

xtabond handles data in which there are missing observations in the middle of the panels. In the
following example, we deliberately set the dependent variable to missing in the year 1980:

. replace n=. if year==1980

(140 real changes made, 140 to missing)

. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) noconstant
> vce(robust)

note: yr1980 dropped from div() because of collinearity

note: yri1981 dropped from div() because of collinearity

note: yr1982 dropped from div() because of collinearity

note: yr1980 dropped because of collinearity

note: yri1981 dropped because of collinearity

note: yr1982 dropped because of collinearity

Arellano-Bond dynamic panel-data estimation Number of obs = 115

Group variable: id Number of groups = 101
Time variable: year

Obs per group: min = 1

avg = 1.138614

max = 2

Number of instruments = 18 Wald chi2(12) = 44 .48

Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .1790577 .2204682 0.81 0.417 -.253052 .6111674
L2. .0214253 .0488476 0.44 0.661 -.0743143 .1171649
W
- -.2513405 .1402114 -1.79 0.073 -.5261498 .0234689
L1. .1983952 .1445875 1.37 0.170 -.0849912 .4817815
k
- .3983149 .0883352 4.51 0.000 .2251811 .5714488
L1. -.025125 .0909236 -0.28 0.782 -.203332 .1530821
L2. -.0359338 .0623382 -0.58 0.564 -.1581144 .0862468
ys
- .3663201 .3824893 0.96 0.338 -.3833451 1.115985
L1. -.6319976 .4823958 -1.31 0.190 -1.577476 .3134807
L2. .5318404 .4105269 1.30 0.195 -.2727775 1.336458
yr1983 -.0047543 .024855 -0.19 0.848 -.0534692 .0439606
yri1984 0 (omitted)
year .0014465 .010355 0.14 0.889 -.0188489 .0217419

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1983
D.yr1984 D.year

There are two important aspects to this example. First, xtabond reports that variables have been
dropped from the model and from the div () instrument list. For xtabond, the div() instrument list
is the list of instruments created from the strictly exogenous variables; see [XT] xtdpd for more about
the div () instrument list. Second, because xtabond uses time-series operators in its computations,
if statements and missing values are not equivalent. An if statement causes the false observations to
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be excluded from the sample, but it computes the time-series operators wherever possible. In contrast,
missing data prevent evaluation of the time-series operators that involve missing observations. Thus
the example above is not equivalent to the following one:

. use http://www.stata-press.com/data/ri2/abdata, clear

. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year if year!=1980,
> lags(2) noconstant vce(robust)

note: yri1980 dropped from div() because of collinearity

note: yr1980 dropped because of collinearity

Arellano-Bond dynamic panel-data estimation Number of obs = 473
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 3
avg = 3.378571
max = 5
Number of instruments = 37 Wald chi2(15) = 1041.61
Prob > chi2 = 0.0000
One-step results
(Std. Err. adjusted for clustering on id)
Robust
n Coef. Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .7210062 .1321214 5.46 0.000 .4620531 .9799593
L2. -.0960646 .0570547 -1.68 0.092 -.2078898 .0157606
w
-- -.6684175 .1739484 -3.84 0.000 -1.00935 .3274849
L1. .482322 .1647185 2.93 0.003 .1594797 .8051642
k
-= .3802777 .0728546 5.22  0.000 .2374853 .5230701
L1. -.104598 .088597 -1.18 0.238 -.278245 .069049
L2. -.0272055 .0379994 -0.72 0.474 -.101683 .0472721
ys
--. .4655989 .1864368 2.50 0.013 .1001895 .8310082
L1. -.8562492 .2187886 -3.91 0.000 -1.285067 .4274315
L2. .0896556 .1440035 0.62 0.534 -.192586 .3718972
yr1981 -.0711626 .0205299 -3.47 0.001 -.1114005 .0309247
yr1982 -.1212749 .0334659 -3.62 0.000 -.1868669 .0556829
yr1983 -.1470248 .0461714 -3.18 0.001 -.2375191 .0565305
yr1984 -.1519021 .0543904 -2.79 0.005 -.2585054 .0452988
year .0203277 .0108732 1.87 0.062 -.0009833 .0416387

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1981
D.yr1982 D.yr1983 D.yr1984 D.year

The year 1980 is dropped from the sample, but when the value of a variable from 1980 is required

because a lag or difference is required, the 1980 value is used.

N
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Saved results

xtabond saves the following in e():

Scalars
e(N)
e(N_g)
e(df_m)
e(g_max)
e(g_min)
e(g_avg)
e(t_max)
e(t_min)
e(chi2)
e (arm#)
e(artests)
e(sig2)
e(rss)
e(sargan)
e(rank)
e(zrank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(twostep)
e(ivar)
e(tvar)
e(vce)
e(vcetype)
e(system)
e (hascons)
e(transform)
e(datasignature)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
Matrices
e(b)
e(V)
Functions
e(sample)

number of observations

number of groups

model degrees of freedom

largest group size

smallest group size

average group size

maximum time in sample
minimum time in sample

X2

test for autocorrelation of order #
number of AR tests computed
estimate of o2

sum of squared differenced residuals
Sargan test statistic

rank of e(V)

rank of instrument matrix

xtabond

command as typed

name of dependent variable
twostep, if specified

variable denoting groups

variable denoting time within groups
veetype specified in vce ()

title used to label Std. Err.

system, if system estimator
hascons, if specified

specified transform

checksum from datasignature
bV

program used to implement estat
program used to implement predict
predictions allowed by margins

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample

Methods and formulas

xtabond is implemented as an ado-file.

A dynamic panel-data model has the form

p
Vit = Y i +XuB +WaBy +viter i=1,..,N t=1,....T,

Jj=1
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where

the «; are p parameters to be estimated,

X;¢+ is a 1 X kp vector of strictly exogenous covariates,

By is a k1 x 1 vector of parameters to be estimated,

w; is a 1 X ko vector of predetermined and endogenous covariates,

B, is a ko x 1 vector of parameters to be estimated,

v; are the panel-level effects (which may be correlated with the covariates), and
€;¢ are i.i.d. over the whole sample with variance 062.

The v; and the €;; are assumed to be independent for each ¢ over all ¢.

By construction, the lagged dependent variables are correlated with the unobserved panel-level
effects, making standard estimators inconsistent. With many panels and few periods, estimators are
constructed by first-differencing to remove the panel-level effects and using instruments to form
moment conditions.

xtabond uses a GMM estimator to estimate «q, ..., ap, B, and [B2. The moment conditions are
formed from the first-differenced errors from (1) and instruments. Lagged levels of the dependent
variable, the predetermined variables, and the endogenous variables are used to form GMM-type
instruments. See Arellano and Bond (1991) and Holtz-Eakin, Newey, and Rosen (1988) for discussions
of GMM-type instruments. First differences of the strictly exogenous variables are used as standard
instruments.

xtabond uses xtdpd to perform its computations, so the formulas are given in Methods and
formulas of [XT] xtdpd.
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Also see

[XT] xtabond postestimation — Postestimation tools for xtabond

[XT] xtset — Declare data to be panel data

[XT] xtdpdsys — Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation
[XT] xtdpd — Linear dynamic panel-data estimation

[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models
[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[U] 20 Estimation and postestimation commands



Title

xtabond postestimation — Postestimation tools for xtabond

Description

The following postestimation commands are of special interest after xtabond:

Command

Description

estat abond
estat sargan

test for autocorrelation
Sargan test of overidentifying restrictions

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat abond reports the Arellano—Bond tests for serial correlation in the first-differenced errors.

estat sargan reports the Sargan test of the overidentifying restrictions.

Syntax for predict

predict [type] newvar [lf] [in] [, xb e stdp gfference]

Menu

Statistics > Postestimation > Predictions, residuals, etc.

M
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Options for predict
, Main

xb, the default, calculates the linear prediction.
e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.

Syntax for estat abond

estat abond [, artests(#)]

Menu

Statistics > Postestimation > Reports and statistics

Option for estat abond

artests (#) specifies the highest order of serial correlation to be tested. By default, the tests computed
during estimation are reported. The model will be refit when artests (#) specifies a higher order
than that computed during the original estimation. The model can be refit only if the data have
not changed.

Syntax for estat sargan

estat sargan

Menu

Statistics > Postestimation > Reports and statistics

Remarks

Remarks are presented under the following headings:

estat abond
estat sargan
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estat abond

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced errors at
order m. Rejecting the null hypothesis of no serial correlation in the first-differenced errors at order
zero does not imply model misspecification because the first-differenced errors are serially correlated
if the idiosyncratic errors are independent and identically distributed. Rejecting the null hypothesis
of no serial correlation in the first-differenced errors at an order greater than one implies model
misspecification; see example 5 in [XT] xtdpd for an alternative estimator that allows for idiosyncratic
errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce (robust) has been
specified. (The system estimator is used to estimate the constant in xtabond.)

See Remarks in [XT] xtabond for more remarks about estat abond that are made in the context
of the examples analyzed therein.

estat sargan

The distribution of the Sargan test is known only when the errors are independently and identically
distributed. For this reason, estat sargan does not produce a test statistic when vce (robust) was
specified in the call to xtabond.

See Remarks in [XT] xtabond for more remarks about estat sargan that are made in the context
of the examples analyzed therein.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See [XT] xtdpd postestimation for the formulas.

Also see
[XT] xtabond — Arellano—Bond linear dynamic panel-data estimation

[U] 20 Estimation and postestimation commands



Title

xtcloglog — Random-effects and population-averaged cloglog models

Syntax

Random-effects (RE) model

xtcloglog depvar [indepvars] [lf] [m} [weight] [, re RE_options]

Population-averaged (PA) model

xtcloglog depvar [indepvars] [zj] [zn} [weight], pa [PA_options]

RE_options Description
Model
noconstant suppress constant term
re use random-effects estimator; the default

offset (varname)
constraints (constraints)
collinear

SE
vce (veetype)

Reporting

level (#)
noskip

eform
nocnsreport
display_options

Integration
intmethod (intmethod)

intpoints (#)

Maximization

maximize_options

coeflegend

include varname in model with coefficient constrained to 1
apply specified linear constraints
keep collinear variables

vcetype may be oim, bootstrap, or jackknife

set confidence level; default is 1level (95)

perform overall model test as a likelihood-ratio test
report exponentiated coefficients

do not display constraints

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod (mvaghermite)

use # quadrature points; default is intpoints(12)

control the maximization process; seldom used

display legend instead of statistics

44
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PA_options Description
Model
noconstant suppress constant term
pa use population-averaged estimator

offset (varname)

Correlation
corr (correlation)
force

SE/Robust
vce (veetype)
nmp
scale(parm)

Reporting
level (#)
eform
display_options

Optimization
optimize _options

include varname in model with coefficient constrained to 1

within-group correlation structure; see table below
estimate even if observations unequally spaced in time

vecetype may be conventional, robust, bootstrap, or jackknife
use divisor NV — P instead of the default NV

overrides the default scale parameter;
parm may be x2, dev, phi, or #

set confidence level; default is 1level (95)
report exponentiated coefficients

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

control the optimization process; seldom used

coeflegend display legend instead of statistics
correlation Description

exchangeable exchangeable; the default
independent independent

unstructured unstructured

fixed matname
ar #

stationary #
nonstationary #

user-specified
autoregressive of order #
stationary of order #
nonstationary of order #

A panel variable must be specified. For xtcloglog, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed
for the random-effects model; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Longitudinal/panel data > Binary outcomes > Complementary log-log regression (RE, PA)

Description

xtcloglog fits population-averaged and random-effects complementary log-log (cloglog) models.
There is no command for a conditional fixed-effects model, as there does not exist a sufficient statistic
allowing the fixed effects to be conditioned out of the likelihood. Unconditional fixed-effects cloglog
models may be fit with cloglog with indicator variables for the panels. However, unconditional
fixed-effects estimates are biased.

By default, the population-averaged model is an equal-correlation model; that is, xtcloglog, pa
assumes corr (exchangeable). See [XT] xtgee for information on fitting other population-averaged
models.

See [R] logistic for a list of related estimation commands.

Options for RE model

_ (Wogel

noconstant; see [R] estimation options.
re requests the random-effects estimator, which is the default.

offset (varname), constraints (constraints), collinear; see [R] estimation options.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

Reporting

level (#), noskip; see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

Integration

intmethod (intmethod), intpoints (#); see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.
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The following option is available with xtcloglog but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for PA model
[ Wodel

noconstant; see [R] estimation options.
pa requests the population-averaged estimator.

offset (varname); see [R] estimation options

[ cCorrelation |

corr (correlation), force; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2|dev|phi|#); see [XT] vce_options.

Reporting

level (#); see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

optimize_options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(le-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtcloglog but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

xtcloglog, pa is a shortcut command for fitting the population-averaged model. Typing

. xtcloglog ..., pa ..

is equivalent to typing

. xtgee ..., ... family(binomial) link(cloglog) corr(exchangeable)

Also see [XT] xtgee for information about xtcloglog.

By default or when re is specified, xtcloglog fits, via maximum likelihood, the random-effects
model

Pr(yi # 0lxit) = P(xitB + v3)
fori = 1,...,n panels, where t = 1,...,n;, v; are i.i.d., N(0,02), and P(z) = 1—exp{—exp(z)}.

Underlying this model is the variance-components model
Yit #0 <= xpfB+v;+ e >0

where €;; are i.i.d. extreme-value (Gumbel) distributed with the mean equal to Euler’s constant and
variance 02 = 72 /6, independently of v;. The nonsymmetric error distribution is an alternative to
logit and probit analysis and is typically used when the positive (or negative) outcome is rare.

> Example 1

Suppose that we are studying unionization of women in the United States and are using the union
dataset; see [XT] xt. We wish to fit a random-effects model of union membership:

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtcloglog union age grade not_smsa south##c.year

(output omitted )

Random-effects complementary log-log model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12
Wald chi2(6) = 248.58
Log likelihood = -10535.928 Prob > chi2 = 0.0000
union Coef.  Std. Err. z P>|z| [95% Conf. Intervall
age .0128659 .0119004 1.08 0.280 -.0104586 .0361903
grade .06985 .0138135 5.06 0.000 .042776 .096924
not_smsa -.198416 .0647943 -3.06 0.002 -.3254104 -.0714215
1.south -2.047645 .488965 -4.19  0.000 -3.005999  -1.089291
year -.0006432 .0123569 -0.05 0.958 -.0248623 .0235759

south#c.year
1 .0164259 .006065 2.71  0.007 .0045387 .0283132
_cons -3.269158 .659029 -4.96  0.000 -4.560831  -1.977485
/1lnsig2u 1.24128 .0461705 1.150787 1.331772
sigma_u 1.860118 .0429413 1.77783 1.946214
rho .677T78 .0100834 .6577057 .6972152

Likelihood-ratio test of rho=0: chibar2(01) = 6009.36 Prob >= chibar2 = 0.000
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The output includes the additional panel-level variance component, which is parameterized as the log
of the standard deviation, Ino, (labeled 1nsig2u in the output). The standard deviation o, is also
included in the output, labeled sigma_u, together with p (labeled rho),

2
v

02+ o2

g
p:

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is not important, and the panel estimator
is no different from the pooled estimator (cloglog). A likelihood-ratio test of this is included at the
bottom of the output, which formally compares the pooled estimator with the panel estimator.

As an alternative to the random-effects specification, you might want to fit an equal-correlation
population-averaged cloglog model by typing

. xtcloglog union age grade not_smsa south##c.year, pa

Iteration 1: tolerance = .11878399
Iteration 2: tolerance = .01424628
Iteration 3: tolerance = .00075278
Iteration 4: tolerance = .00003195
Iteration 5: tolerance = 1.661e-06
Iteration 6: tolerance = 8.308e-08

GEE population-averaged model Number of obs = 26200

Group variable: idcode Number of groups = 4434

Link: cloglog Obs per group: min = 1

Family: binomial avg = 5.9

Correlation: exchangeable max = 12

Wald chi2(6) = 234.66

Scale parameter: 1 Prob > chi2 = 0.0000

union Coef . Std. Err. z P>|z| [95% Conf. Intervall

age .01563737 .0081156 1.89 0.058 -.0005326 .03128

grade .0549518 .0095093 5.78 0.000 .0363139 .0735897

not_smsa -.1045232 .0431082 -2.42 0.015 -.1890138 -.0200326

1.south -1.714868 .3384558 -5.07 0.000 -2.378229 -1.051507

year -.0115881 .0084125 -1.38 0.168 -.0280763 .0049001
south#c.year

1 .0149796 .0041687 3.59 0.000 .0068091 .0231501

_cons -1.488278 .4468005 -3.33 0.001 -2.363991 -.6125652

> Example 2

In [R] cloglog, we showed these results and compared them with cloglog, vce(cluster id).
xtcloglog with the pa option allows a vce (robust) option (the random-effects estimator does not
allow the vce(robust) specification), so we can obtain the population-averaged cloglog estimator
with the robust variance calculation by typing
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. xtcloglog union age grade not_smsa south##c.year, pa vce(robust)

(output omitted )
GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: cloglog Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12
Wald chi2(6) = 157.24
Scale parameter: 1 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on idcode)
Semirobust

union Coef.  Std. Err. z P>|z| [95% Conf. Intervall
age .01563737 .0079446 1.94 0.053 -.0001974 .0309448
grade .0549518 .0117258 4.69 0.000 .0319697 .077934
not_smsa -.1045232 .0548598 -1.91 0.057 -.2120465 .0030001
1.south -1.714868 .4864999 -3.52 0.000 -2.66839 -.7613455
year -.0115881 .0085742 -1.35 0.177 -.0283932 .005217

south#c.year
1 .0149796 .0060548 2.47 0.013 .0031124 .0268468
_cons -1.488278 .4924738 -3.02 0.003 -2.453509  -.5230472

These standard errors are similar to those shown for cloglog, vce(cluster id) in [R] cloglog.

d

Q Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy
depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtcloglog likelihood function is calculated by Gauss—Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.

a
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Saved results

xtcloglog, re saves the following in e():

e(converged)

Scalars
e(N) number of observations
e(N_g) number of groups
e(N_cd) number of completely determined observations
e(k) number of parameters
e(k_aux) number of auxiliary parameters
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11-0) log likelihood, constant-only model
e(11l_c) log likelihood, comparison model
e(chi2)
e(chi2_c) x? for comparison test
e(rho) P
e(sigma_u) panel-level standard deviation
e(n_quad) number of quadrature points
e(g_min) smallest group size
e(g-avg) average group size
e(g_max) largest group size
e(p) significance
e(rank) rank of e(V)
e (rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code

1 if converged, O otherwise
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Macros

e(cmd)
e(cmdline)
e(depvar)
e(ivar)

e (model)
e(wtype)

e (wexp)
e(title)
e(offset)
e(chi2type)
e(chi2_ct)
e(vce)
e(vcetype)
e(intmethod)
e(distrib)
e(opt)
e(which)
e(ml_method)
e(user)
e(technique)
e(properties)
e(predict)
e(asbalanced)
e (asobserved)

Matrices

e(b)

e(Cns)
e(ilog)
e(gradient)
e (V)

Functions

e(sample)

xtcloglog

command as typed

name of dependent variable

variable denoting groups

re

weight type

weight expression

title in estimation output

linear offset variable

Wald or LR; type of model x? test

Wald or LR; type of model x? test corresponding to e(chi2_c)
veetype specified in vce ()

title used to label Std. Err.

integration method

Gaussian; the distribution of the random effect
type of optimization

max or min; whether optimizer is to perform maximization or minimization
type of m1 method

name of likelihood-evaluator program
maximization technique

bV

program used to implement predict

factor variables fvset as asbalanced

factor variables fvset as asobserved

coefficient vector

constraints matrix

iteration log

gradient vector

variance—covariance matrix of the estimators

marks estimation sample
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xtcloglog, pa saves the following in e():
Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(chi2) x>
e(p) significance
e(df_pear) degrees of freedom for Pearson x?
e(chi2_dev) x2 test of deviance
e(chi2_dis) x? test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code
Macros
e(cmd) xtgee
e(cmd2) xtcloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) binomial
e(link) cloglog; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e (wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e (nmp) nmp, if specified
e(properties) bV
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(R) estimated working correlation matrix
e(\V) variance—covariance matrix of the estimators
e (V_modelbased) model-based variance
Functions
e(sample) marks estimation sample
Methods and formulas
xtcloglog is implemented as an ado-file.
xtcloglog, pa reports the population-averaged results obtained using xtgee, fam-—

ily(binomial) link(cloglog) to obtain estimates.
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For the random-effects model, assume a normal distribution, N (0, 012,), for the random effects v,

oo e_ViZ/QULZI

—0o V2mo,

g
Pr(yit, - Yine|Xi1, - -+, Xin, ) = { F(yit, xitB + Vz)} dv;
=1

where .
Fly, ) = { 1 —exp{ — exp(z)} ify#0

exp { — exp(2)} otherwise

The panel-level likelihood I; is given by

oo 71/.2/20-2 n;
e i v
li— — |IF i,Xiﬁ+l/i dl/i
/CD V2ra, {t 1 (e o )}

oo
= / g<y’it?‘rit7yi)d1/i

— 00

This integral can be approximated with M -point Gauss—Hermite quadrature

0o M
/ e_'”Zh(x)dm A Z wy h(ak)
m=1

— 00
This is equivalent to
0o M
[ e Y wien (@) 1(a3)
- m=1

where the w},, denote the quadrature weights and the a), denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods ;.

The default approximation of the log likelihood is by adaptive Gauss—Hermite quadrature, which
approximates the panel-level likelihood with

M
I =~ V25, Z wr, exp {(al)?} 9(yit, Tir, V26,05, + Fis)
m=1

where 7; and [i; are the adaptive parameters for panel i. Therefore, with the definition of g(y;t, Tit, V),
the total log likelihood is approximated by
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n M -~ ~)\2 2
o exp{ —(V2Gia;, + 1) /207 }
L~ wlog|V25; wr, exp{(a’)? :
o] 27 3w} S
=1 m=1
ng
H F(yi, B + V26:a5, + 1i;)
t=1
where w; is the user-specified weight for panel 7; if no weights are specified, w; = 1.

The default method of adaptive Gauss—Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for fi; and 7; by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with ;0 = 1 and fi; 0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for [;, we use

M
lik ~ Z V26 5w, exp{a’,)?}9(yi, zit, V26 k_1ak, + ik—1)
m=1

Letting
Timbo1 = V26107, + Big_1
M .
. V26, 1w, exp{ (ak,)? 9 (Yits Tit, Timok—1)
ik = Z(Ti,m,k—l) -
me1 i,k
and o
R V26, _w* exp1 (a )2 9(Wits Tits Ti.m k—1) ~
Gix = Z(Ti,m,k—l)Q - i b Tk} S — (i)’
m=1 &

and this is repeated until [i; 5, and 0; 5, have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e—6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method (aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

671’?/203

9(Yit, Tit, i) = W {HF(yit,xitﬂ + 1/1)}
v \t=1

and find «; the mode of g(y;z, T, v;). We calculate
62
Vi = _871/3 IOg{g(yitamitaVi)}‘yi:ai

0o o\ 1/2 M 9\ 1/2
/ 9(Yits Tig, vi)dv; = <7> > whexp{(a,)’}g {yn,xit, (7> an, + az}
v m=1

Then

— 00 2

This adaptation is performed on the first iteration only; that is, the a; and ~y; are calculated once at
the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss—Hermite quadrature, the int-
method (ghermite) option, where p = 02 /(02 + 1):
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L= Z w; log{Pr(yil, ey Ying

Xi1,~--,Xmi)}

i=1
n M ng 1/2
1 2p
~ Z w; log | — Z wy, H F Sy, xqB+ ay, ( >
i=1 ﬁ m=1 t=1 1= p

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

11 Fwir, xiuB+ vi)
t=1

is well approximated by a polynomial. As panel size and p increase, the quadrature approximation can
become less accurate. For large p, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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[XT] xtcloglog postestimation — Postestimation tools for xtcloglog

[XT] quadchk — Check sensitivity of quadrature approximation

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models
[XT] xtprobit — Random-effects and population-averaged probit models

[MI] estimation — Estimation commands for use with mi estimate

[R] cloglog — Complementary log-log regression

[U] 20 Estimation and postestimation commands


http://www.stata.com/bookstore/glvm.html
http://www.stata.com/bookstore/glvm.html

Title

xtcloglog postestimation — Postestimation tools for xtcloglog

Description

The following postestimation commands are available after xtcloglog:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
*estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

*estat ic is not appropriate after xtcloglog, pa.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
Random-effects (RE) model

predict [rype] newvar [lf] [zn] [, RE_statistic nooffset]

Population-averaged (PA) model

predict [type] newvar [lf] [in] [,

PA _statistic nooffset ]

RE _statistic Description
Main
xb linear prediction; the default
puo probability of a positive outcome
stdp standard error of the linear prediction

57
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PA _statistic Description
Main
mu predicted probability of depvar; considers the offset (); the default
rate predicted probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to x;3
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb calculates the linear prediction. This is the default for the random-effects model.

puO calculates the probability of a positive outcome, assuming that the random effect for that

observation’s panel is zero (v = 0). This may not be similar to the proportion of observed
outcomes in the group.

stdp calculates the standard error of the linear prediction.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset ().
rate ignores those adjustments. mu and rate are equivalent if you did not specify offset (). mu
is the default for the population-averaged model.

score calculates the equation-level score, u; = dln L;(x;0)/0(x;).

nooffset is relevant only if you specified offset(varname) for xtcloglog. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as x;¢(3 rather than x;;3 + offset;;.

Remarks

> Example 1

In example 1 of [XT] xtcloglog, we fit the model

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtcloglog union age grade not_smsa south##c.year, pa
(output omitted )

Here we use margins to determine the average effect each regressor has on the probability of a
positive response in the sample.
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. margins, dydx(*)

Average marginal effects Number of obs = 26200
Model VCE : Conventional
Expression : Pr(union != 0), predict()
dy/dx w.r.t. : age grade not_smsa 1.south year
Delta-method
dy/dx  Std. Err. z P>|z| [95% Conf. Intervall
age .0028297 .0014952 1.89 0.058 -.000101 .0057603
grade .0101144 .0017498 5.78 0.000 .0066848 .013544
not_smsa -.0192384 .0079304 -2.43 0.015 -.0347818 -.0036951
1.south -.0913197 .0073101  -12.49  0.000 -.1056473 -.0769921
year -.0012694 .001534 -0.83 0.408 -.004276 .0017371

Note: dy/dx for factor levels is the discrete change from the base level.

We see that an additional year of schooling (covariate grade) increases the probability that a woman
belongs to a union by an average of about one percentage point.

4

Also see
[XT] xtcloglog — Random-effects and population-averaged cloglog models
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Title

xtdata — Faster specification searches with xt data

Syntax
xtdata [varlist] [lf] [in] [ , Options]
options Description
Main
re convert data to a form suitable for random-effects estimation
ratio(#) ratio of random effect to pure residual (standard deviations)
be convert data to a form suitable for between estimation
fe convert data to a form suitable for fixed-effects (within) estimation
nodouble keep original variable type; default is to recast type as double
clear overwrite current data in memory

A panel variable must be specified; use xtset; see [XT] xtset.

Menu

Statistics > Longitudinal/panel data > Setup and utilities > Faster specification searches with xt data

Description

xtdata produces a transformed dataset of the variables specified in varlist or of all the variables
in the data. Once the data are transformed, Stata’s regress command may be used to perform
specification searches more quickly than xtreg; see [R] regress and [XT] xtreg. Using xtdata,
re also creates a variable named constant. When using regress after xtdata, re, specify
noconstant and include constant in the regression. After xtdata, be and xtdata, fe, you need
not include constant or specify regress’s noconstant option.

Options
Main

re specifies that the data are to be converted into a form suitable for random-effects estimation. re
is the default if be, fe, or re is not specified. ratio() must also be specified.

ratio(#) (use with xtdata, re only) specifies the ratio o, /0., which is the ratio of the random
effect to the pure residual. This is the ratio of the standard deviations, not the variances.

be specifies that the data are to be converted into a form suitable for between estimation.
fe specifies that the data are to be converted into a form suitable for fixed-effects (within) estimation.
nodouble specifies that transformed variables keep their original types, if possible. The default is to

recast variables to double.

60
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Remember that xtdata transforms variables to be differences from group means, pseudodifferences
from group means, or group means. Specifying nodouble will decrease the size of the resulting
dataset but may introduce roundoff errors in these calculations.

clear specifies that the data may be converted even though the dataset has changed since it was last
saved on disk.

Remarks

If you have not read [XT] xt and [XT] xtreg, please do so.

The formal estimation commands of xtreg—see [XT] xtreg—do not produce results instanta-
neously, especially with large datasets. Equations (2), (3), and (4) of [XT] xtreg describe the data
necessary to fit each of the models with OLS. The idea here is to transform the data once to the
appropriate form and then use regress to fit such models more quickly.

> Example 1

We will use the example in [XT] xtreg demonstrating between-effects regression. Another way to
estimate the between equation is to convert the data in memory to the between data:

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. generate age2=age”2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp~2

. generate tenure2=tenure~”2
(433 missing values generated)
g g

. generate byte black = race==2
. xtdata 1ln_w grade age* ttl_exp* tenure* black not_smsa south, be clear

. regress ln_w grade age* ttl_exp* tenure* black not_smsa south

Source SS df MS Number of obs = 4697

F( 10, 4686) = 450.23

Model 415.021613 10 41.5021613 Prob > F = 0.0000

Residual 431.954995 4686 .092179896 R-squared = 0.4900

Adj R-squared = 0.4889

Total 846.976608 4696 .180361288 Root MSE = .30361

1n_wage Coef.  Std. Err. t P>t [95% Conf. Intervall

grade .0607602 .0020006 30.37 0.000 .0568382 .0646822

age .0323158 .0087251 3.70 0.000 .0152105 .0494211

age2 -.0005997 .0001429 -4.20 0.000 -.0008799 -.0003194
(output omitted )

south -.0993378 .010136 -9.80 0.000 -.1192091 -.0794665

_cons .3339113 .1210434 2.76 0.006 .0966093 .5712133

The output is the same as that produced by xtreg, be; the reported R? is the R? between. Using
xtdata followed by just one regress does not save time. Using xtdata is justified when you intend
to explore the specification of the model by running many alternative regressions.

4
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Q Technical note

When using xtdata, you must eliminate any variables that you do not intend to use and that
have missing values. xtdata follows a casewise-deletion rule, which means that an observation is
excluded from the conversion if it is missing on any of the variables. In the example above, we
specified that the variables be converted on the command line. We could also drop the variables first,
and it might even be useful to preserve our estimation sample:

. use http://www.stata-press.com/data/ri12/nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. generate age2 = age”2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp~2

. generate tenure2 = tenure~2
(433 missing values generated)

. generate byte black = race==2
. keep id year ln_w grade age* ttl_exp* tenure* black not_smsa south

. save xtdatasmpl
file xtdatasmpl.dta saved

> Example 2

xtdata with the fe option converts the data so that results are equivalent to those from estimating
by using xtreg with the fe option.

. xtdata, fe

. regress 1ln_w grade age* ttl_exp* tenure* black not_smsa south
note: grade omitted because of collinearity
note: black omitted because of collinearity

Source SS df MS Number of obs = 28091
F( 8, 28082) = 732.64
Model 412.443881 8 51.5554852 Prob > F = 0.0000
Residual 1976.12232 28082 .070369714 R-squared = 0.1727
Adj R-squared = 0.1724
Total 2388.5662 28090 .085032617 Root MSE .26527
1n_wage Coef.  Std. Err. t P>|t] [95% Conf. Intervall
grade 0 (omitted)
age .0359987 .0030903 11.65 0.000 .0299415 .0420558
age2 -.000723 .0000486 -14.88 0.000 -.0008183 -.0006277
ttl_exp .0334668 .0027061 12.37 0.000 .0281627 .0387708
ttl_exp2 .0002163 .0001166 1.86 0.064 -.0000122 .0004447
tenure .0357539 .0016871 21.19 0.000 .0324472 .0390606
tenure2 -.0019701 .0001141 -17.27 0.000 -.0021937 -.0017465
black 0 (omitted)
not_smsa -.0890108 .0086982 -10.23 0.000 -.1060597 -.0719619
south -.0606309 .0099761 -6.08 0.000 -.0801845 -.0410772
_cons 1.03732 .0443093 23.41 0.000 .9504716 1.124168

The coefficients reported by regress after xtdata, fe are the same as those reported by xtreg,
fe, but the standard errors are slightly smaller. This is because no adjustment has been made to the
estimated covariance matrix for the estimation of the person means. The difference is small, however,
and results are adequate for a specification search. q



xtdata — Faster specification searches with xt data 63

> Example 3

To use xtdata, re, you must specify the ratio o, /0., which is the ratio of the standard deviations
of the random effect and pure residual. Merely to show the relationship of regress after xtdata,
re to xtreg, re, we will specify this ratio as 0.25790313/0.29069544 = 0.88719358, which is
the number xtreg reports when the model is fit from the outset; see the random-effects example in
[XT] xtreg. For specification searches, however, it is adequate to specify this number more crudely,
and, when performing the specification search for this manual entry, we used ratio(1).

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdata, clear re ratio(.88719358)

theta
min 5% median 95% max
0.2520 0.2520 0.5499 0.7016 0.7206

xtdata reports the distribution of # based on the specified ratio. If these were balanced data, § would
have been constant.

When running regressions with these data, you must specify the noconstant option and include
the variable constant:

. regress ln_w grade age* ttl_exp* tenurex black not_smsa south constant,
> noconstant

Source SS df MS Number of obs = 28091

F( 11, 28080) =14303.11

Model 13272.3241 11 1206.57492 Prob > F = 0.0000

Residual 2368.75918 28080 .084357521 R-squared = 0.8486

Adj R-squared = 0.8485

Total 15641.0833 28091 .556800517 Root MSE = .29044

1n_wage Coef. Std. Err. t P>t [95% Conf. Intervall

grade .0646499 .0017811 36.30 0.000 .0611588 .068141

age .0368059 .0031195 11.80 0.000 .0306915 .0429204

age2 -.0007133 .00005 -14.27 0.000 -.0008113 -.0006153
(output omitted )

south -.0868927 .0073031 -11.90 0.000 -.1012072 -.0725781

constant .238721 .0494688 4.83 0.000 .1417598 .3356822

Results are the same coefficients and standard errors that xtreg, re previously estimated. The
summaries at the top, however, should be ignored, as they are expressed in terms of (4) of [XT] xtreg,
and, moreover, for a model without a constant. q

Q Technical note

Using xtdata requires some caution. The following guidelines may help:

1. xtdata is intended for use only during the specification search phase of analysis. Results should
be estimated with xtreg on unconverted data.

2. After converting the data, you may use regress to obtain estimates of the coefficients and their
standard errors. For regress after xtdata, fe, the standard errors are too small, but only slightly.

3. You may loosely interpret the coefficient’s significance tests and confidence intervals. However,
for results after xtdata, fe and re, an incorrect (but close to correct) distribution is assumed.
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4. You should ignore the summary statistics reported at the top of regress’s output.

5. After converting the data, you may form linear, but not nonlinear, combinations of regressors;
that is, if your data contained age, it would not be correct to convert the data and then form age
squared. All nonlinear transformations should be done before conversion. (For xtdata, be, you
can get away with forming nonlinear combinations ex post, but the results will not be exact.)

Q Technical note
The xtdata command can be used to help you examine data, especially with scatter.

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)
. xtdata, be

. scatter ln_wage age, title(Between data) msymbol(o) msize(tiny)

Between data

In(wage/GNP deflator)
2
1

10 20 30 40 50
age in current year

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdata, fe
. scatter 1ln_wage age, title(Within data) msymbol(o) msize(tiny)
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Within data

2 3 4
L L L

In(wage/GNP deflator)

1
L

10 20 30 40 50
age in current year

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. scatter 1ln_wage age, title(Overall data) msymbol(o) msize(tiny)

Overall data

3 4
L L

In(wage/GNP deflator)
2
1

50

age in current year

Methods and formulas

xtdata is implemented as an ado-file.
(This section is a continuation of the Methods and formulas of [XT] xtreg.)

xtdata, be, fe, and re transform the data according to (2), (3), and (4), respectively, of [XT] xtreg,
except that xtdata, fe adds back in the overall mean, thus forming the transformation

Xit — T + T
xtdata, re requires the user to specify 7 as an estimate of o, /0. 0; is calculated from

1

VIir? +1

0, =1-
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Also see

[XT] xtsum — Summarize xt data



Title

xtdescribe — Describe pattern of xt data

Syntax

xtdescribe [zf] [zn} [, options]

options Description

Main
patterns (#) maximum participation patterns; default is patterns(9)
width(#) display # width of participation patterns; default is width(100)

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
by is allowed; see [D] by.

Menu

Statistics > Longitudinal/panel data > Setup and utilities > Describe pattern of xt data

Description

xtdescribe describes the participation pattern of cross-sectional time-series (xt) data.

Options
Main

Is

patterns (#) specifies the maximum number of participation patterns to be reported; patterns(9) is
the default. Specifying patterns(50) would list up to 50 patterns. Specifying patterns(1000)
is taken to mean patterns(oo); all the patterns will be listed.

width(#) specifies the desired width of the participation patterns to be displayed; width(100) is
the default. If the number of times is greater than width(), then each column in the participation
pattern represents multiple periods as indicated in a footnote at the bottom of the table. The actual

width may differ slightly from the requested width depending on the span of the time variable and
the number of periods.

Remarks

If you have not read [XT] xt, please do so.

xtdescribe describes the cross-sectional and time-series aspects of the data in memory.

67
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> Example 1
In [XT] xt, we introduced data based on a subsample of the NLSY data on young women aged
14-26 years in 1968. Here is a description of the data used in many of the [XT] xt examples:

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdescribe
idcode: 1, 2, ..., 5159 n = 4711
year: 68, 69, ..., 88 T = 15
Delta(year) = 1 unit
Span(year) = 21 periods
(idcode*year uniquely identifies each observation)
Distribution of T_i: min 5% 25% 507% 5% 95% max
1 1 3 5 9 13 15
Freq. Percent Cum. Pattern
136 2.89 2.89 1o,
114 2.42 5.31 [ o 1
89 1.89 7.20 [ oo 1.11
87 1.85 9.04 [ ...l 11
86 1.83 10.87 111111.1.11.1.11.1.11
61 1.29 12,16 | ... 11.1.11
56 1.19 13.35 1o
54 1,16 14.50 | ....... ... 1.1.11
54 1.16 15.64 [ ....... 1.11.1.11.1.11
3974 84.36 100.00 | (other patterns)
4711 100.00 XXXXXX.X.XX.X.XX.X.XX

xtdescribe tells us that we have 4,711 women in our data and that the idcode that identifies each
ranges from 1 to 5,159. We are also told that the maximum number of individual years over which
we observe any woman is 15, though the year variable spans 21 years. The delta or periodicity of
year is one unit, meaning that in principle we could observe each woman yearly. We are reassured
that idcode and year, taken together, uniquely identify each observation in our data. We are also
shown the distribution of 77; 50% of our women are observed 5 years or less. Only 5% of our women
are observed for 13 years or more.

Finally, we are shown the participation pattern. A 1 in the pattern means one observation that
year; a dot means no observation. The largest fraction of our women (still only 2.89%) was observed
in the single year 1968 and not thereafter; the next largest fraction was observed in 1988 but not
before; and the next largest fraction was observed in 1985, 1987, and 1988.

At the bottom is the sum of the participation patterns, including the patterns that were not shown.
We can see that none of the women were observed in six of the years (there are six dots). (The
survey was not administered in those six years.)

We could see more of the patterns by specifying the patterns() option, or we could see all the
patterns by specifying patterns(1000).
d

> Example 2

The strange participation patterns shown above have to do with our subsampling of the data, not
with the administrators of the survey. Here are the data from which we drew the sample used in the
[XT] xt examples:
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. xtdescribe
idcode: 1, 2, ..., 5159 n = 5159
year: 68, 69, ..., 88 T = 15

Delta(year) = 1; (88-68)+1 = 21
(idcode*year does not uniquely identify observations)

Distribution of T_i: min 5% 25% 507% 75% 95% max
1 2 11 15 16 19 30
Freq. Percent Cum. Pattern
1034 20.04 20.04 111111.1.11.1.11.1.11
153 2.97 23.01 1o
147 2.85 25.86 112111.1.11.1.11.1.11
130 2.52 28.38 111112.1.11.1.11.1.11
122 2.36 30.74 111211.1.11.1.11.1.11
113 2.19 32.93 e
84 1.63 34.56 111111.1.11.1.11.1.12
79 1.563 36.09 111111.1.12.1.11.1.11
67 1.30 37.39 111111.1.11.1.11.1.1.
3230 62.61 100.00 | (other patterns)
5159 100.00 XXXXXX.X.XX.X.XX.X.XX

We have multiple observations per year. In the pattern, 2 indicates that a woman appears twice in
the year, 3 indicates 3 times, and so on—X indicates 10 or more, should that be necessary.

In fact, this is a dataset that was itself extracted from the NLSY, in which ¢ is not time but job
number. To simplify exposition, we made a simpler dataset by selecting the last job in each year.

d

> Example 3

When the number of periods is greater than the width of the participation pattern, each column
will represent more than one period.

. use http://www.stata-press.com/data/r12/xtdesxmpl

. xtdescribe
patient: 1, 2, ..., 30 n = 30
time: O09mar2007 16:00:00, 09mar2007 17:00:00, ..., T = 32

10mar2007 23:00:00

Delta(time) = 1 hour

Span(time) = 32 periods

(patient*time uniquely identifies each observation)

Distribution of T_i: min 5% 25 50% 75% 95% max
30 30 31 32 32 32 32
Freq. Percent Cum. Pattern

21 70.00 70.00 1111111111311114131111111111111111

3 10.00 80.00 11111111313111313113131111313111...

2 6.67 86.67 L.111111111111111111111111111111

2 6.67 93.33 L11111111111111311113111111111111

2 6.67 100.00 1.11111121111131111311311131131111111

30 100.00 XXXXXXXXXXXX XXX XXX XX XXX XXXXXXXXX

We have data for 30 patients who were observed hourly between 4:00 PM on March 9, 2007, and
11:00 PM on March 10, a span of 32 hours. We have complete records for 21 of the patients. The
footnote indicates that each column in the pattern represents two periods, so for four patients we
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have an observation taken at either 4:00 PM or 5:00 PM on March 9, but we do not have observations
for both times. There are three patients for whom we are missing both the 10:00 PM and 11:00 PM
observations on March 10, and there are two patients for whom we are missing the 4:00 PM and
5:00 PM observations for March 9.

d

Methods and formulas

xtdescribe is implemented as an ado-file.

Reference
Cox, N. J. 2007. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571-581.

Also see

[XT] xtsum — Summarize xt data
[XT] xttab — Tabulate xt data


http://www.stata-journal.com/sjpdf.html?articlenum=dm0033

Title

xtdpd — Linear dynamic panel-data estimation

Syntax

xtdpd depvar [indepvars} [lf] [in], dgmmiv (varlist []) [options]

options

Description

Model
*gmmiv(varlist[ .. ] )

1gmmiv (varlist[ ... ])
ivQarlist[ ... ])
div(varlist]...])
liv(varlist)

noconstant
twostep
hascons

fodeviation

SE/Robust
vce (veetype)

Reporting
level (#)
artests (#)
display_options

coeflegend

GMM-type instruments for the difference equation;
can be specified more than once

GMM-type instruments for the level equation;
can be specified more than once

standard instruments for the difference and level equations;
can be specified more than once

standard instruments for the difference equation only;
can be specified more than once

standard instruments for the level equation only;
can be specified more than once
suppress constant term
compute the two-step estimator instead of the one-step estimator

check for collinearity only among levels of independent variables;
by default checks occur among levels and differences

use forward-orthogonal deviations instead of first differences

vcetype may be gmm or robust

set confidence level; default is 1level (95)
use # as maximum order for AR tests; default is artests(2)
control spacing and line width

display legend instead of statistics

*dgmmiv () is required.

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Linear DPD estimation
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Description

Linear dynamic panel-data models include p lags of the dependent variable as covariates and contain
unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level effects are
correlated with the lagged dependent variables, making standard estimators inconsistent. xtdpd fits a
dynamic panel-data model by using the Arellano—Bond (1991) or the Arellano—Bover/Blundell-Bond
(1995, 1998) estimator.

At the cost of a more complicated syntax, xtdpd can fit models with low-order moving-average
correlation in the idiosyncratic errors or predetermined variables with a more complicated structure
than allowed for xtabond or xtdpdsys; see [XT] xtabond and [XT] xtdpdsys.

Options
_ [Model

dgmmiv (varlist [, lagrange (flag [llag}) ]) specifies GMM-type instruments for the differenced
equation. Levels of the variables are used to form GMM-type instruments for the difference equation.
All possible lags are used, unless lagrange (flag llag) restricts the lags to begin with flag and end
with llag. You may specify as many sets of GMM-type instruments for the differenced equation
as you need within the standard Stata limits on matrix size. Each set may have its own flag and
llag. dgmmiv () is required.

lgmmiv (varlist [ , lag(#) ]) specifies GMM-type instruments for the level equation. Differences of
the variables are used to form GMM-type instruments for the level equation. The first lag of the
differences is used unless lag(#) is specified, indicating that #th lag of the differences be used.
You may specify as many sets of GMM-type instruments for the level equation as you need within
the standard Stata limits on matrix size. Each set may have its own lag.

iv (varlist [, nodifference]) specifies standard instruments for both the differenced and level
equations. Differences of the variables are used as instruments for the differenced equations, unless
nodifference is specified, which requests that levels be used. Levels of the variables are used
as instruments for the level equations. You may specify as many sets of standard instruments for
both the differenced and level equations as you need within the standard Stata limits on matrix
size.

div (varlist [ , nodifference ] ) specifies additional standard instruments for the differenced equation.
Specified variables may not be included in iv() or in 1iv(). Differences of the variables are
used, unless nodifference is specified, which requests that levels of the variables be used as
instruments for the differenced equation. You may specify as many additional sets of standard
instruments for the differenced equation as you need within the standard Stata limits on matrix
size.

liv(varlist) specifies additional standard instruments for the level equation. Specified variables may
not be included in iv() or in div(). Levels of the variables are used as instruments for the level
equation. You may specify as many additional sets of standard instruments for the level equation
as you need within the standard Stata limits on matrix size.

noconstant; see [R] estimation options.
twostep specifies that the two-step estimator be calculated.

hascons specifies that xtdpd check for collinearity only among levels of independent variables; by
default checks occur among levels and differences.

fodeviation specifies that forward-orthogonal deviations are to be used instead of first differences.
fodeviation is not allowed when there are gaps in the data or when 1gmmiv () is specified.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano—Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

Reporting

level (#); see [R] estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpd postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display_options: vsquish and nolstretch; see [R] estimation options.

The following option is available with xtdpd but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
If you have not read [XT] xtabond and [XT] xtdpdsys, you should do so before continuing.

Consider the dynamic panel-data model

P
yz‘t:Zajyi,tfj +XitB1 + WitBs + Vi + €54 i:{lv"'ﬂN}; t:{lw-sz‘} (1)

j=1

where
the o, ..., @, are p parameters to be estimated,
X;¢+ is a 1 X kq vector of strictly exogenous covariates,
By is a k1 x 1 vector of parameters to be estimated,
w;; is a 1 X ko vector of predetermined covariates,
By is a ko x 1 vector of parameters to be estimated,

v; are the panel-level effects (which may be correlated with x;; or w;;), and
2

Building on the work of Anderson and Hsiao (1981, 1982) and Holtz-Eakin, Newey, and
Rosen (1988), Arellano and Bond (1991) derived one-step and two-step GMM estimators using
moment conditions in which lagged levels of the dependent and predetermined variables were instru-
ments for the differenced equation. Blundell and Bond (1998) show that the lagged-level instruments
in the Arellano—Bond estimator become weak as the autoregressive process becomes too persistent
or the ratio of the variance of the panel-level effect v; to the variance of the idiosyncratic error €;;

and €;; are i.i.d. or come from a low-order moving-average process, with variance o
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becomes too large. Building on the work of Arellano and Bover (1995), Blundell and Bond (1998)
proposed a system estimator that uses moment conditions in which lagged differences are used as
instruments for the level equation in addition to the moment conditions of lagged levels as instru-
ments for the differenced equation. The additional moment conditions are valid only if the initial
condition E[v;Ay;2] = 0 holds for all 4; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).

xtdpd fits dynamic panel-data models by using the Arellano—Bond or the Arellano—Bover/Blundell—
Bond system estimator. The parameters of many standard models can be more easily estimated using
the Arellano—Bond estimator implemented in xtabond or using the Arellano—Bover/Blundell-Bond
system estimator implemented in xtdpdsys; see [XT] xtabond and [XT] xtdpdsys. xtdpd can fit
more complex models at the cost of a more complicated syntax. That the idiosyncratic errors follow
a low-order MA process and that the predetermined variables have a more complicated structure than
accommodated by xtabond and xtdpdsys are two common reasons for using xtdpd instead of
xtabond or xtdpdsys.

The standard GMM robust two-step estimator of the VCE is known to be seriously biased. Windmei-
jer (2005) derived a bias-corrected robust estimator for two-step VCEs from GMM estimators known
as the WC-robust estimator, which is implemented in xtdpd.

The Arellano—Bond test of autocorrelation of order m and the Sargan test of overidentifying
restrictions derived by Arellano and Bond (1991) are computed by xtdpd but reported by estat
abond and estat sargan, respectively; see [XT] xtdpd postestimation.

Because xtdpd extends xtabond and xtdpdsys, [XT] xtabond and [XT] xtdpdsys provide useful
background.

> Example 1

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986), using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm ¢ and
time ¢. In this dataset, n;; is the log of employment in firm ¢ inside the United Kingdom at time ¢,
w;; 1s the natural log of the real product wage, k;; is the natural log of the gross capital stock, and
ys,, is the natural log of industry output. The model also includes time dummies yr1980, yr1981,
yr1982, yr1983, and yr1984. To gain some insight into the syntax for xtdpd, we reproduce the
first example from [XT] xtabond using xtdpd:
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. use http://www.stata-press.com/data/r12/abdata

. xtdpd L(0/2).n L(0/1).w L(0/2).(k ys) yr1980-yr1984 year, noconstant

> div(L(0/1) .w L(0/2).(k ys) yr1980-yr1984 year) dgmmiv(n)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 4
avg = 4.364286
max = 6
Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 0.0000
One-step results
n Coef. Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358
w
- -.6078208 .0657694 -9.24 0.000 -.7367265 .4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251
k
-- .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .0562747
L2. -.0199475 .0416274 -0.48 0.632 -.10156357 .0616408
ys
--. .6085073 .1345412 4.52  0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 .3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912
yr1980 .0029062 .0212705 0.14 0.891 -.0387832 .0445957
yr1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yr1982 -.0652767 .048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .0538664
yr1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061
year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation

GMM-type: L(2/.).n

Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Unlike most instrumental-variables estimation commands, the independent variables in the varlist
are not automatically used as instruments. In this example, all the independent variables are strictly
exogenous, so we include them in div (), a list of variables whose first differences will be instruments
for the differenced equation. We include the dependent variable in dgmmiv (), a list of variables whose
lagged levels will be used to create GMM-type instruments for the differenced equation. (GMM-type
instruments are discussed in a technical note below.)

The footer in the output reports the instruments used. The first line indicates that xtdpd used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991)
and Holtz-Eakin, Newey, and Rosen (1988). The second line says that the first difference of all the
variables included in the div () varlist were used as standard instruments for the differenced equation.

N
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Q Technical note

GMM-type instruments are built from lags of one variable. Ignoring the strictly exogenous variables
for simplicity, our model is

Nig = Q1M1 + QaNgg2 + 1V + €54 (2)
After differencing we have

Ang = Aong—1 + Aaong—o + Aeyy (3)

Equation (3) implies that we need instruments that are not correlated with either €;; or €;;_1. Equation
(2) shows that L2.n is the first lag of n that is not correlated with €;; or €;;—1, so it is the first lag
of n that can be used to instrument the differenced equation.

Consider the following data from one of the complete panels in the previous example:

. list id year n L2.n dl12.n if id==140

id  year n L2.n L2D.n

1023. 140 1976 .4324315

1024. 140 1977 .3694925 .

1025. 140 1978 .3541718 .4324315 .
1026. 140 1979 .3632532 .3694925  -.0629391

1027. 140 1980 .3371863 .3541718  -.0153207
1028. 140 1981 .285179 .3632532 .0090815
1029. 140 1982 .1756326 .3371863 -.026067
1030. 140 1983 .1275133 .285179  -.0520073
1031. 140 1984 .0889263 .1756326  -.1095464

The missing values in L2D.n show that we lose 3 observations because of lags and the difference that
removes the panel-level effects. The first nonmissing observation occurs in 1979 and observations on
n from 1976 and 1977 are available to instrument the 1979 differenced equation. The table below
gives the observations available to instrument the differenced equation for the data above.

Year of Years of Number of
difference errors instruments instruments
1979 19761977 2
1980 1976-1978 3
1981 1976-1979 4
1982 1976-1980 5
1983 1976-1981 6
1984 1976-1982 7

The table shows that there are a total of 27 GMM-type instruments.

The output in the example above informs us that there were a total of 41 instruments applied to the
differenced equation. Because there are 14 standard instruments, there must have been 27 GMM-type
instruments, which matches our above calculation.

a



xtdpd — Linear dynamic panel-data estimation 77

> Example 2

Sometimes we cannot assume strict exogeneity. Recall that a variable x;; is said to be strictly
exogenous if E[x;€;5] = 0 for all ¢ and s. If E[x;€;5] # 0 for s < t but E[z;€;5] = 0 for all s > ¢,
the variable is said to be predetermined. Intuitively, if the error term at time ¢ has some feedback
on the subsequent realizations of x;;, x;; is a predetermined variable. In the output below, we use
xtdpd to reproduce example 6 in [XT] xtabond.

. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(L.w L2.k, lag(l .))
> twostep noconstant vce(robust)

Dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 83 Wald chi2(15) = 958.30

Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust

n Coef. Std. Err. z P>|z| [95% Conf. Intervall

n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881

W
-—. -.6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441

ys
- .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. -.8773678 .2183085 -4.02 0.000 -1.305245 -.449491

k
—-—. .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. -.1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. -.1025833 .0710886 -1.44 0.149 -.2419143 .0367477
yr1980 -.0072451 .017163 -0.42 0.673 -.0408839 .0263938
yri1981 -.0609608 .030207 -2.02 0.044 -.1201655 -.0017561
yr1982 -.1130369 .0454826 -2.49 0.013 -.2021812 -.0238926
yr1983 -.1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yri1984 -.1623177 .0725434 -2.24 0.025 -.3045001 -.0201352
year .0264501 .0119329 2.22 0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984
D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back.
d
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> Example 3

As discussed in [XT] xtabond and [XT] xtdpdsys, xtabond and xtdpdsys both use a strict definition
of predetermined variables with lags. In the strict definition, the most recent lag of the variable in
pre() is considered predetermined. (Here specifying pre(w, lag(1l, .)) to xtabond means that
L.w is a predetermined variable and pre(k, lag(2,
variable.) In a weaker definition, the current observation is considered predetermined, but subsequent
lags are included in the model. Here w and k would be predetermined instead of L.w and L2.w. The

.)) means that L2.k is a predetermined

output below implements this weaker definition for the previous example.

. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(w k, lag(l
> twostep noconstant vce(robust)

)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 4
avg = 4.364286
max = 6
Number of instruments = 101 Wald chi2(15) = 879.53
Prob > chi2 = 0.0000
Two-step results
(Std. Err. adjusted for clustering on id)
WC-Robust
n Coef.  Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .6343155 .1221058 5.19 0.000 .3949925 .8736384
L2. -.0871247 .0704816 -1.24 0.216 -.2252661 .0510168
w
- -.720063 .1133359 -6.35 0.000 -.9421973 .4979287
L1. .238069 .1223186 1.95 0.052 -.0016712 .4778091
ys
- .5999718 .1653036 3.63 0.000 .2759827 .923961
L1. -.5674808 .1656411 -3.43 0.001 -.8921314 .2428303
k
- .3931997 .0986673 3.99 0.000 .1998153 .5865842
L1. -.0019641 .0772814 -0.03 0.980 -.1534329 .1495047
L2. -.0231165 .0487317 -0.47 0.635 -.1186288 .0723958
yr1980 -.006209 .0162138 -0.38 0.702 -.0379875 .0255694
yr1981 -.0398491 .0313794 -1.27 0.204 -.1013516 .0216535
yr1982 -.0525715 .0397346 -1.32 0.186 -.1304498 .0253068
yr1983 -.0451175 .051418 -0.88 0.380 -.145895 .05566
yri984 -.0437772 .0614391 -0.71 0.476 -.1641955 .0766412
year .0173374 .0108665 1.60 0.111 -.0039605 .0386352

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).w L(1/.) .k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

As expected, the output shows that the additional 18 instruments available under the weaker definition
can affect the magnitudes of the estimates. Applying the stricter definition when the true model was
generated by the weaker definition yielded consistent but inefficient results; there were some additional

D.year
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moment conditions that could have been included but were not. In contrast, applying the weaker
definition when the true model was generated by the stricter definition yields inconsistent estimates.

> Example 4

N

Here we use xtdpd to reproduce example 2 from [XT] xtdpdsys in which we used the system
estimator to fit a model with predetermined variables.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(yr1980-yr1984 year) dgmmiv(n) dgmmiv(L2.(w k), lag(l .))

> lgmmiv(n L1.(w k)) vce(robust) hascons

Dynamic panel-data estimation Number of obs 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 5
avg = 5.364286
max = 7
Number of instruments = 95 Wald chi2(13) 7562.80
Prob > chi2 = 0.0000
One-step results
(Std. Err. adjusted for clustering on id)
Robust
n Coef.  Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .913278 .0460602 19.83  0.000 .8230017 1.003554
w
-- -.728159 .1019044 -7.15  0.000 -.9278879 .5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438775 .2392718
k
-- .4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944 .0831902 -3.42 0.001 -.4477442 .1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356 .0599006
yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yr1981 -.0726116 .0346482 -2.10 0.036 -.1405207 .0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264 .0558734 -0.71  0.478 -.1491362 .0698835
yri1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342
year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972  28.77747 -1.30 0.194 -93.75253 19.05308

Instruments for

GMM-type: L(2/.).n L(1/.).L2.w L(1/.).12.k
Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

differenced equation

Instruments for level equation
GMM-type: LD.n L2D.w L2D.k

Standard

¢ _cons

The first lags of the variables included in 1gmmiv() are used to create GMM-type instruments for
the level equation. Only the first lags of the variables in 1gmmiv() are used because the moment
conditions using higher lags are redundant; see Blundell and Bond (1998) and Blundell, Bond, and

Windmeijer (2000).

4
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> Example 5

All the previous examples have used moment conditions that are valid only if the idiosyncratic
errors are i.i.d. This example shows how to use xtdpd to estimate the parameters of a model with
first-order moving-average [MA(1)] errors using either the Arellano—Bond estimator or the Arellano—
Bover/Blundell-Bond system estimator. For simplicity, we assume that the independent variables are
strictly exogenous.

We begin by noting that the Sargan test rejects the null hypothesis that the overidentifying restrictions
are valid in the model with i.i.d. errors.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) hascons
(output omitted )

. estat sargan

Sargan test of overidentifying restrictions
HO: overidentifying restrictions are valid
chi2(24) = 49.70094
Prob > chi2 = 0.0015

Assuming that the idiosyncratic errors are MA(1) implies that only lags three or higher are valid
instruments for the differenced equation. (See the technical note below.)

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 5
avg = 5.364286
max = 7
Number of instruments = 32 Wald chi2(13) = 1195.04
Prob > chi2 = 0.0000
One-step results
n Coef.  Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .8696303 .2014473 4.32 0.000 .4748008 1.26446
w
--. -.5802971 .0762659 -7.61  0.000 -.7297756  -.4308187
L1. .2918658 .1543883 1.89 0.059 -.0107296 .5944613
L2. -.5903459 .2995123 -1.97 0.049 -1.177379  -.0033126
k
--. .3428139 .0447916 7.65 0.000 .2550239 .4306039
L1. -.1383918 .0825823 -1.68 0.094 -.3002502 .0234665
L2. -.0260956 .1535855 -0.17  0.865 -.3271177 .2749265
yr1980 -.0036873 .0301587 -0.12  0.903 -.0627973 .0554226
yr1981 .00218 .0592014 0.04 0.971 -.1138526 .1182125
yr1982 .0782939 .0897622 0.87 0.383 -.0976367 .2542246
yr1983 .1734231 .1308914 1.32  0.185 -.0831193 .4299655
yr1984 .2400685 .1734456 1.38 0.166 -.0998787 .5800157
year -.0354681 .0309963 -1.14 0.253 -.0962198 .0252836
_cons 73.13706  62.61443 1.17 0.243 -49.58496 195.8591
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Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983
D.yr1984 D.year
Instruments for level equation
Standard: _cons

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions
HO: overidentifying restrictions are valid

chi2(18) 20.80081
Prob > chi2 = 0.2896

Moving on to the system estimator, we note that the Sargan test rejects the null hypothesis after
fitting the model with i.i.d. errors.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) lgmmiv(n) hascons
(output omitted )
. estat sargan
Sargan test of overidentifying restrictions
HO: overidentifying restrictions are valid
chi2(31) = 59.22907
Prob > chi2 = 0.0017

Now we fit the model using the additional moment conditions constructed from the second lag of
n as an instrument for the level equation.
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. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) lgmmiv(n, lag(2))

> hascons
Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 5
avg = 5.364286
max = 7
Number of instruments = 38 Wald chi2(13) = 3680.01
Prob > chi2 = 0.0000
One-step results
n Coef. Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .9603675 .095608 10.04  0.000 .7729794 1.147756
w
- -.5433987 .068835 -7.89 0.000 -.6783128  -.4084845
L1. .4356183 .0881727 4.94 0.000 .262803 .6084336
L2. -.2785721 .1115061 -2.50 0.012 -.4971201  -.0600241
k
-—. .3139331 .0419054 7.49 0.000 .2317999 .3960662
L1. -.160103 .0546915 -2.93 0.003 -.2672963 -.0529096
L2. -.1295766 .0507752 -2.55 0.011 -.2290943 -.030059
yr1980 -.0200704 .0248954 -0.81 0.420 -.0688644 .0287236
yr1981 -.0425838 .0422155 -1.01 0.313 -.1253246 .040157
yr1982 .0048723 .0600938 0.08 0.935 -.1129093 .122654
yr1983 .0458978 .0785687 0.58 0.559 -.1080941 .1998897
yr1984 .0633219 .1026188 0.62 0.537 -.1378074 .2644511
year -.0075599 .019059 -0.40 0.692 -.0449148 .029795
_cons 16.20856  38.00619 0.43 0.670 -58.28221 90.69932

Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983
D.yr1984 D.year
Instruments for level equation
GMM-type: L2D.n
Standard: _cons

The estimate of the coefficient on L.n is now .96. Blundell, Bond, and Windmeijer (2000, 63-65)
show that the moment conditions in the system estimator remain informative as the true coefficient
on L.n approaches unity. Holtz-Eakin, Newey, and Rosen (1988) show that because the large-sample
distribution of the estimator is derived for fixed number of periods and a growing number of individuals
there is no “unit-root” problem.

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions
HO: overidentifying restrictions are valid

chi2(24) = 27.22585
Prob > chi2 = 0.2940
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Q Technical note

To find the valid moment conditions for the model with MA(1) errors, we begin by writing the
model

Nig = QN1 + BTy + v + €5 + Y€1

where the ¢;; are assumed to be i.i.d.

Because the composite error, €;; + Yej—1, is MA(1), only lags two or higher are valid instruments
for the level equation, assuming the initial condition that E[v;An;s] = 0. The key to this point is that
lagging the above equation two periods shows that €;;_o and €;;_3 appear in the equation for n;;_o.
Because the €;; are i.i.d., n;+—2 is a valid instrument for the level equation with errors v; +€;s +y€i—1.
(n;¢—o will be correlated with n;;_1 but uncorrelated with the errors v; + €;; +v€;:—1.) An analogous
argument works for higher lags.

First-differencing the above equation yields
Angy = alAng1 + BAT; + Aeip + YA€ —1

Because €;;_o is the farthest lag of €;; that appears in the differenced equation, lags three or higher
are valid instruments for the differenced composite errors. (Lagging the level equation three periods
shows that only €;;_3 and €;;_4 appear in the equation for n;;_3, which implies that n;;_3 is a valid
instrument for the current differenced equation. An analogous argument works for higher lags.)

a

Saved results
xtdpd saves the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(t_min) minimum time in sample
e(t_max) maximum time in sample
e(chi2) x2
e (arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of o2
e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)

e(zrank) rank of instrument matrix
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e (hascons)
e(transform)
e(datasignature)

Macros
e(cmd) xtdpd
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) veetype specified in vee ()
e(vcetype) title used to label Std. Err.
e(system) system, if system estimator

hascons, if specified
specified transform
checksum from datasignature

e(properties) bV
e(estat_cmd) program used to implement estat

e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

Methods and formulas

xtdpd is implemented as an ado-file.

Consider dynamic panel-data models of the form

p
Vit = Y Y-+ XitP + WirBy + Vi + €3t
j=1
where the variables are as defined as in (1).
x and w may contain lagged independent variables and time dummies.

Let X{; = (yi7t,1, Yit—2s - s Yit—ps Xits w;:) be the 1 x K vector of covariates for ¢ at time ¢,
where K = p + k1 + k2, p is the number of included lags, k; is the number of strictly exogenous
variables in x;;, and ks is the number of predetermined variables in w;. (The superscript L stands
for levels.)
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Now rewrite this relationship as a set of T; equations for each individual,

yZL:XZL($+I/lLZ+61

where T; is the number of observations available for individual ¢; y;, ¢;, and €; are T; X 1, whereas
X;isT; x K.

The estimators use both the levels and a transform of the variables in the above equation. Denote
the transformed variables by an *, so that y7 is the transformed y* and X} is the transformed X7 .
The transform may be either the first difference or the forward-orthogonal deviations (FOD) transform.
The (4, t)th observation of the FOD transform of a variable x is given by

* 1
T = ¢ {xit - ﬁ(xitﬂ + Tipgo + -+ Z‘iT)}

where ¢ = (T —t)/(T —t+ 1) and T is the number of observations on x; see Arellano and
Bover (1995) and Arellano (2003).

Here we present the formulas for the Arellano—Bover/Blundell-Bond system estimator. The for-
mulas for the Arellano—Bond estimator are obtained by setting the additional level matrices in the
system estimator to null matrices.

Stacking the transformed and untransformed vectors of the dependent variable for a given ¢ yields

(Y]
Vi (yf)

Similarly, stacking the transformed and untransformed matrices of the covariates for a given ¢
yields

Z; is a matrix of instruments,

Z, - (Zdi 0 D, o IZ)

0O Z,;, 0 L; I
where Zg4; is the matrix of GMM-type instruments created from the dgmmiv() options, Zy; is the
matrix of GMM-type instruments created from the 1gmmiv() options, D; is the matrix of standard
instruments created from the div() options, L; is the matrix of standard instruments created from
the 1iv() options, I¢ is the matrix of standard instruments created from the iv() options for the

differenced errors, and IF is the matrix of standard instruments created from the iv() options for
the level errors.

div(), 1iv(), and iv() simply add columns to instrument matrix. The GMM-type instruments
are more involved. Begin by considering a simple balanced-panel example in which our model is

Yit = Q1Yit—1 + QoYit—2 + Vi + €1
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We do not need to consider covariates because strictly exogenous variables are handled using div(),
iv(), or 1iv(), and predetermined or endogenous variables are handled analogous to the dependent
variable.

Assume that the data come from a balanced panel in which there are no missing values. After
first-differencing the equation, we have

Ayir = a1 Ay; 11 + Ay 1o + A€y

The first 3 observations are lost to lags and differencing. If we assume that the €;; are not autocorrelated,
for each i at t = 4, y;1 and y;2 are valid instruments for the differenced equation. Similarly, at { = 5,
Yi1, Yi2, and y;3 are valid instruments. We specify dgmmiv(y) to obtain an instrument matrix with
one row for each period that we are instrumenting:

yii Y2 O 0 0o ... 0 0 0

0 0 w1 %2 ¥z ... 0 0 0
Zg; = ) . ) . . ) . }

0 0 0 0 e 0 Yix - YiT-2

Because p = 2, Zgy; has T'— p — 1 rows and Zz;;i m columns.

Specitying 1gmmiv(y) creates the instrument matrix

A.yio 0 0o ... 0

0 Agyiz 0 ... 0

Zoi=| S .
0 0 0 - A'yi(Tifl)

This extends to other lag structures with complete data. Unbalanced data and missing observations
are handled by dropping the rows for which there are no data and filling in zeros in columns where
missing data are required. Suppose that, for some ¢, the ¢ = 1 observation was missing but was not
missing for some other panels. dgmmiv(y) would then create the instrument matrix

Zy; = ) . . . .
000 0 0 0 0 0 ... 0 ws ... yiro

—2 .
Zg; has T; — p — 1 rows and Z:n:pm columns, where 7 = max; 7; and 7; is the number of
nonmissing observations in panel <.
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After defining

sz = Z Z;}’i
Wl = szAIQ/wz

—1
A= (Z ZQHuZi)

and

the one-step estimates are given by

Bl = Wleszl sz

When using the first-difference transform Hg;, is given by

1 -5 0 0 0
-5 1 -.5 0 0
Hy = :
0 0 0 1 -5
0 0 0 -5 1

and Hy; is given by 0.5 times the identity matrix. When using the FOD transform, both Hg; and
H;,; are equal to the identity matrix.

The transformed one-step residuals are given by
~k * 3 *
€, =Y; — B X]
which are used to compute
N

o1 =(1/(N - K)) ) elie,

3

The GMM one-step VCE is then given by

Vamm [31] =i Wi!
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The one-step level residuals are given by
~L L a3 ~xL
€ =Yi — B X

Stacking the residual vectors yields

which is used to compute Hy; = E’MEM, which is used in
—1
Ay =Y ZHyZ,
i
and the robust one-step VCE is given by
‘/;obust [ﬁ } = WilezAlAglAlQészl

Viobust[B1] is robust to heteroskedasticity in the errors.

After defining

W2 = szAQQ;:z

the two-step estimates are given by

BZ - W2_1Q$ZA2sz

The GMM two-step VCE is then given by

Vonn[By] = Wy !

The GMM two-step VCE is known to be severely biased. Windmeijer (2005) derived the Windmeijer
bias-corrected (WC) estimator for the robust VCE of two-step GMM estimators. xtdpd implements this
WC-robust estimator of the VCE. The formulas for this method are involved; see Windmeijer (2005).
The WC-robust estimator of the VCE is robust to heteroskedasticity in the errors.
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Title

xtdpd postestimation — Postestimation tools for xtdpd

Description

The following postestimation commands are of special interest after xtdpd:

Command

Description

estat abond
estat sargan

test for autocorrelation
Sargan test of overidentifying restrictions

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Syntax for predict

predict [type] newvar [zf] [in] [, xb e stdp foerence]

90
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Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb, the default, calculates the linear prediction.
e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.

Syntax for estat abond

estat abond [, artests(#)}

Menu

Statistics > Postestimation > Reports and statistics

Option for estat abond

artests (#) specifies the highest order of serial correlation to be tested. By default, the tests computed
during estimation are reported. The model will be refit when artests (#) specifies a higher order
than that computed during the original estimation. The model can be refit only if the data have
not changed.

Syntax for estat sargan

estat sargan

Menu

Statistics > Postestimation > Reports and statistics

Remarks

Remarks are presented under the following headings:

estat abond
estat sargan
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estat abond

The moment conditions used by xtdpd are valid only if there is no serial correlation in the
idiosyncratic errors. Testing for serial correlation in dynamic panel-data models is tricky because one
needs to apply a transform to remove the panel-level effects, but the transformed errors have a more
complicated error structure than the idiosyncratic errors. The Arellano—Bond test for serial correlation
reported by estat abond tests for serial correlation in the first-differenced errors.

Because the first difference of independently and identically distributed idiosyncratic errors will be
autocorrelated, rejecting the null hypothesis of no serial correlation at order one in the first-differenced
errors does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See example 5 in [XT] xtdpd for an alternative
estimator that allows for idiosyncratic errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce (robust) has been
specified.

estat sargan

Like all GMM estimators, the estimator in xtdpd can produce consistent estimates only if the
moment conditions used are valid. Although there is no method to test if the moment conditions from
an exactly identified model are valid, one can test whether the overidentifying moment conditions are
valid. estat sargan implements the Sargan test of overidentifying conditions discussed in Arellano
and Bond (1991).

Only for a homoskedastic error term does the Sargan test have an asymptotic chi-squared distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce (robust) model, xtdpd does not compute it when vce (robust) is specified.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The notation for €3;, €1;, Hy;, Hai, Xy, Zi, W1, W, \A/'* [EI*] Ay, Ay, Q,., and 57 has been
defined in Methods and formulas of [XT] xtdpd.

The Arellano—Bond test for zero mth-order autocorrelation in the first-differenced errors is given
by

S0

VS1 + 82 + 83

where the definitions of sg, S1, S2, and s3 vary over the estimators and transforms.

A(m) =

We begin by defining uj; = Lm.€;, with the missing values filled in with zeros. Letting j = 1
for the one-step estimator, 7 = 2 for the two-step estimator, ¢ = GMM for the GMM VCE estimator,
and ¢ = robust for the robust VCE estimator, we can now define sg, S1, So, and s3:
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qer

S0 = U;i€ji

51 = Zu*'Hﬂu
- _2qjin_IszAjQzu

~

§3 = qj:L’Vc [B]:| q;a:

(5

For the Arellano—Bond estimator with the first-differenced transform,

o (gne)

For the Arellano—Bond estimator with the FOD transform,

=

where

and Q.. varies over estimator and transform.

where
_ T;+1
T 0 0
Ti—1 Y 0
Ti Ti —1 f
Qfod = uj,

]t

0 . . :
0 SN

and * implies the first-differenced transform instead of the FOD transform.

For the Arellano—Bover/Blundell-Bond system estimator with the first-differenced transform,

P 1N
Q.u = <§ Ziejie;;u ﬂ>
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After a one-step estimator, the Sargan test is

1 ~
Sl = 8—% E’llZ, Al ZZ;EM

7 %

The transformed two-step residuals are given by

~ % A *
€ =y; — B32X;

and the level two-step residuals are given by

~L _ L A~L
€; =Y, — B:X;

/6\*

~ 2i

€2; = <AL >
€9

After a two-step estimator, the Sargan test is

Stacking the residual vectors yields

~ 1~
So = Ezizi A, g €24

% 7

Reference

Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application
to employment equations. Review of Economic Studies 58: 277-297.
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Title

xtdpdsys — Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation

Syntax

xtdpdsys depvar [indepvars] [lf] [zn] [, options}

options Description

Model
noconstant suppress constant term
lags(#) use # lags of dependent variable as covariates; default is lags (1)
maxldep (#) maximum lags of dependent variable for use as instruments
maxlags (#) maximum lags of predetermined and endogenous variables for use

as instruments

twostep compute the two-step estimator instead of the one-step estimator

Predetermined

pre(varlist[. .. ]) predetermined variables; can be specified more than once

Endogenous

endogenous (varlisz[. .. ] )
SE/Robust
vce (veetype)

Reporting
level (#)
artests (#)
display_options

coeflegend

endogenous variables; can be specified more than once

vcetype may be gmm or robust

set confidence level; default is 1level (95)
use # as maximum order for AR tests; default is artests(2)
control spacing and line width

display legend instead of statistics

A panel variable and a time variable must be specified; use [XT] xtset.

indepvars and all varlists, except pre (varlist[ . ]) and endogenous(varlist[. .. }), may contain time-series
operators; see [U] 11.4.4 Time-series varlists. The specification of depvar may not contain time-series operators.

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Arellano-Bover/Blundell-Bond estimation

Description

Linear dynamic panel-data models include p lags of the dependent variable as covariates and
contain unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level
effects are correlated with the lagged dependent variables, making standard estimators inconsistent.

95



96 xtdpdsys — Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation

Arellano and Bond (1991) derived a consistent generalized method of moments (GMM) estimator for
this model. The Arellano and Bond estimator can perform poorly if the autoregressive parameters are
too large or the ratio of the variance of the panel-level effect to the variance of idiosyncratic error is
too large. Building on the work of Arellano and Bover (1995), Blundell and Bond (1998) developed
a system estimator that uses additional moment conditions; xtdpdsys implements this estimator.

This estimator is designed for datasets with many panels and few periods. This method assumes
that there is no autocorrelation in the idiosyncratic errors and requires the initial condition that the
panel-level effects be uncorrelated with the first difference of the first observation of the dependent
variable.

Options
_ (Wogel

noconstant; see [R] estimation options.

lags(#) sets p, the number of lags of the dependent variable to be included in the model. The
default is p = 1.

maxldep(#) sets the maximum number of lags of the dependent variable that can be used as
instruments. The default is to use all T; — p — 2 lags.

maxlags (#) sets the maximum number of lags of the predetermined and endogenous variables that
can be used as instruments. For predetermined variables, the default is to use all 7; — p — 1 lags.
For endogenous variables, the default is to use all T; — p — 2 lags.

twostep specifies that the two-step estimator be calculated.

Predetermined

pre (varlist [ , lagstruct (prelags, premaxlags) ]) specifies that a set of predetermined variables
be included in the model. Optionally, you may specify that prelags lags of the specified variables
also be included. The default for prelags is 0. Specifying premaxlags sets the maximum number
of further lags of the predetermined variables that can be used as instruments. The default is to
include T; — p — 1 lagged levels as instruments for predetermined variables. You may specify as
many sets of predetermined variables as you need within the standard Stata limits on matrix size.
Each set of predetermined variables may have its own number of prelags and premaxlags.

Endogenous

endogenous (varlist [, lagstruct (endlags, endmaxlags) ]) specifies that a set of endogenous
variables be included in the model. Optionally, you may specify that endlags lags of the specified
variables also be included. The default for endlags is 0. Specifying endmaxlags sets the maximum
number of further lags of the endogenous variables that can be used as instruments. The default
is to include T; — p — 2 lagged levels as instruments for endogenous variables. You may specify
as many sets of endogenous variables as you need within the standard Stata limits on matrix size.
Each set of endogenous variables may have its own number of endlags and endmaxlags.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas in [XT] xtdpd.

vce (gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.
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vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano—Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

Reporting

level (#); see [R] estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpdsys postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
the number of periods in the longest panel. The default is artests(2).

display_options: vsquish and nolstretch; see [R] estimation options.

The following option is available with xtdpdsys but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

If you have not read [XT] xtabond, you may want to do so before continuing.

Consider the dynamic panel-data model

P
Yit :Zajyi,t—j+xitﬁ1 +wiBytviter i=1,...,N t=1,....T; (1)
i=1

where
the «; are p parameters to be estimated,
X;+ is a 1 X kq vector of strictly exogenous covariates,
B is a k1 x 1 vector of parameters to be estimated,
wi; is a 1 X ko vector of predetermined or endogenous covariates,
By is a ko x 1 vector of parameters to be estimated,
v; are the panel-level effects (which may be correlated with the covariates), and
€;¢ are i.i.d. over the whole sample with variance o2

€~

The v; and the €;; are assumed to be independent for each ¢ over all ¢.

By construction, the lagged dependent variables are correlated with the unobserved panel-level
effects, making standard estimators inconsistent. With many panels and few periods, the Arellano—Bond
estimator is constructed by first-differencing to remove the panel-level effects and using instruments
to form moment conditions.

Blundell and Bond (1998) show that the lagged-level instruments in the Arellano—Bond estimator
become weak as the autoregressive process becomes too persistent or the ratio of the variance of the
panel-level effects v; to the variance of the idiosyncratic error €;; becomes too large. Building on
the work of Arellano and Bover (1995), Blundell and Bond (1998) proposed a system estimator that
uses moment conditions in which lagged differences are used as instruments for the level equation in
addition to the moment conditions of lagged levels as instruments for the differenced equation. The
additional moment conditions are valid only if the initial condition E[v;Ay;2] = 0 holds for all i;
see Blundell and Bond (1998) and Blundell, Bond, and Windmeijer (2000).

xtdpdsys fits dynamic panel-data estimators with the Arellano—Bover/Blundell-Bond system
estimator. Because xtdpdsys extends xtabond, [XT] xtabond provides useful background.
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> Example 1

In their article, Arellano and Bond (1991) apply their estimators and test statistics to a model of
dynamic labor demand that had previously been considered by Layard and Nickell (1986), using data
from an unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm
1 and time ¢. In this dataset, n;; is the log of employment in firm % at time ¢, w;; is the natural log
of the real product wage, k;; is the natural log of the gross capital stock, and ys,, is the natural log
of industry output. The model also includes time dummies yr1980, yr1981, yr1982, yr1983, and
yri1984.

For comparison, we begin by using xtabond to fit a model to these data.

. use http://www.stata-press.com/data/r12/abdata
. xtabond n L(0/2).(w k) yr1980-yr1984 year, vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4

avg = 4.364286

max = 6

Number of instruments = 40 Wald chi2(13) = 1318.68

Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust

n Coef. Std. Err. z P>zl [95% Conf. Intervall]

n
L1. .6286618 .1161942 5.41 0.000 .4009254 .8563983

W
- -.5104249 .1904292 -2.68 0.007 -.8836592 -.1371906
L1. .2891446 .140946 2.05 0.040 .0128954 .5653937
L2. -.0443653 .0768135 -0.58 0.564 -.194917 .1061865

k
—-—. .3556923 .0603274 5.90 0.000 .2374528 .4739318
L1. -.0457102 .0699732 -0.65 0.514 -.1828552 .0914348
L2. -.0619721 .0328589 -1.89 0.059 -.1263743 .0024301
yr1980 -.0282422 .0166363 -1.70 0.090 -.0608488 .0043643
yri1981 -.0694052 .028961 -2.40 0.017 -.1261677 -.0126426
yr1982 -.0523678 .0423433 -1.24 0.216 -.1353591 .0306235
yr1983 -.0256599 .0633747 -0.48 0.631 -.1302723 .0789525
yri1984 -.0093229 .0696241 -0.13 0.893 -.1457837 .1271379
year .0019575 .0119481 0.16 0.870 -.0214604 .0253754
_cons -2.543221 23.97919 -0.11 0.916 -49.54158 44 .45514

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w L2D.w D.k LD.k L2D.k D.yr1980 D.yr1981 D.yr1982
D.yr1983 D.yr1984 D.year
Instruments for level equation
Standard: _cons
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Now we fit the same model by using xtdpdsys:

. xtdpdsys n L(0/2).(w k) yr1980-yr1984 year, vce(robust)

System dynamic panel-data estimation Number of obs 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 5
avg = 5.364286
max = 7
Number of instruments = 47 Wald chi2(13) = 2579.96
Prob > chi2 = 0.0000
One-step results
Robust
n Coef . Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .8221535 .093387 8.80 0.000 .6391184 1.005189
w
- -.5427935 .1881721 -2.88 0.004 -.911604 -.1739831
L1. .3703602 .1656364 2.24 0.025 .0457189 .6950015
L2. -.0726314 .0907148 -0.80 0.423 -.2504292 .1051664
k
- .3638069 .0657524 5.63 0.000 .2349346 .4926792
L1. -.1222996 .0701521 -1.74 0.081 -.2597951 .015196
L2. -.0901355 .0344142 -2.62 0.009 -.1575862  -.0226849
yr1980 -.0308622 .016946 -1.82 0.069 -.0640757 .0023512
yr1981 -.0718417 .0293223 -2.45 0.014 -.1293123 -.014371
yr1982 -.0384806 .0373631 -1.03 0.303 -.1117111 .0347498
yr1983 -.0121768 .0498519 -0.24 0.807 -.1098847 .0855311
yr1984 -.0050903 .0655011 -0.08 0.938 -.1334701 .1232895
year .0058631 .0119867 0.49 0.625 -.0176304 .0293566
_cons -10.59198  23.92087 -0.44 0.658 -57.47602 36.29207

Instruments for

GMM-type: L(2/.).n
Standard: D.w LD.w L2D.w D.k LD.k L2D.k D.

GMM-type
Standard

differenced equation

D.yr1983 D.yr1984 D.year
Instruments for level equation

: LD.n
: _cons

yr1980 D.yr1981 D.yr1982

If you are unfamiliar with the L() . () notation, see [U] 13.9 Time-series operators. That the system
estimator produces a much higher estimate of the coefficient on lagged employment agrees with the
results in Blundell and Bond (1998), who show that the system estimator does not have the downward
bias that the Arellano—Bond estimator has when the true value is high.

Comparing the footers illustrates the difference between the two estimators; xtdpdsys includes
lagged differences of n as instruments for the level equation, whereas xtabond does not. Comparing
the headers shows that xtdpdsys has seven more instruments than xtabond. (As it should; there are
7 observations on LD.n available in the complete panels that run from 1976—1984, after accounting
for the first two years that are lost because the model has two lags.) Only the first lags of the
variables are used because the moment conditions using higher lags are redundant; see Blundell and
Bond (1998) and Blundell, Bond, and Windmeijer (2000).

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced errors.
The moment conditions are valid only if there is no serial correlation in the idiosyncratic errors.
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Because the first difference of independently and identically distributed idiosyncratic errors will be
autocorrelated, rejecting the null hypothesis of no serial correlation at order one in the first-differenced
errors does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See [XT] xtdpd for an alternative estimator in this
case.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -4.6414 0.0000
2 -1.0572 0.2904

HO: no autocorrelation

The above output does not present evidence that the model is misspecified.

> Example 2

Sometimes we cannot assume strict exogeneity. Recall that a variable x;; is said to be strictly
exogenous if E[z;ie;5] = 0 for all ¢ and s. If Elx;1€;5] # 0 for s < ¢ but E[z;:€;5] = 0 forall s > ¢,
the variable is said to be predetermined. Intuitively, if the error term at time ¢ has some feedback
on the subsequent realizations of x;¢, ;; is a predetermined variable. Because unforecastable errors
today might affect future changes in the real wage and in the capital stock, we might suspect that
the log of the real product wage and the log of the gross capital stock are predetermined instead of
strictly exogenous.
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. xtdpdsys n yr1980-yr1984 year, pre(w k, lag(2, .)) vce(robust)

System dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group: min = 5
avg = b5.364286
max = 7
Number of instruments = 95 Wald chi2(13) = 7562.80
Prob > chi2 = 0.0000
One-step results
Robust
n Coef . Std. Err. z P>|z| [95% Conf. Intervall
n
L1. .913278 .0460602 19.83  0.000 .8230017 1.003554
w
-- -.728159 .1019044 -7.15  0.000 -.9278879  -.5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438775 .2392718
k
-- .4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944 .0831902 -3.42 0.001 -.4477442  -.1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356  -.0599006
yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yr1981 -.0726116 .0346482 -2.10 0.036 -.1405207  -.0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264 .0558734 -0.71  0.478 -.1491362 .0698835
yri1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342
year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972  28.77747 -1.30 0.194 -93.75253 19.05308

Instruments for

GMM-type: L(2/.).n L(1/.).L2.w L(1/.).L2.k
Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

differenced equation

Instruments for level equation
GMM-type: LD.n L2D.w L2D.k

Standard

¢ _cons

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back for the differenced errors and the second lags of the

differences of w and k as instruments for the level errors.

Q Technical note

N

The above example illustrates that xtdpdsys understands pre(w k, lag(2, .)) to mean that
L2.w and L2.k are predetermined variables. This is a stricter definition than the alternative that pre (w
k, lag(2, .)) means only that w k are predetermined but to include two lags of w and two lags of
k in the model. If you prefer the weaker definition, xtdpdsys still gives you consistent estimates,
but it is not using all possible instruments; see [XT]| xtdpd for an example of how to include all

possible instruments.

a
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Saved results
xtdpdsys saves the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(g_min) smallest group size
e(g-avg) average group size
e(g_max) largest group size
e(t_min) minimum time in sample
e(t_max) maximum time in sample
e(chi2) x2
e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of o2
e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix
Macros
e(cmd) xtdpdsys
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(system) system, if system estimator
e(hascons) hascons, if specified
e(transform) specified transform
e(datasignature)  checksum from datasignature
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

Methods and formulas

xtdpdsys is implemented as an ado-file.

xtdpdsys uses xtdpd to perform its computations, so the formulas are given in Methods and
formulas of [XT] xtdpd.
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Title

xtdpdsys postestimation — Postestimation tools for xtdpdsys

Description

The following postestimation commands are of special interest after xtdpdsys:

Command

Description

estat abond
estat sargan

test for autocorrelation
Sargan test of overidentifying restrictions

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Syntax for predict

predict [type] newvar [lf] [in] [, xb e stdp foerence]

Menu

Statistics > Postestimation > Predictions, residuals, etc.

104
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Options for predict
, Main

xb, the default, calculates the linear prediction.
e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.

Syntax for estat abond

estat abond [, gtests(#)}

Menu

Statistics > Postestimation > Reports and statistics

Option for estat abond

artests (#) specifies the highest order of serial correlation to be tested. By default, the tests computed
during estimation are reported. The model will be refit when artests (#) specifies a higher order
than that computed during the original estimation. The model can be refit only if the data have
not changed.

Syntax for estat sargan

estat sargan

Menu

Statistics > Postestimation > Reports and statistics

Remarks

Remarks are presented under the following headings:

estat abond
estat sargan



106 xtdpdsys postestimation — Postestimation tools for xtdpdsys

estat abond

The moment conditions used by xtdpdsys are valid only if there is no serial correlation in the
idiosyncratic errors. Testing for serial correlation in dynamic panel-data models is tricky because
a transform is required to remove the panel-level effects, but the transformed errors have a more
complicated error structure than that of the idiosyncratic errors. The Arellano—Bond test for serial
correlation reported by estat abond tests for serial correlation in the first-differenced errors.

Because the first difference of independently and identically distributed idiosyncratic errors will
be serially correlated, rejecting the null hypothesis of no serial correlation in the first-differenced
errors at order one does not imply that the model is misspecified. Rejecting the null hypothesis at
higher orders implies that the moment conditions are not valid. See example 5 in [XT] xtdpd for
an alternative estimator that allows for idiosyncratic errors that follow a first-order moving average
process.

After the one-step system estimator, the test can be computed only when vce (robust) has been
specified.

estat sargan

Like all GMM estimators, the estimator in xtdpdsys can produce consistent estimates only if the
moment conditions used are valid. Although there is no method to test if the moment conditions from
an exactly identified model are valid, one can test whether the overidentifying moment conditions are
valid. estat sargan implements the Sargan test of overidentifying conditions discussed in Arellano
and Bond (1991).

Only for a homoskedastic error term does the Sargan test have an asymptotic chi-squared distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce (robust) model, xtdpdsys does not compute it when vce (robust) is specified. See [XT] xtdpd
for an example in which the null hypothesis of the Sargan test is not rejected.

. use http://www.stata-press.com/data/r12/abdata
. xtdpdsys n L(0/2).(w k) yr1980-yri1984 year
(output omitted )

. estat sargan

Sargan test of overidentifying restrictions
HO: overidentifying restrictions are valid
chi2(33) = 63.63911
Prob > chi2 = 0.0011

The output above presents strong evidence against the null hypothesis that the overidentifying
restrictions are valid. Rejecting this null hypothesis implies that we need to reconsider our model or
our instruments, unless we attribute the rejection to heteroskedasticity in the data-generating process.
Although performing the Sargan test after the two-step estimator is an alternative, Arellano and
Bond (1991) found a tendency for this test to underreject in the presence of heteroskedasticity.

Methods and formulas

The formulas are given in Methods and formulas of [XT] xtdpd postestimation.
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Also see

[XT] xtdpdsys — Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation



Title

xtfrontier — Stochastic frontier models for panel data

Syntax

Time-invariant model

xtfrontier depvar [indepvars} [lf] [iﬂ [weight] , ti [ti_opzions]

Time-varying decay model

xtfrontier depvar [indepvars} [lf] [in} [weight] , tvd [tvd_()pti(ms]

ti_options Description
Model
noconstant suppress constant term
ti use time-invariant model
cost fit cost frontier model
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE
vce (veetype) vcetype may be oim, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
nocnsreport do not display constraints

display_options

Maximization
maximize_options

coeflegend

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

control the maximization process; seldom used

display legend instead of statistics
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tvd_options Description
Model
noconstant suppress constant term
tvd use time-varying decay model
cost fit cost frontier model
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE
vce (veetype) vcetype may be oim, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

A panel variable must be specified. For xtfrontier, tvd, a time variable must also be specified. Use xtset; see
[XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights and iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Frontier models

Description

xtfrontier fits stochastic production or cost frontier models for panel data. More precisely,
xtfrontier estimates the parameters of a linear model with a disturbance generated by specific
mixture distributions.

The disturbance term in a stochastic frontier model is assumed to have two components. One
component is assumed to have a strictly nonnegative distribution, and the other component is
assumed to have a symmetric distribution. In the econometrics literature, the nonnegative component
is often referred to as the inefficiency term, and the component with the symmetric distribution
as the idiosyncratic error. xtfrontier permits two different parameterizations of the inefficiency
term: a time-invariant model and the Battese—Coelli (1992) parameterization of time effects. In the
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time-invariant model, the inefficiency term is assumed to have a truncated-normal distribution. In
the Battese—Coelli (1992) parameterization of time effects, the inefficiency term is modeled as a
truncated-normal random variable multiplied by a specific function of time. In both models, the
idiosyncratic error term is assumed to have a normal distribution. The only panel-specific effect is
the random inefficiency term.

See Kumbhakar and Lovell (2000) for a detailed introduction to frontier analysis.

Options for time-invariant model
_ (odel

noconstant; see [R] estimation options.
ti specifies that the parameters of the time-invariant technical inefficiency model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production
function. By default, xtfrontier fits a production frontier model.

constraints (constraints), collinear; see [R] estimation options.

[sE]

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

Reporting

level (#); see [R] estimation options.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec) iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

The following option is available with xtfrontier but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for time-varying decay model
_ [Model

noconstant; see [R] estimation options.
tvd specifies that the parameters of the time-varying decay model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production
function. By default, xtfrontier fits a production frontier model.

constraints (constraints), collinear; see [R] estimation options.
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[sE |

Is

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

Reporting

level (#); see [R] estimation options.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

The following option is available with xtfrontier but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Remarks are presented under the following headings:

Introduction
Time-invariant model
Time-varying decay model

Introduction

Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and
Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular
subfield in econometrics; see Kumbhakar and Lovell (2000) for an introduction. xtfrontier fits
two stochastic frontier models with distinct specifications of the inefficiency term and can fit both
production- and cost-frontier models.

Let’s review the nature of the stochastic frontier problem. Suppose that a producer has a production
function f(z;, 3). In a world without error or inefficiency, in time ¢, the ith firm would produce

¢t = f(2it, B)

A fundamental element of stochastic frontier analysis is that each firm potentially produces less
than it might because of a degree of inefficiency. Specifically,

qit = f(2it, B)&i

where &;; is the level of efficiency for firm ¢ at time ¢; & must be in the interval (0,1]. If &; =1,
the firm is achieving the optimal output with the technology embodied in the production function
f(zi,3). When &;; < 1, the firm is not making the most of the inputs z;; given the technology
embodied in the production function f(z;:,3). Because the output is assumed to be strictly positive
(that is, g;¢+ > 0), the degree of technical efficiency is assumed to be strictly positive (that is, &; > 0).
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Output is also assumed to be subject to random shocks, implying that
@it = [(Zit, 3)§irexp(vit)
Taking the natural log of both sides yields

In(gi) = In{ f(zi, B) }+1n(&ir) + vie

Assuming that there are k& inputs and that the production function is linear in logs, defining
uig = —In(&;;) yields

k
In(git) = Bo + Z B In(zjit) + vir — st (1)

Jj=1

Because w;; is subtracted from In(g;;), restricting u;; > O implies that 0 < &; < 1, as specified
above.

Kumbhakar and Lovell (2000) provide a detailed version of this derivation, and they show that
performing an analogous derivation in the dual cost function problem allows us to specify the problem

as
k

In(cit) = Bo + By n(gie) + Y B n(pjie) + vir — suir (2)

Jj=1
where g;; is output, the z;;; are input quantities, c;; is cost, the p;;; are input prices, and

s 1, for production functions
“ | =1, for cost functions

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the
specification.

Q Technical note

The model that xtfrontier actually fits has the form

k

Yit = Bo + Z Bjxji + vig — Sy
i=1

so in the context of the discussion above, y;; = In(g;¢) and Tjit = ln(zjit) for a production function;
for a cost function, y;; = In(c;¢), the x4 are the In(pj;¢), and In(g;¢). You must perform the natural
logarithm transformation of the data before estimation to interpret the estimation results correctly for
a stochastic frontier production or cost model. xtfrontier does not perform any transformations on
the data.

a

Equation (2) is a variant of a panel-data model in which v;; is the idiosyncratic error and w4
is a time-varying panel-level effect. Much of the literature on this model has focused on deriving
estimators for different specifications of the u;; term. Kumbhakar and Lovell (2000) provide a survey
of this literature.
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xtfrontier provides estimators for two different specifications of u;;. To facilitate the discussion,
let N* (11, 0?) denote the truncated-normal distribution, which is truncated at zero with mean p and

variance o2, and let ~ stand for independently and identically distributed.
Consider the simplest specification in which u;; is a time-invariant truncated-normal random

. . . . iid iid
variable. In the time-invariant model, w;; = u;, u; ~ N*t(u,02), vt ~ N(0,02), and u; and v;;
are distributed independently of each other and the covariates in the model. Specifying the ti option
causes xtfrontier to estimate the parameters of this model.

In the time-varying decay specification,
uip = exp{—n(t — T;) pu;

. . . . iid iid
where T} is the last period in the ith panel, 7 is the decay parameter, u; ~ Nt (u,02), vy ~ N(0,02),
and u; and v;; are distributed independently of each other and the covariates in the model. Specifying
the tvd option causes xtfrontier to estimate the parameters of this model.

Time-invariant model

> Example 1
xtfrontier, ti provides maximum likelihood estimates for the parameters of the time-invariant
. . . iid
decay model. In this model, the inefficiency effects are modeled as w;; = u;, u; XN +(u,aﬁ),

Vit iid N (0,012}), and w; and v are distributed independently of each other and the covariates in
the model. In this example, firms produce a product called a widget, using a constant-returns-to-
scale technology. We have 948 observations—91 firms, with 6—14 observations per firm. Our dataset
contains variables representing the quantity of widgets produced, the number of machine hours used
in production, the number of labor hours used in production, and three additional variables that are
the natural logarithm transformations of the three aforementioned variables.
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We fit a time-invariant model using the transformed variables:

. use http://www.stata-press.com/data/r12/xtfrontierl

. xtfrontier lnwidgets lnmachines lnworkers, ti

Iteration O: log likelihood = -1473.8703
Iteration 1: log likelihood = -1473.0565
Iteration 2: log likelihood = -1472.6155
Iteration 3: log likelihood = -1472.607
Iteration 4: log likelihood = -1472.6069
Time-invariant inefficiency model Number of obs = 948
Group variable: id Number of groups = 91
Obs per group: min = 6
avg = 10.4
max = 14
Wald chi2(2) = 661.76
Log likelihood = -1472.6069 Prob > chi2 = 0.0000
lnwidgets Coef.  Std. Err. z P>|z| [95% Conf. Intervall
lnmachines .2904551 .0164219 17.69  0.000 .2582688 .3226415
lnworkers .2943333 .0154352 19.07  0.000 .2640808 .3245858
_cons 3.030983 .1441022 21.03 0.000 2.748548 3.313418
/mu 1.125667 .6479217 1.74 0.082 -.144236 2.39557
/1lnsigma2 1.421979 .2672745 5.32 0.000 .898131 1.945828
/ilgtgamma 1.138685 .3562642 3.20 0.001 .4404204 1.83695
sigma2 4.145318 1.107938 2.455011 6.999424
gamma . 7574382 .0654548 .6083592 .8625876
sigma_u2 3.139822  1.107235 .9696821 5.309962
sigma_v2 1.005496 .0484143 .9106055 1.100386

In addition to the coefficients, the output reports estimates for the parameters sigma_v2, sigma_u2,
gamma, sigma2, ilgtgamma, lnsigma2, and mu. sigma_v2 is the estimate of o2. sigma_u2 is the
gamma is the estimate of 7 = o2/ ng. sigma2 is the estimate of (f% =02 +02.
Because v must be between 0 and 1, the optimization is parameterized in terms of the inverse logit
of =, and this estimate is reported as ilgtgamma. Because afg must be positive, the optimization
is parameterized in terms of ln(og), and this estimate is reported as lnsigma2. Finally, mu is the

2

w*

estimate of o

estimate of L.

Q Technical note

Our simulation results indicate that this estimator requires relatively large samples to achieve any

reasonable degree of precision in the estimates of p and O’Z.

Time-varying decay model

xtfrontier, tvd provides maximum likelihood estimates for the parameters of the time-varying

decay model. In this model, the inefficiency effects are modeled as

Ujp = exp{—n(t — TZ)}uz

2)

iid
where u; ~ N1 (u, 02
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When 7 > 0, the degree of inefficiency decreases over time; when 1 < 0, the degree of inefficiency
increases over time. Because ¢ = T; in the last period, the last period for firm ¢ contains the base
level of inefficiency for that firm. If 77 > 0, the level of inefficiency decays toward the base level. If
1 < 0, the level of inefficiency increases to the base level.

> Example 2

When 1 = 0, the time-varying decay model reduces to the time-invariant model. The following
example illustrates this property and demonstrates how to specify constraints and starting values in
these models.

Let’s begin by fitting the time-varying decay model on the same data that were used in the previous
example for the time-invariant model.

. xtfrontier lnwidgets lnmachines lnworkers, tvd
Iteration O: log likelihood = -1551.3798 (not concave)

Iteration 1 log likelihood = -1502.2637
Iteration 2: log likelihood = -1476.3093 (not concave)
Iteration 3: log likelihood = -1472.9845
Iteration 4: log likelihood = -1472.5365
Iteration 5: log likelihood = -1472.529
Iteration 6: log likelihood = -1472.5289
Time-varying decay inefficiency model Number of obs = 948
Group variable: id Number of groups = 91
Time variable: t Obs per group: min = 6
avg = 10.4
max = 14
Wald chi2(2) = 661.93
Log likelihood = -1472.5289 Prob > chi2 = 0.0000
lnwidgets Coef.  Std. Err. z P>|z| [95% Conf. Intervall
lnmachines .2907555 .0164376 17.69  0.000 .2585384 .3229725
lnworkers .2942412 .0154373 19.06  0.000 .2639846 .3244978
_cons 3.028939 .1436046 21.09 0.000 2.74748 3.310399
/mu 1.110831 .6452809 1.72  0.085 -.1538967 2.375558
/eta .0016764 .00425 0.39 0.693 -.0066535 .0100064
/1lnsigma2 1.410723 .2679485 5.26  0.000 .885554 1.935893
/ilgtgamma 1.123982 .3584243 3.14 0.002 .4214828 1.82648
sigma2 4.098919  1.098299 2.424327 6.930228
gamma . 7547265 .0663495 .603838 .8613419
sigma_u2 3.093563 1.097606 .9422943 5.244832
sigma_v2 1.005356 .0484079 .9104785 1.100234

The estimate of 7 is close to zero, and the other estimates are not too far from those of the
time-invariant model.

We can use constraint to constrain 7 = 0 and obtain the same results produced by the time-
invariant model. Although there is only one statistical equation to be estimated in this model, the
model fits five of Stata’s [R] ml equations; see [R] ml or Gould, Pitblado, and Poi (2010). The
equation names can be seen by listing the matrix of estimated coefficients.
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. matrix list e(b)

e(b) [1,7]
Inwidgets: lnwidgets: Ilnwidgets: Insigma2: ilgtgamma: mu:
lnmachines  lnworkers _cons _cons _cons _cons
yi .29075546 .2942412  3.0289395  1.4107233  1.1239816  1.1108307
eta:
_cons

yi .00167642

To constrain a parameter to a particular value in any equation, except the first equation, you must
specify both the equation name and the parameter name by using the syntax

constraint # [eqname] _b[varname] = value or
constraint # [eqname]coefficient = value

where egname is the equation name, varname is the name of the variable in a linear equation,
and coefficient refers to any parameter that has been estimated. More elaborate specifications with
expressions are possible; see the example with constant returns to scale below, and see [R] constraint
for general reference.

Suppose that we impose the constraint 17 = 0; we get the same results as those reported above for
the time-invariant model, except for some minute differences attributable to an alternate convergence
path in the optimization.

. constraint 1 [etal_cons = 0
. xtfrontier lnwidgets lnmachines lnworkers, tvd constraints(1)
Iteration 0: log likelihood = -1540.7124 (not concave)

Iteration 1 log likelihood = -1515.7726
Iteration 2: log likelihood = -1473.0162
Iteration 3: log likelihood = -1472.9223
Iteration 4: log likelihood = -1472.6254
Iteration 5: log likelihood = -1472.607
Iteration 6: log likelihood = -1472.6069

Time-varying decay inefficiency model Number of obs = 948

Group variable: id Number of groups = 91

Time variable: t Obs per group: min = 6

avg = 10.4

max = 14

Wald chi2(2) = 661.76

Log likelihood = -1472.6069 Prob > chi2 = 0.0000

(1) [etal_cons = 0

lnwidgets Coef. Std. Err. z P>|z| [95% Conf. Intervall

Inmachines .2904551 .0164219 17.69  0.000 .2582688 .3226414

lnworkers .2943332 .0154352 19.07  0.000 .2640807 .3245857

_cons 3.030963 .1440995 21.03 0.000 2.748534 3.313393

/mu 1.125507 .6480444 1.74 0.082 -.1446369 2.39565

/eta 0 . . . . .

/1lnsigma2 1.422039 .2673128 5.32 0.000 .8981155 1.945962

/ilgtgamma 1.138764 .3563076 3.20 0.001 .4404135 1.837114

sigma2 4.145565 1.108162 2.454972 7.000366

gamma . 7574526 .0654602 .6083575 .862607

sigma_u2 3.140068  1.107459 .9694878 5.310649

sigma_v2 1.005496 .0484143 .9106057 1.100386
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Saved results

xtfrontier saves the following in e():

e (asbalanced)
e(asobserved)

Scalars
e(N) number of observations
e(N_g) number of groups
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq-_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(g_min) minimum number of observations per group
e(g_avg) average number of observations per group
e(g_max) maximum number of observations per group
e(sigma2) sigma2
e(gamma) gamma
e(Tcon) 1 if panels balanced; O otherwise
e(sigma_u) standard deviation of technical inefficiency
e(sigma_v) standard deviation of random error
e(chi2) 2
e(p) model significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) xtfrontier
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(function) production or cost
e(model) ti, after time-invariant model; tvd, after time-varying decay model
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
(e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict

factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(V) variance—covariance matrix of the estimators
Functions

e(sample)

marks estimation sample
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Methods and formulas

xtfrontier is implemented as an ado-file.

xtfrontier fits stochastic frontier models for panel data that can be expressed as

k
Yir = Bo + E Bjxji + vig — Sy
=1

where y;; is the natural logarithm of output, the x;;; are the natural logarithm of the input quantities

for the production efficiency problem, y;; is the natural logarithm of costs, the z;; are the natural
logarithm of input prices for the cost efficiency problem, and

<= 1, for production functions
" | =1, for cost functions

For the time-varying decay model, the log-likelihood function is derived as
N

N
InL = f% ZTi {In(27) + In(c2)} — %Z (T; —1) In(1 — )
i=1

i=1

N T
1 ~ 9 L
—égln 1+ ;mt—l 0% —Nln{l—@(—%)}—iNz

N 1 1 & e
+Z1n{1—@(—25)}+52252_522m
Pt ) ; =

- 1/2
where 0g = (024—03)1/2, v =02/0%, €ir = yir — X3, nie = exp{—n(t—Ti)}, z = p/ (fya?g) / ,

®() is the cumulative distribution function of the standard normal distribution, and

. (L —7) — 87 3oy marein
i v 7
[’Y (1-7) U% {1 + (23;1 g — 1) ’YH

Maximizing the above log likelihood estimates the coefficients 7, u, o, and oy,.
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Also see

[XT] xtfrontier postestimation — Postestimation tools for xtfrontier
[XT] xtset — Declare data to be panel data
[R] frontier — Stochastic frontier models

[U] 20 Estimation and postestimation commands


http://www.stata-press.com/books/ml4.html

Title

xtfrontier postestimation — Postestimation tools for xtfrontier

Description

The following postestimation commands are available after xtfrontier:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict [type] newvar [lf] [in] [, statistic]

statistic Description
Main
xb linear prediction; the default
stdp standard error of the linear prediction
u minus the natural log of the technical efficiency via E (u;; | €;¢)
m minus the natural log of the technical efficiency via M (u;; | €;¢)
te the technical efficiency via E {exp(—su;t) | €t}
where

o= 1, for production functions
| =1, for cost functions

120
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Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of minus the natural log of the technical efficiency via E (u; | €;1)-

m produces estimates of minus the natural log of the technical efficiency via the mode, M (u;t | €;¢).

te produces estimates of the technical efficiency via E {exp(—su;) | €t}

Remarks

> Example 1

A production function exhibits constant returns to scale if doubling the amount of each input results
in a doubling in the quantity produced. When the production function is linear in logs, constant returns
to scale implies that the sum of the coefficients on the inputs is one. In example 2 of [XT] xtfrontier,
we fit a time-varying decay model. Here we test whether the estimated production function exhibits
constant returns:

. use http://www.stata-press.com/data/ri12/xtfrontierl
. xtfrontier lnwidgets lnmachines lnworkers, tvd
(output omitted )
. test lnmachines + lnworkers = 1
( 1) [lnwidgets]lnmachines + [lnwidgets]lnworkers = 1

chi2( 1) = 331.55
Prob > chi2 = 0.0000

The test statistic is highly significant, so we reject the null hypothesis and conclude that this production
function does not exhibit constant returns to scale.

The previous Wald 2 test indicated that the sum of the coefficients does not equal one. An
alternative is to use lincom to compute the sum explicitly:
. lincom lnmachines + lnworkers

(1) [lnwidgets]lnmachines + [lnwidgets]lnworkers = 0

lnwidgets Coef.  Std. Err. z P>|z| [95% Conf. Intervall

(1) .5849967 .0227918 25.67 0.000 .5403256 .6296677

The sum of the coefficients is significantly less than one, so this production function exhibits decreasing
returns to scale. If we doubled the number of machines and workers, we would obtain less than twice
as much output.

N
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Continuing from the Methods and formulas section of [XT] xtfrontier, estimates for wu;; can be
obtained from the mean or the mode of the conditional distribution f(ule).

¢ (—pi/04) }

E(ui | €¢) =p +0;§ ————=—=~
(i | € u+0{1—q’(—ui/0i)

X ) — _ﬁh if ﬁl >=0
M (ui | i) = {07 otherwise

where

2 T; 2
oy — 8D Ly Mit€itOy,

- 2 Ti 2 2
o, + thl Nit0u

2 2
~2 0y0u

9T T 2 9
oy + Zt:1 Nit0u

These estimates can be obtained from predict newvar, u and predict newvar, m, respectively,
and are calculated by plugging in the estimated parameters.

predict newvar, te produces estimates of the technical-efficiency term. These estimates are
obtained from

1—®{sno; — (i) o -1 5
E {exp(—suir) | €1t} = 1322%_;‘% Z)}] exp (_Snitﬂi + 2771'2t0i2>

Replacing 7+ = 1 and 17 = 0 in these formulas produces the formulas for the time-invariant models.
Also see

[XT] xtfrontier — Stochastic frontier models for panel data

[U] 20 Estimation and postestimation commands



Title

xtgee — Fit population-averaged panel-data models by using GEE

Syntax
xtgee depvar [ina’epvars] [lf] [in] [weight] [ s Options]
options Description
Model
family (family) distribution of depvar; see table below
link (/ink) link function; see table below
Model 2
exposure (varname) include In(varname) in model with coefficient constrained to 1
offset (varname) include varname in model with coefficient constrained to 1
noconstant suppress constant term
force estimate even if observations unequally spaced in time
Correlation
corr (correlation) within-group correlation structure; see table below
SE/Robust
vce (veetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N — P instead of the default NV
rgf multiply the robust variance estimate by (N — 1)/(N — P)
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #
Reporting
level (#) set confidence level; default is 1level (95)
eform report exponentiated coefficients
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization
optimize_options control the optimization process; seldom used
nodisplay suppress display of header and coefficients
coeflegend display legend instead of statistics

A panel variable must be specified. Correlation structures other than exchangeable and independent require
that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4 varlists.

by, fracpoly, mfp, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.

nodisplay and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

123
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family Description

gaussian Gaussian (normal); family (normal) is a synonym
igaussian inverse Gaussian

binomial [#| varname} Bernoulli/binomial

poisson Poisson

nbinomial [#} negative binomial

gamma gamma

link Link function/definition

identity identity; y =y

log log; In(y)

logit logit; In{y/(1 — y)}, natural log of the odds
probit probit; ®~1(y), where ®() is the normal cumulative distribution
cloglog cloglog; In{—In(1 — )}

power [#] power; y* with k = #; # = 1 if not specified
opower [#] odds power; [{y/(1 —y)}* — 1]/k with k = #; # = 1 if not specified
nbinomial negative binomial; In{y/(y + «)}

reciprocal reciprocal; 1/y

correlation Description

exchangeable exchangeable

independent independent

unstructured unstructured

fixed matname

ar #

stationary #
nonstationary #

user-specified
autoregressive of order #
stationary of order #
nonstationary of order #

Menu

Statistics > Longitudinal/panel data > Generalized estimating equations (GEE) > Generalized estimating equations

(GEE)

Description

xtgee fits population-averaged panel-data models. In particular, xtgee fits generalized linear
models and allows you to specify the within-group correlation structure for the panels.

See [R] logistic and [R] regress for lists of related estimation commands.
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Options
_ [Model

family (family) specifies the distribution of depvar; family (gaussian) is the default.
link(/ink) specifies the link function; the default is the canonical link for the family () specified.

Model 2

exposure (varname) and offset(varname) are different ways of specifying the same thing.
exposure() specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname) with coefficient constrained to be 1 is
entered into the regression equation. offset () specifies a variable that is to be entered directly
into the log-link function with its coefficient constrained to be 1; thus, exposure is assumed to
be e’¥mame If you were fitting a Poisson regression model, family (poisson) link(log), for
instance, you would account for exposure time by specifying offset () containing the log of
exposure time.

noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin
on the scale defined by the link function.

force; see [R] estimation options.

Correlation

corr (correlation) ; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce_options.

vce (conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

vce (robust) specifies that the Huber/White/sandwich estimator of variance is to be used in place
of the default conventional variance estimator (see Methods and formulas below). Use of this
option causes xtgee to produce valid standard errors even if the correlations within group are
not as hypothesized by the specified correlation structure. It does, however, require that the model
correctly specifies the mean. The resulting standard errors are thus labeled “semirobust” instead of
“robust”. Although there is no vce(cluster clustvar) option, results are as if this option were
included and you specified clustering on the panel variable.

nmp; see [XT] vce_options.

rgf specifies that the robust variance estimate is multiplied by (NN — 1)/(N — P), where N is the
total number of observations and P is the number of coefficients estimated. This option can be
used only with family(gaussian) when vce (robust) is either specified or implied by the use
of pweights. Using this option implies that the robust variance estimate is not invariant to the
scale of any weights used.

scale(x2|dev|phi |#); see [XT] vce_options.

Reporting

level (#); see [R] estimation options.
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eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals as described in [R] maximize. For family(binomial) 1ink(logit) (that is, logistic
regression), exponentiation results in odds ratios; for family(poisson) link(log) (that is,
Poisson regression), exponentiated coefficients are incidence-rate ratios.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fint), sformat (% fimt), and nolstretch; see [R] estimation options.

optimize_options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(le-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtgee but are not shown in the dialog box:
nodisplay is for programmers. It suppresses display of the header and coefficients.

coeflegend; see [R] estimation options.

Remarks

For a thorough introduction to GEE in the estimation of GLM, see Hardin and Hilbe (2003). More
information on linear models is presented in Nelder and Wedderburn (1972). Finally, there have
been several illuminating articles on various applications of GEE in Zeger, Liang, and Albert (1988);
Zeger and Liang (1986), and Liang (1987). Pendergast et al. (1996) surveys the current methods for
analyzing clustered data in regard to binary response data. Our implementation follows that of Liang
and Zeger (1986).

xtgee fits generalized linear models of y;; with covariates X4
Q{E (yzt)} = XitP3, y ~ F with parameters 0;;
fori=1,...,mand t =1,...,n;, where there are n; observations for each group identifier i. g()
is called the link function, and F' is the distributional family. Substituting various definitions for g( )

and F' results in a wide array of models. For instance, if y;; is distributed Gaussian (normal) and
g() is the identity function, we have

E(yit) = xitf3, y~ N()

yielding linear regression, random-effects regression, or other regression-related models, depending
on what we assume for the correlation structure.

If g() is the logit function and y;; is distributed Bernoulli (binomial), we have

logit{E(yit)} = xi[3, y ~ Bernoulli
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or logistic regression. If g( ) is the natural log function and y;; is distributed Poisson, we have

In{E(yi)} = xi3, y ~ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

You specify the link function with the 1ink() option, the distributional family with family(),
and the assumed within-group correlation structure with corr ().

The binomial distribution can be specified as case 1 family (binomial), case 2 family(binomial
#), or case 3 family(binomial varname). In case 2, # is the value of the binomial denominator IV,
the number of trials. Specifying family(binomial 1) is the same as specifying family (binomial);
both mean that y has the Bernoulli distribution with values O and 1 only. In case 3, varname is
the variable containing the binomial denominator, thus allowing the number of trials to vary across
observations.

The negative binomial distribution must be specified as family(nbinomial #), where # denotes
the value of the parameter « in the negative binomial distribution. The results will be conditional on
this value.

You do not have to specify both family () and 1ink(); the default 1ink () is the canonical link
for the specified family ():

Family Canonical link
family(binomial) link(logit)
family (gamma) link(reciprocal)
family(gaussian) link(identity)
family(igaussian) link(power -2)
family(nbinomial) link(log)

family (poisson) link(log)

If you specify both family () and 1ink(), not all combinations make sense. You may choose among
the following combinations:

Gaussian  Inverse  Binomial Poisson Negative Gamma

Gaussian Binomial

Identity X X X X X X
Log X X X X X X
Logit X

Probit X

C. log-log X

Power X X X X X X
Odds Power X

Neg. binom. X
Reciprocal X X X X

You specify the assumed within-group correlation structure with the corr () option.

For example, call R the working correlation matrix for modeling the within-group correlation, a
square max{n;} x max{n;} matrix. corr() specifies the structure of R. Let R; s denote the ¢, s
element.

The independent structure is defined as

Rt9:

58

{ 1 ift=s
0 otherwise
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The corr(exchangeable) structure (corresponding to equal-correlation models) is defined as

1 ift=s
Ris = { p otherwise

The corr(ar g) structure is defined as the usual correlation matrix for an AR(g) model. This is
sometimes called multiplicative correlation. For example, an AR(1) model is given by

1 ift=s
R¢s = {pt—s otherwise

The corr(stationary g) structure is a stationary(g) model. For example, a stationary(1) model
is given by
1 ift=s
Ris=4qp ifft—s/=1
0 otherwise
The corr(nonstationary g) structure is a nonstationary(g) model that imposes only the con-
straints that the elements of the working correlation matrix along the diagonal be 1 and the elements
outside the gth band be zero,
1 ift=s
Ris=qps if0<|t—s[<g, pis=pst
0 otherwise

corr (unstructured) imposes only the constraint that the diagonal elements of the working
correlation matrix be 1.
1 ift=s
R, = {

’ pis otherwise, pis = pst

The corr(fixed matname) specification is taken from the user-supplied matrix, such that
R = mamame

Here the correlations are not estimated from the data. The user-supplied matrix must be a valid
correlation matrix with 1s on the diagonal.

Full formulas for all the correlation structures are provided in the Methods and formulas below.

Q Technical note

Some family(), 1ink(), and corr () combinations result in models already fit by Stata:

family () link() corr() Other Stata estimation command
gaussian identity independent regress

gaussian identity exchangeable xtreg, re

gaussian identity exchangeable xtreg, pa

binomial cloglog independent cloglog (see note 1)
binomial cloglog exchangeable xtcloglog, pa

binomial logit independent logit or logistic

binomial logit exchangeable xtlogit, pa

binomial probit independent probit (see note 2)

binomial probit exchangeable xtprobit, pa

nbinomial nbinomial independent nbreg (see note 3)

poisson log independent poisson

poisson log exchangeable xtpoisson, pa

gamma log independent streg, dist(exp) nohr (see note 4)
Sfamily link independent glm, irls (see note 5)
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Notes:

1. For cloglog estimation, xtgee with corr(independent) and cloglog (see [R] cloglog) will
produce the same coefficients, but the standard errors will be only asymptotically equivalent because
cloglog is not the canonical link for the binomial family.

2. For probit estimation, xtgee with corr(independent) and probit will produce the same
coefficients, but the standard errors will be only asymptotically equivalent because probit is not
the canonical link for the binomial family. If the binomial denominator is not 1, the equivalent
maximum-likelihood command is bprobit; see [R] probit and [R] glogit.

3. Fitting a negative binomial model by using xtgee (or using glm) will yield results conditional on
the specified value of a. The nbreg command, however, estimates that parameter and provides
unconditional estimates; see [R] nbreg.

4. xtgee with corr(independent) can be used to fit exponential regressions, but this requires
specifying scale(1). As with probit, the xtgee-reported standard errors will be only asymptotically
equivalent to those produced by streg, dist(exp) nohr (see [ST] streg) because log is not
the canonical link for the gamma family. xtgee cannot be used to fit exponential regressions on
censored data.

Using the independent correlation structure, the xtgee command will fit the same model fit
with the glm, irls command if the family—link combination is the same.

5. If the xtgee command is equivalent to another command, using corr (independent) and the
vce (robust) option with xtgee corresponds to using the vce (cluster clustvar) option in the

equivalent command, where clustvar corresponds to the panel variable. a

xtgee is a generalization of the glm, irls command and gives the same output when the same
family and link are specified together with an independent correlation structure. What makes xtgee
useful is

o the number of statistical models that it generalizes for use with panel data, many of which are not
otherwise available in Stata;

e the richer correlation structure xtgee allows, even when models are available through other xt
commands; and

e the availability of robust standard errors (see [U] 20.20 Obtaining robust variance estimates),
even when the model and correlation structure are available through other xt commands.

In the following examples, we illustrate the relationships of xtgee with other Stata estimation
commands. Remember that, although xtgee generalizes many other commands, the computational
algorithm is different; therefore, the answers you obtain will not be identical. The dataset we are
using is a subset of the nlswork data (see [XT] xt); we are looking at observations before 1980.
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> Example 1

We can use xtgee to perform ordinary least squares by regress:

. use http://www.stata-press.com/data/r12/nlswork?2

(National Longitudinal Survey.

. regress ln_w grade

age c.age#c.age

Young Women 14-26 years of age in 1968)

Source SS df MS Number of obs = 16085
F( 3, 16081) = 1413.68
Model 597.54468 3 199.18156 Prob > F = 0.0000
Residual 2265.74584 16081 .14089583 R-squared = 0.2087
Adj R-squared = 0.2085
Total 2863.29052 16084 .178021047 Root MSE = .37536
1n_wage Coef.  Std. Err. t P>|t| [95% Conf. Intervall
grade .0724483 .0014229 50.91  0.000 .0696592 .0752374
age .1064874 .0083644 12.73  0.000 .0900922 .1228825
c.age#c.age -.0016931 .0001655 -10.23  0.000 -.0020174 -.0013688
_cons -.8681487 .1024896 -8.47  0.000 -1.06904 -.6672577

. xtgee ln_w grade age c.age#c.age, corr(indep) nmp

Iteration 1: tolerance = 8.722e-13

GEE population-averaged model Number of obs = 16085
Group variable: idcode Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: independent max = 9
Wald chi2(3) 4241.04
Scale parameter: .1408958 Prob > chi2 0.0000
Pearson chi2(16081): 2265.75 Deviance = 2265.75
Dispersion (Pearson): .1408958 Dispersion = .1408958
1n_wage Coef. Std. Err. z P>|z| [95% Conf. Intervall
grade .0724483 .0014229 50.91  0.000 .0696594 .0752372
age .1064874 .0083644 12.73  0.000 .0900935 .1228812
c.age#c.age -.0016931 .0001655 -10.23  0.000 -.0020174 -.0013688
_cons -.8681487 .1024896 -8.47  0.000 -1.069025 -.6672728

When nmp is specified, the coefficients and the standard errors produced by the estimators are the
same. Moreover, the scale parameter estimate from the xtgee command equals the MSE calculation

from regress; both are estimates of the variance of the residuals.
d

> Example 2

The identity link and Gaussian family produce regression-type models. With the independent
correlation structure, we reproduce ordinary least squares. With the exchangeable correlation structure,
we produce an equal-correlation linear regression estimator.
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xtgee, fam(gauss) link(ident) corr(exch) is asymptotically equivalent to the weighted-GLS
estimator provided by xtreg, re and to the full maximum-likelihood estimator provided by xtreg,
mle. In balanced data, xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle produce
the same results. With unbalanced data, the results are close but differ because the two estimators
handle unbalanced data differently. For both balanced and unbalanced data, the results produced by
xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle differ from those produced by
xtreg, re. Below we demonstrate the use of the three estimators with unbalanced data. We begin
with xtgee; show the maximum likelihood estimator xtreg, mle; show the GLS estimator xtreg,
re; and finally show xtgee with the vce (robust) option.

. xtgee ln_w grade age c.age#c.age, nolog

GEE population-averaged model Number of obs = 16085
Group variable: idcode Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: exchangeable max = 9
Wald chi2(3) = 2918.26

Scale parameter: .1416586 Prob > chi2 = 0.0000
1n_wage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
grade .0717731 .00211 34.02 0.000 .0676377 .0759086

age .1077645 .006885 15.65  0.000 .0942701 .1212589
c.age#c.age -.0016381 .0001362 -12.03  0.000 -.001905 -.0013712
_cons -.9480449 .0869277 -10.91  0.000 -1.11842 -.7776698
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. xtreg ln_w grade age c.age#c.age, mle

Fitting constant-only model:

Iteration O: log likelihood = -6035.2751
Iteration 1: log likelihood = -5870.6718
Iteration 2: log likelihood = -5858.9478
Iteration 3: log likelihood = -5858.8244
Iteration 4: log likelihood = -5858.8244
Fitting full model:

Iteration O: log likelihood = -4591.9241
Iteration 1: log likelihood = -4562.4406
Iteration 2: log likelihood = -4562.3526
Iteration 3: log likelihood = -4562.3525

Random-effects ML regression Number of obs = 16085

Group variable: idcode Number of groups = 3913

Random effects u_i ~ Gaussian Obs per group: min = 1

avg = 4.1

max = 9

LR chi2(3) = 2592.94

Log likelihood = -4562.3525 Prob > chi2 = 0.0000

1n_wage Coef. Std. Err. z P>|z| [95% Conf. Intervall

grade .0717747 .002142 33.51  0.000 .0675765 .075973

age .1077899 .0068266 15.79  0.000 .0944101 .1211697

c.age#c.age -.0016364 .000135 -12.12  0.000 -.0019011  -.0013718

_cons -.9500833 .086384 -11.00 0.000 -1.119393  -.7807737

/sigma_u .2689639 .0040854 .2610748 .2770915

/sigma_e .2669944 .0017113 .2636613 .2703696

rho .5036748 .0086449 .4867329 .52061

Likelihood-ratio test of sigma_u=0: chibar2(01)= 4996.22 Prob>=chibar2 = 0.000
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. xtreg ln_w grade age c.age#c.age, re

Random-effects GLS regression Number of obs = 16085
Group variable: idcode Number of groups = 3913
R-sq: within = 0.0983 Obs per group: min = 1
between = 0.2946 avg = 4.1
overall = 0.2076 max = 9
Wald chi2(3) = 2875.02
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
1n_wage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
grade .0717757 .0021666 33.13  0.000 .0675294 .0760221
age .1078042 .0068125 15.82  0.000 .0944519 .1211566
c.age#c.age -.0016355 .0001347 -12.14  0.000 -.0018996 -.0013714
_cons -.9512118 .0863139 -11.02  0.000 -1.120384  -.7820397
sigma_u .27383747
sigma_e .26624266
rho .51405959 (fraction of variance due to u_i)
. xtgee 1ln_w grade age c.age#c.age, vce(robust) nolog
GEE population-averaged model Number of obs = 16085
Group variable: idcode Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: exchangeable max = 9
Wald chi2(3) = 2031.28
Scale parameter: .1416586 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on idcode)
Semirobust
1n_wage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
grade .0717731 .0023341 30.75  0.000 .0671983 .0763479
age .1077645 .0098097 10.99  0.000 .0885379 .1269911
c.age#c.age -.0016381 .0001964 -8.34 0.000 -.002023 -.0012532
_cons -.9480449 .1195009 -7.93 0.000 -1.182262 -.7138274

In [R] regress, regress, vce(cluster clustvar) may produce inefficient coefficient estimates
with valid standard errors for random-effects models. These standard errors are robust to model
misspecification. The vce(robust) option of xtgee, on the other hand, requires that the model
correctly specify the mean.

N
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Saved results

xtgee saves the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(chi2) X2
e(p) significance
e(df _pear) degrees of freedom for Pearson x?

e(chi2_dev)
e(chi2_dis)
e(deviance)
e(dispers)

e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)
e (asbalanced)
e(asobserved)

x?2 test of deviance

x? test of deviance dispersion
deviance

deviance dispersion

e(phi) scale parameter
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(tol) target tolerance
e(dif) achieved tolerance
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) xtgee
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) distribution family
e(link) link function
e(corr) correlation structure
e(scale) x2, dev, phi, or # scale parameter
e(wtype) weight type
e (wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e (nmp) nmp, if specified

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e (V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions

e(sample)

marks estimation sample
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Methods and formulas

xtgee is implemented as an ado-file.

xtgee fits generalized linear models for panel data with the GEE approach described in Liang
and Zeger (1986). A related method, referred to as GEE2, is described in Zhao and Prentice (1990)
and Prentice and Zhao (1991). The GEE2 method attempts to gain efficiency in the estimation of
B by specifying a parametric model for o and then assumes that the models for both the mean
and dependency parameters are correct. Thus there is a tradeoff in robustness for efficiency. The
preliminary work of Liang, Zeger, and Qaqish (1992), however, indicates that there is little efficiency
gained with this alternative approach.

In the GLM approach (see McCullagh and Nelder [1989]), we assume that

hpi ) =«
Var(y; ;) = g(pi ;)¢
w,=E(y:;) = {h_l(leﬁ)a ceey h_l(meB)}T
A; = diag{g(pin), .-, 9(pin,)}
Cov(y;) = ¢A; for independent observations.

In the absence of a convenient likelihood function with which to work, we can rely on a multivariate
analog of the quasiscore function introduced by Wedderburn (1974):

m 8# T .
Sg(B; ) = - ) Var(y;)” (yi—mi) =0
3 ;(aﬁ) yi) T yi— n

We can solve for correlation parameters o by simultaneously solving

Sa(B.a) = i: <am>TH;1(Wi ) =0

(8%
i=1 9

In the GEE approach to GLM, we let R; () be a “working” correlation matrix depending on the
parameters in a (see the Correlation structures section for the number of parameters), and we estimate
3 by solving the GEE,

m T
e =3 (%) Vi@ - u =0

where V;(a) = A:/2Ri(o¢)A}/2
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To solve this equation, we need only a crude approximation of the variance matrix, which we can
obtain from a Taylor series expansion, where

Cov(y:) = LiZD,ZIL; + ¢A; =V,
L; = diag{oh~*(u)/Ou,u = m%,&j =1,...,n;}
which allows that

Di ~ (272) 7' 2L {(vi — ) (vi — )" — 6A: L' 2] (2(Z0) !

o s Wiy — liy)® — (Liy)?Z28;DiZ
¢= Z Z 9(fiis)
i=1 j=1 Hi.j
Calculating GEE for GLM
Using the notation from Liang and Zeger (1986), let y; = (Yi1,---,¥in,;) " be the n; x 1 vector
of outcome values, and let X; = (2,1, ... @imi)T be the n; X p matrix of covariate values for the
tth subject ¢ = 1, ..., m. We assume that the marginal density for y; ; may be written in exponential

family notation as

f(yi,5) = exp [{yi,;0:,; — a0i5) + b(yi,;)} 6]

where 6, ; = h(n;,;),m:,; = ®; ;0. Under this formulation, the first two moments are given by
B(yig) = a'(0i5),  Var(yi;) = a”(6:;)/¢

In what follows, we let n; = n without loss of generality. We define the quantities, assuming that
we have an n x n working correlation matrix R(a),

A; = diag(db; j/dn; ;) n x n matrix

A, = diag{a"(0; )} n X n matrix

Si=yi—ad(8;) n x 1 matrix
D, = A, AX; n X p matrix
V,; = Ai/QR(a)Ag/Q n X n matrix
such that the GEE becomes .
> DIv's; =
i=1

We then have that
m -1 m
R NI OLYCA B pOLE R TERY

where the term
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is what we call the conventional variance estimate. It is used to calculate the standard errors if
the vce(robust) option is not specified. This command supports the clustered version of the
Huber/White/sandwich estimator of the variance with panels treated as clusters when vce (robust)
is specified. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.
Liang and Zeger (1986) also discuss the calculation of the robust variance estimator.

Define the following:

D= (Df,...,D})
S=(s],...,sHT

V = nm X nm block diagonal matrix with \Z
Z=Dp-S

At a given iteration, the correlation parameters c and scale parameter ¢ can be estimated from the
current Pearson residuals, defined by

Pig = {yig — d'(0:)}/{a" (0:,;)}/?

where 0; ; depends on the current value for 3. We can then estimate ¢ by

51 =33 72N - p)

i=1 j=1

As this general derivation is complicated, let’s follow the derivation of the Gaussian family with
the identity link (regression) to illustrate the generalization. After making appropriate substitutions,
we will see a familiar updating equation. First, we rewrite the updating equation for 3 as

~ ~

/6j+1 = /8]' - Z1_1Z2

and then derive Z; and Zs.

m

Z, =Y DI@)V'(B)Di(B;) = > XTATAT{A*R(a)A}*} 1A, AX;
=1

i=1
= i XT diag {
i=1

00, ;
diag {a” (0; ;) } diag { 8(Xg) } X

= > XTI IX; = Y XX =XTX

i=1 i=1

8072.,]' . " . " 1/2 . ” 1/2 1
(’)(Xﬁ)}dlag {a"(6;;)} [dmg{a (0:,)} " R(e) diag {a” (6, ;)} }
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Z,=> DI (B)V;'(B)SiB)) = > XIATAT{A]*R(@)A]*}" (vi - X.B;)
=1 i=1

1

= Z X! diag { 8??&;3) } diag {a"(0; )} [diag ~{(1”(91-J-)]~1/2 R(a) diag {a”(@iﬁj)}l/ﬂ -
i1

(v x5)
m m
=Y XTIy - XiB) = Y X[ (yi — Xi8)) = X",
=1 i=1
So, we may write the update formula as
Bin =B - (XTX)7XT5;

which is the same formula for GLS in regression.

Correlation structures

The working correlation matrix R is a function of a and is more accurately written as R(c).
Depending on the assumed correlation structure, c¢ might be

Independent no parameters to estimate
Exchangeable « is a scalar
Autoregressive o is a vector
Stationary o is a vector
Nonstationary « is a matrix
Unstructured o 1S a matrix

Also, throughout the estimation of a general unbalanced panel, it is more proper to discuss R;, which
is the upper left n; X n; submatrix of the ultimately saved matrix in e(R), max{n;} x max{n;}.

The only panels that enter into the estimation for a lag-dependent correlation structure are those
with n; > g (assuming a lag of g). xtgee drops panels with too few observations (and mentions
when it does so).

Independent

The working correlation matrix R is an identity matrix.

Exchangeable

o =

doimy Ani(ni — 1)} o ng

and the working correlation matrix is given by

1 s=t
R, — { .
8t o otherwise

S (0 SR P — 5, 7)) /2?11 (Zye72)
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Autoregressive and stationary

These two structures require g parameters to be estimated so that « is a vector of length g + 1
(the first element of « is 1).

m [ A2 ni—ln o ni—g o o mo§ 2
o — Z 23:1 Tij Zj:l 74,574,541 Zj:l T4,574,549 Z Zj:l T
- b b AR b
i=1 i i T i=1 T

The working correlation matrix for the AR model is calculated as a function of Toeplitz matrices
formed from the o vector; see Newton (1988). The working correlation matrix for the stationary
model is given by
R., = {041,\54\ if |s —.t| <y
’ 0 otherwise

Nonstationary and unstructured

These two correlation structures require a matrix of parameters. « is estimated (where we replace
7i,; = 0 whenever ¢ > n; or j > n;) as

—1~2 —1a —1a
N1,17"i,1 N1,2 Tiiri2 o Nl,nTz.,lTw
m —ln 2 —122 —1x = m n; 2
Ny Tiorin Ny Ty Ny nTi2Tin Z_j:l Tij
a:E m E —_—
. : : - : ‘ n;
i=1 . . . . =1
71/\ A, 71/\ A. ... _1/\2
Nn,lrhnirhl N’rL,er,nirl,2 Nn,nri,n

where N, , = >.7", I(i,p,q) and

I(i,p,q) = { 1 if panel ¢ has valid observations at times p and q
e 0 otherwise

where N;; = min(N;,N;), N; = number of panels observed at time 4, and n =
max(ny,ng, ..., M)

The working correlation matrix for the nonstationary model is given by

1 if s=t
Rit=1 a,; ifO<|s—t/<g
0 otherwise

The working correlation matrix for the unstructured model is given by

1 ifs=t
Rt = {as}t otherwise

such that the unstructured model is equal to the nonstationary model at lag g = n — 1, where the
panels are balanced with n; = n for all 3.
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Also see

[XT] xtgee postestimation — Postestimation tools for xtgee

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models
[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models
[XT] xtprobit — Random-effects and population-averaged probit models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models
[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[MI] estimation — Estimation commands for use with mi estimate

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands



Title

xtgee postestimation — Postestimation tools for xtgee

Description

The following postestimation command is of special interest after xtgee:

Command

Description

estat wcorrelation

estimated matrix of the within-group correlations

For information about estat wcorrelation, see below.

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat wcorrelation displays the estimated matrix of the within-group correlations.

Syntax for predict

predict [type] newvar [zf] [in] [, statistic nooffset]

142
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statistic Description
Main
mu predicted value of depvar; considers the offset () or exposure(); the default
rate predicted value of depvar
pr(n) probability Pr(y; = n) for family(poisson) link(log)
pr(a,b) probability Pr(a < y; < b) for family(poisson) link(log)
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to x;3
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

mu, the default, and rate calculate the predicted value of depvar. mu takes into account the offset ()
or exposure() together with the denominator if the family is binomial; rate ignores those
adjustments. mu and rate are equivalent if you did not specify offset () or exposure() when
you fit the xtgee model and you did not specify family(binomial #) or family(binomial
varname) , meaning the binomial family and a denominator not equal to one.

Thus mu and rate are the same for family(gaussian) link(identity).

mu and rate are not equivalent for family(binomial pop) link(logit). Then mu would
predict the number of positive outcomes and rate would predict the probability of a positive
outcome.

mu and rate are not equivalent for family(poisson) link(log) exposure(time). Then mu
would predict the number of events given exposure time and rate would calculate the incidence
rate—the number of events given an exposure time of 1.

pr(n) calculates the probability Pr(y; = n) for family(poisson) link(log), where n is a
nonnegative integer that may be specified as a number or a variable.

pr(a,b) calculates the probability Pr(a < y; < b) for family(poisson) link(log), where a and
b are nonnegative integers that may be specified as numbers or variables;

b missing (b > .) means +00;

pr(20,.) calculates Pr(y; > 20);

pr(20,b) calculates Pr(y; > 20) in observations for which b > . and calculates
Pr(20 < y; < b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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score calculates the equation-level score, u; = Oln L;j(x;3)/0(x;03).

nooffset is relevant only if you specified offset(varname),

Syntax for estat wcorrelation

estat wcorrelation [, compact ;ormat(%fmt)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat wcorrelation

compact specifies that only the parameters (alpha) of the estimated matrix of within-group correlations

be displayed rather than the entire matrix.

format (% fimt) overrides the display format; see [D] format.

Remarks

> Example 1

xtgee can estimate rich correlation structures. In example 2 of [XT] xtgee, we fit the model

. use http://www.stata-press.com/data/ri12/nlswork2
Young Women 14-26 years of age in 1968)

(National Longitudinal Survey.

. xtgee ln_w grade age c.age#c.age
(output omitted )

exposure (varname), fam-
ily(binomial #), or family(binomial varname) when you fit the model. It modifies the
calculations made by predict so that they ignore the offset or exposure variable and the binomial
denominator. Thus predict ..., munooffset produces the same results as predict ..., rate.

After estimation, estat wcorrelation reports the working correlation matrix R:

. estat wcorrelation

Estimated within-idcode correlation matrix R:

cl c2 c3 c4 cb c6
rl 1
r2 .4851356 1
r3 .4851356 .4851356 1
rd .4851356 .4851356 .4851356 1
r5 .4851356 .4851356 .4851356 .4851356 1
r6 .4851356 .4851356 .4851356 .4851356 .4851356 1
r7 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
r8 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
r9 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
c7 c8 c9
r7 1
r8 .4851356 1
r9 .4851356 .4851356 1
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The equal-correlation model corresponds to an exchangeable correlation structure, meaning that
the correlation of observations within person is a constant. The working correlation estimated by
xtgee is 0.4851. (xtreg, re, by comparison, reports 0.5140.) We constrained the model to have
this simple correlation structure. What if we relaxed the constraint? To go to the other extreme,
let’s place no constraints on the matrix (other than its being symmetric). We do this by specifying
correlation(unstructured), although we can abbreviate the option.

. xtgee 1ln_w grade age c.age#c.age, corr(unstr) nolog

GEE population-averaged model Number of obs = 16085
Group and time vars: idcode year Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: unstructured max = 9
Wald chi2(3) = 2405.20

Scale parameter: .1418513 Prob > chi2 = 0.0000
1n_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]
grade .0720684 .002151 33.50 0.000 .0678525 .0762843

age .1008095 .0081471 12.37  0.000 .0848416 .1167775
c.age#c.age -.0015104 .0001617 -9.34 0.000 -.0018272 -.0011936
_cons -.8645484 .1009488 -8.56  0.000 -1.062404 -.6666923

. estat wcorrelation

Estimated within-idcode correlation matrix R:

cl c2 c3 c4 cb c6
rl 1
r2 .4354838 1
r3 .4280248 .5597329 1
rd .3772342 .5012129 .5475113 1
r5 .4031433 .5301403 .502668 .6216227 1
r6 .3663686 .4519138 .4783186 .5685009 .7306005 1
r7 .2819915 .3605743 .3918118 .4012104 .4642561 .50219
r8 .3162028 .3445668 .4285424 .4389241 .4696792 .5222537
r9 .2148737 .3078491 .3337292 .3584013 .4865802 .4613128
c7 c8 c9
r7 1
r8 .6475654 1
r9 .5791417 .7386595 1

This correlation matrix looks different from the previously constrained one and shows, in particular,
that the serial correlation of the residuals diminishes as the lag increases, although residuals separated
by small lags are more correlated than, say, AR(1) would imply.

4

> Example 2

In example 1 of [XT] xtprobit, we showed a random-effects model of unionization using the union
data described in [XT] xt. We performed the estimation using xtprobit but said that we could have
used xtgee as well. Here we fit a population-averaged (equal correlation) model for comparison:
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. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. Xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)

Iteration 1: tolerance = .12544249
Iteration 2: tolerance = .0034686
Iteration 3: tolerance = .00017448
Iteration 4: tolerance = 8.382e-06
Iteration 5: tolerance = 3.997e-07

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12
Wald chi2(6) = 242.57
Scale parameter: 1 Prob > chi2 = 0.0000
union Coef. Std. Err. z P>|z| [95% Conf. Intervall
age .0089699 .0053208 1.69 0.092 -.0014586 .0193985
grade .0333174 .0062352 5.34 0.000 .0210966 .0455382
1.not_smsa -.0715717 .027543 -2.60 0.009 -.12565651  -.0175884
1.south -1.017368 .207931 -4.89 0.000 -1.424905 -.6098308
year -.0062708 .0055314 -1.13  0.257 -.0171122 .0045706
south#c.year
1 .0086294 .00258 3.34 0.001 .0035727 .013686
_cons -.8670997 .294771 -2.94 0.003 -1.44484  -.2893592
Let’s look at the correlation structure and then relax it:
. estat wcorrelation, format(%8.4f)
Estimated within-idcode correlation matrix R:
cl c2 c3 c4 cb c6 c7
ri 1.0000
r2 0.4615 1.0000
r3 0.4615 0.4615 1.0000
r4 0.4615 0.4615 0.4615 1.0000
r5 0.4615 0.4615 0.4615 0.4615 1.0000
r6 0.4615 0.4615 0.4615 0.4615 0.4615 1.0000
r7 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 1.0000
r8 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
r9 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
ri0 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
ril 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
ri2 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
c8 c9 c10 ci1 cl2
r8 1.0000
r9 0.4615 1.0000
ri0 0.4615 0.4615 1.0000
ri1 0.4615 0.4615 0.4615 1.0000
ri2 0.4615 0.4615 0.4615 0.4615 1.0000

We estimate the fixed correlation between observations within person to be 0.4615. We have many
data (an average of 5.9 observations on 4,434 women), so estimating the full correlation matrix is
feasible. Let’s do that and then examine the results:
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. Xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)

> corr(unstr) nolog

GEE population-averaged model Number of obs = 26200
Group and time vars: idcode year Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: unstructured max = 12
Wald chi2(6) = 198.45
Scale parameter: 1 Prob > chi2 = 0.0000
union Coef. Std. Err. z P>|z| [95% Conf. Intervall
age .0096612 .0053366 1.81  0.070 -.0007984 .0201208
grade .0352762 .0065621 5.38 0.000 .0224148 .0481377
1.not_smsa -.093073 .0291971 -3.19 0.001 -.1502983 -.0358478
1.south -1.028526 .278802 -3.69 0.000 -1.574968  -.4820839
year -.0088187 .005719 -1.54 0.123 -.0200278 .0023904
south#c.year
1 .0089824 .0034865 2.568 0.010 .002149 .0158158
_cons -.7306192 .316757 -2.31 0.021 -1.351451 -.109787
. estat wcorrelation, format(%8.4f)
Estimated within-idcode correlation matrix R:
cl c2 c3 c4 cb c6 c7
rl 1.0000
r2 0.6667 1.0000
r3 0.6151 0.6523 1.0000
r4 0.5268 0.5717 0.6101 1.0000
r5 0.3309 0.3669 0.4005 0.4783 1.0000
r6 0.3000 0.3706 0.4237 0.4562 0.6426 1.0000
r7 0.2995 0.3568 0.3851 0.4279 0.4931 0.6384 1.0000
r8 0.2759 0.3021 0.3225 0.3751 0.4682 0.5597 0.7009
r9 0.2989 0.2981 0.3021 0.3806 0.4605 0.5068 0.6090
r10 0.2285 0.2597 0.2748 0.3637 0.3981 0.4909 0.5889
ri1 0.2325 0.2289 0.2696 0.3246 0.3551 0.4426 0.5103
ri2 0.2359 0.2351 0.2544 0.3134 0.3474 0.3822 0.4788
c8 c9 c10 cli1 cl2
r8 1.0000
r9 0.6714 1.0000
r10 0.5973 0.6325 1.0000
ri1 0.5625 0.5756 0.5738 1.0000
ri2 0.4999 0.5412 0.5329 0.6428 1.0000

As before, we find that the correlation

than an AR(1) process.

> Example 3

of residuals decreases as the lag increases, but more slowly

d

In this example, we examine injury incidents among 20 airlines in each of 4 years. The data are
fictional, and, as a matter of fact, are really from a random-effects model.
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. use http://www.stata-press.com/data/r12/airacc
. generate lnpm = ln(pmiles)

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 80
Group variable: airline Number of groups = 20
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: exchangeable max = 4
Wald chi2(1) = 5.27

Scale parameter: 1 Prob > chi2 = 0.0217
i_cnt IRR  Std. Err. z P>|z| [95% Conf. Intervall

inprog .9059936 .0389528 -2.30 0.022 .8327758 .9856487

_cons .0080065 .0002912 -132.71  0.000 .0074555 .0085981

lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .4606406 1
r3 .4606406 .4606406 1
r4 .4606406 .4606406 .4606406 1

Now there are not really enough data here to reliably estimate the correlation without any constraints
of structure, but here is what happens if we try:

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) corr(unstr) nolog

GEE population-averaged model Number of obs = 80
Group and time vars: airline time Number of groups = 20
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: unstructured max = 4
Wald chi2(1) = 0.36

Scale parameter: 1 Prob > chi2 = 0.5496
i_cnt IRR  Std. Err. z P>|z| [95% Conf. Intervall

inprog .9791082 .0345486 -0.60 0.550 .9136826 1.049219

_cons .0078716 .0002787 -136.82  0.000 .0073439 .0084373

lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .5700298 1
r3 .716356 .4192126 1
rd .2383264 .3839863 .3521287 1

There is no sensible pattern to the correlations.

We created this dataset from a random-effects Poisson model. We reran our data-creation program
and this time had it create 400 airlines rather than 20, still with 4 years of data each. Here are the
equal-correlation model and estimated correlation structure
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. use http://www.stata-press.com/data/ri12/airacc2, clear

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1600
Group variable: airline Number of groups = 400
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: exchangeable max = 4
Wald chi2(1) = 111.80

Scale parameter: 1 Prob > chi2 = 0.0000
i_cnt IRR  Std. Err. z P>|z| [95% Conf. Intervall

inprog .8915304 .0096807 -10.57  0.000 .8727571 .9107076

_cons .0071357 .0000629 -560.57 0.000 .0070134 .0072601

1npm 1  (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
ri 1
r2 .5291707 1
r3 .5291707 .5291707 1
r4d .5291707 .5291707 .5291707 1

The following estimation results assume unstructured correlation:

. xtgee i_cnt inprog, family(poisson) corr(unstr) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1600
Group and time vars: airline time Number of groups = 400
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: unstructured max = 4
Wald chi2(1) = 113.43

Scale parameter: 1 Prob > chi2 = 0.0000
i_cnt IRR  Std. Err. z P>|z| [95% Conf. Intervall

inprog .8914155 .0096208 -10.65 0.000 .8727572 .9104728

_cons .0071402 .0000628 -561.50 0.000 .0070181 .0072645

lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .4733189 1
r3 .5240576 .5748868 1
rd .5139748 .5048895 .5840707 1

The equal-correlation model estimated a fixed correlation of 0.5292, and above we have correlations

ranging between 0.4733 and 0.5841 with little pattern in their structure.
d
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Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xtgee — Fit population-averaged panel-data models by using GEE

[U] 20 Estimation and postestimation commands
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xtgls — Fit panel-data models by using GLS

Syntax

xtgls depvar [indepvars} [lf] [ln] [weight] [, options]

options Description
Model
noconstant suppress constant term
panels(iid) use i.i.d. error structure
panels(heteroskedastic) use heteroskedastic but uncorrelated error structure
panels(correlated) use heteroskedastic and correlated error structure
corr( independent) use independent autocorrelation structure
corr(arl) use AR1 autocorrelation structure
corr(psarl) use panel-specific AR1 autocorrelation structure
@tyﬁe(calc) specify method to compute autocorrelation parameter;
see Options for details; seldom used
igls use iterated GLS estimator instead of two-step GLS estimator
force estimate even if observations unequally spaced in time
SE
nmk normalize standard error by N — k instead of N
Reporting
level (#) set confidence level; default is 1level (95)
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization
optimize_options control the optimization process; seldom used
coeflegend display legend instead of statistics

A panel variable must be specified. For correlation structures other than independent, a time variable must be
specified. A time variable must also be specified if panels(correlated) is specified. Use xtset; see
[XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by and statsby are allowed; see [U] 11.1.10 Prefix commands.

aweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Contemporaneous correlation > GLS regression with correlated disturbances
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Description

xtgls fits panel-data linear models by using feasible generalized least squares. This command
allows estimation in the presence of AR(1) autocorrelation within panels and cross-sectional correlation
and heteroskedasticity across panels.

Options
Model \

noconstant; see [R] estimation options.

panels(pdist) specifies the error structure across panels.

panels(iid) specifies a homoskedastic error structure with no cross-sectional correlation. This
is the default.

panels(heteroskedastic) specifies a heteroskedastic error structure with no cross-sectional
correlation.

panels(correlated) specifies a heteroskedastic error structure with cross-sectional correlation.
If p(c) is specified, you must also specify a time variable (use xtset). The results will be based
on a generalized inverse of a singular matrix unless 7' > m (the number of periods is greater than
or equal to the number of panels).

corr(corr) specifies the assumed autocorrelation within panels.
corr(independent) specifies that there is no autocorrelation. This is the default.

corr(arl) specifies that, within panels, there is AR(1) autocorrelation and that the coefficient of
the AR(1) process is common to all the panels. If c(arl) is specified, you must also specify a
time variable (use xtset).

corr(psarl) specifies that, within panels, there is AR(1) autocorrelation and that the coefficient
of the AR(1) process is specific to each panel. psar1 stands for panel-specific AR(1). If c(psarl)
is specified, a time variable must also be specified; use xtset.

rhotype (calc) specifies the method to be used to calculate the autocorrelation parameter:

regress regression using lags; the default

dw Durbin—Watson calculation

freg regression using leads

nagar Nagar calculation

theil Theil calculation

tscorr time-series autocorrelation calculation

All the calculations are asymptotically equivalent and consistent; this is a rarely used option.

igls requests an iterated GLS estimator instead of the two-step GLS estimator for a nonautocorrelated
model or instead of the three-step GLS estimator for an autocorrelated model. The iterated GLS
estimator converges to the MLE for the corr (independent) models but does not for the other
corr () models.

force; see [R] estimation options.

[SE |

nmk specifies that standard errors be normalized by N — k, where k is the number of parameters
estimated, rather than IV, the number of observations. Different authors have used one or the other
normalization. Greene (2012, 280) remarks that whether a degree-of-freedom correction improves
the small-sample properties is an open question.

N
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Reporting

level (#); see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

Optimization

optimize_options control the iterative optimization process. These options are seldom used.

iterate (#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1le-7) is the default.

nolog suppresses display of the iteration log.

The following option is available with xtgls but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction

Heteroskedasticity across panels

Correlation across panels (cross-sectional correlation)
Autocorrelation within panels

Introduction

Information on GLS can be found in Greene (2012), Maddala and Lahiri (2006), Davidson and
MacKinnon (1993), and Judge et al. (1985).

If you have many panels relative to periods, see [XT] xtreg and [XT] xtgee. xtgee, in particular,
provides capabilities similar to those of xtgls but does not allow cross-sectional correlation. On the
other hand, xtgee allows a richer description of the correlation within panels as long as the same
correlations apply to all panels. xtgls provides two unique features:

1. Cross-sectional correlation may be modeled (panels(correlated)).
2. Within panels, the AR(1) correlation coefficient may be unique (corr(psari)).

xtgls allows models with heteroskedasticity and no cross-sectional correlation, but, strictly
speaking, xtgee does not. xtgee with the vce(robust) option relaxes the assumption of equal
variances, at least as far as the standard error calculation is concerned.

Also, xtgls, panels(iid) corr(independent) nmk is equivalent to regress.
The nmk option uses n — k rather than n to normalize the variance calculation.

To fit a model with autocorrelated errors (corr(arl) or corr(psaril)), the data must be equally
spaced in time. To fit a model with cross-sectional correlation (panels(correlated)), panels must
have the same number of observations (be balanced).
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The equation from which the models are developed is given by

Yir = Xt + €54

where ¢ = 1,...,m is the number of units (or panels) and ¢t = 1, ..., T; is the number of observations
for panel 7. This model can equally be written as
Y1 X1 €1
y2 X2 €9
. = . B+
Ym Xn €m

The variance matrix of the disturbance terms can be written as

o118211 0128212 o1,m$21m
02,1922 1

, 0228229 -+ Oy mS2om
Elee'| = 2= ) ) ) )

Um,lgm,l Um,2nm,2 Um,mnm,m

For the £2; ; matrices to be parameterized to model cross-sectional correlation, they must be square
(balanced panels).

In these models, we assume that the coefficient vector 3 is the same for all panels and consider a
variety of models by changing the assumptions on the structure of f2.

For the classic OLS regression model, we have

E[em] = 0
Var[e; ;] = o2
=0

Covlei, € 5] ift#£sori#j

This amounts to assuming that {2 has the structure given by

o1 0 0

0 oI 0
0= ) :

0 0 - o021

whether or not the panels are balanced (the O matrices may be rectangular). The classic OLS assumptions
are the default panels(iid) and corr(independent) options for this command.

Heteroskedasticity across panels

In many cross-sectional datasets, the variance for each of the panels differs. It is common to have

data on countries, states, or other units that have variation of scale. The heteroskedastic model is
specified by including the panels (heteroskedastic) option, which assumes that
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ol 0 0

0 o3I 0

2= . )
0 0 o2 1

> Example 1

Greene (2012, 1112) reprints data in a classic study of investment demand by Grunfeld and
Griliches (1960). Below we allow the variances to differ for each of the five companies.

. use http://www.stata-press.com/data/r12/invest2
. xtgls invest market stock, panels(hetero)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: heteroskedastic

Correlation: no autocorrelation
Estimated covariances = 5 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 865.38
Prob > chi2 = 0.0000
invest Coef. Std. Err. z P>zl [95% Conf. Intervall]
market .0949905 .007409 12.82 0.000 .0804692 .1095118
stock .3378129 .0302254 11.18 0.000 .2785722 .3970535
_cons -36.2537 6.124363 -5.92 0.000 -48.25723 -24.25017

Correlation across panels (cross-sectional correlation)

We may wish to assume that the error terms of panels are correlated, in addition to having different
scale variances. The variance structure is specified by including the panels(correlated) option
and is given by

U%I 0121 s UlﬂnI
0111 U%I R UgﬂnI
n:
2
UnhlI UWLQI s 0n11

Because we must estimate cross-sectional correlation in this model, the panels must be balanced
(and T' > m for valid results). A time variable must also be specified so that xtgls knows how the
observations within panels are ordered. xtset shows us that this is true.

> Example 2

. Xtset
panel variable: company (strongly balanced)
time variable: time, 1 to 20
delta: 1 unit
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. xtgls invest market stock, panels(correlated)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 1285.19
Prob > chi2 = 0.0000
invest Coef. Std. Err. z P>|z| [95% Conf. Intervall]
market .0961894 .0054752 17.57 0.000 .0854583 .1069206
stock .3095321 .0179851 17.21 0.000 .2742819 .3447822
_cons -38.36128 5.344871 -7.18 0.000 -48.83703 -27.88552

The estimated cross-sectional covariances are stored in e (Sigma).

. matrix list e(Sigma)
symmetric e(Sigma) [5,5]
_ee _ee2 _ee3 _eed _eeb
_ee 9410.9061
_ee2 -168.04631 755.85077
_ee3 -1915.9538 -4163.3434 34288.49
_eed -1129.2896 -80.381742 2259.3242 633.42367
_eeb 258.50132 4035.872 -27898.235 -1170.6801 33455.511

> Example 3

We can obtain the MLE results by specifying the igls option, which iterates the GLS estimation
technique to convergence:

. xtgls invest market stock, panels(correlated) igls

Iteration 1: tolerance = .2127384

Iteration 2: tolerance = .22817
(output omitted )

Iteration 1046: tolerance = 1.000e-07

Cross-sectional time-series FGLS regression
Coefficients: generalized least squares

Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 558.51
Log likelihood = -515.4222 Prob > chi2 = 0.0000
invest Coef. Std. Err. z P>|z| [95% Conf. Intervall
market .023631 .004291 5.51 0.000 .0152207 .0320413
stock .1709472 .0152526 11.21 0.000 .1410526 .2008417
_cons -2.216508 1.958845 -1.13 0.258 -6.055774 1.622759

Here the log likelihood is reported in the header of the output.
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Autocorrelation within panels

The individual identity matrices along the diagonal of {2 may be replaced with more general
structures to allow for serial correlation. xtgls allows three options so that you may assume a
structure with corr(independent) (no autocorrelation); corr(aril) (serial correlation where the
correlation parameter is common for all panels); or corr(psarl) (serial correlation where the
correlation parameter is unique for each panel).

The restriction of a common autocorrelation parameter is reasonable when the individual correlations
are nearly equal and the time series are short.

If the restriction of a common autocorrelation parameter is reasonable, this allows us to use more
information in estimating the autocorrelation parameter to produce a more reasonable estimate of the
regression coefficients.

When you specify corr(arl) or corr(psarl), the iterated GLS estimator does not converge to
the MLE.

> Example 4

If corr(arl) is specified, each group is assumed to have errors that follow the same AR(1)
process; that is, the autocorrelation parameter is the same for all groups.

. xtgls invest market stock, panels(hetero) corr(arl)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: heteroskedastic

Correlation:  common AR(1) coefficient for all panels (0.8651)
Estimated covariances = 5 Number of obs = 100
Estimated autocorrelations = 1 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 119.69
Prob > chi2 = 0.0000
invest Coef. Std. Err. z P>|z| [95% Conf. Intervall
market .0744315 .0097937 7.60 0.000 .0552362 .0936268
stock .2874294 .0475391 6.05 0.000 .1942545 .3806043
_cons -18.96238  17.64943 -1.07 0.283 -53.55464 15.62987
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> Example 5

If corr(psarl) is specified, each group is assumed to have errors that follow a different AR(1)
process.
. xtgls invest market stock, panels(iid) corr(psari)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: homoskedastic
Correlation:  panel-specific AR(1)
Estimated covariances 1 Number of obs = 100
Estimated autocorrelations = 5 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 252.93
Prob > chi2 = 0.0000
invest Coef. Std. Err. z P>|z| [95% Conf. Intervall
market .0934343 .0097783 9.56 0.000 .0742693 .1125993
stock .3838814 .0416775 9.21 0.000 .302195 .4655677
_cons -10.1246 34.06675 -0.30 0.766 -76.8942 56.64499
d
Saved results
xtgls saves the following in e():
Scalars
e() number of observations
e(N_g) number of groups
e(N_t) number of periods
e(N_miss) number of missing observations
e(n_cf) number of estimated coefficients
e(n_cv) number of estimated covariances
e(n_cr) number of estimated correlations
e(df _pear) degrees of freedom for Pearson x?
e(1D) log likelihood
e(chi2) X2
e(df) degrees of freedom
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(rank) rank of e (V)

e(rc) return code
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Macros
e(cmd) xtgls
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(coefftype) estimation scheme
e(corr) correlation structure
e(vt) panel option
e(rhotype) type of estimated correlation
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model x? test
e(rho) P
e(properties) bV
e(predict) program used to implement predict

e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Sigma) 3 matrix

e(\) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

Methods and formulas
xtgls is implemented as an ado-file.

The GLS results are given by

Bos = (X' 'X)'X'2 'y
Var(Brs) = (X'2 X) !

For all our models, the 2 matrix may be written in terms of the Kronecker product:
'Q = mem ® I’TI XT,;

The estimated variance matrix is obtained by substituting the estimator 3 for 3, where

a €'€;
WS
The residuals used in estimating 3 are first obtained from OLS regression. If the estimation is iterated,
residuals are obtained from the last fitted model.

Maximum likelihood estimates may be obtained by iterating the FGLS estimates to convergence
for models with no autocorrelation, corr (independent).

The GLS estimates and their associated standard errors are calculated using > 1. As Beck and
Katz (1995) point out, the X matrix is of rank at most min(7,m) when you use the pan-
els(correlated) option. For the GLS results to be valid (not based on a generalized inverse), T’
must be at least as large as m, as you need at least as many period observations as there are panels.
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Beck and Katz (1995) suggest using OLS parameter estimates with asymptotic standard errors that
are corrected for correlation between the panels. This estimation can be performed with the xtpcse
command; see [XT] xtpcse.
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Title

xtgls postestimation — Postestimation tools for xtgls

Description

The following postestimation commands are available after xtgls:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat! AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
lrtest? likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

L AIC and BIC are available only if igls and corr(independent) were specified at estimation.

2 Likelihood-ratio tests are available only if igls and corr(independent) were specified at estimation.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict [type] newvar [lf] [in] [, xb stdp}

These statistics are available both in and out of sample; type predict ...

if e(sample) ... if wanted only for

the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Main

Options for predict

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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Also see
[XT] xtgls — Fit panel-data models by using GLS

[U] 20 Estimation and postestimation commands



Title

xthtaylor — Hausman-Taylor estimator for error-components models

Syntax
xthtaylor depvar indepvars [zf] [in] [weighz} , endog (varlist) [options}

options Description

Main
noconstant suppress constant term

* endog (varlist) explanatory variables in indepvars to be treated as endogenous
constant (varlist;) independent variables that are constant within panel
varying (varlisty,) independent variables that are time varying within panel
amacurdy fit model based on Amemiya and MaCurdy estimator

SE
vce (veetype) vecetype may be conventional, bootstrap, or jackknife

Reporting
level (#) set confidence level; default is level (95)
small report small-sample statistics

*endog (varlist) is required.

A panel variable must be specified. For xthtaylor, amacurdy, a time variable must also be specified. Use xtset;
see [XT] xtset.

depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

iweights and fweights are allowed unless the amacurdy option is specified. Weights must be constant within
panel; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Hausman-Taylor regression (RE)

Description

xthtaylor fits panel-data random-effects models in which some of the covariates are correlated
with the unobserved individual-level random effect. The estimators, originally proposed by Hausman
and Taylor (1981) and by Amemiya and MaCurdy (1986), are based on instrumental variables. By
default, xthtaylor uses the Hausman—Taylor estimator. When the amacurdy option is specified,
xthtaylor uses the Amemiya—MaCurdy estimator.

Although the estimators implemented in xthtaylor and xtivreg (see [XT] xtivreg) use the
method of instrumental variables, each command is designed for different problems. The estimators
implemented in xtivreg assume that a subset of the explanatory variables in the model are correlated
with the idiosyncratic error €;;. In contrast, the Hausman—Taylor and Amemiya—MaCurdy estimators
that are implemented in xthtaylor assume that some of the explanatory variables are correlated
with the individual-level random effects, u;, but that none of the explanatory variables are correlated
with the idiosyncratic error, €;;.
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Options
Main

~

noconstant; see [R] estimation options.

endog (varlist) specifies that a subset of explanatory variables in indepvars be treated as endogenous
variables, that is, the explanatory variables that are assumed to be correlated with the unobserved
random effect. endog() is required.

constant (varlisty;) specifies the subset of variables in indepvars that are time invariant, that is,
constant within panel. By using this option, you assert not only that the variables specified in
varlisty; are time invariant but also that all other variables in indepvars are time varying. If this
assertion is false, xthtaylor does not perform the estimation and will issue an error message.
xthtaylor automatically detects which variables are time invariant and which are not. However,
users may want to check their understanding of the data and specify which variables are time
invariant and which are not.

varying (varlisty,) specifies the subset of variables in indepvars that are time varying. By using
this option, you assert not only that the variables specified in varlisty, are time varying but also
that all other variables in indepvars are time invariant. If this assertion is false, xthtaylor does
not perform the estimation and issues an error message. xthtaylor automatically detects which
variables are time varying and which are not. However, users may want to check their understanding
of the data and specify which variables are time varying and which are not.

amacurdy specifies that the Amemiya—MaCurdy estimator be used. This estimator uses extra instru-
ments to gain efficiency at the cost of additional assumptions on the data-generating process. This
option may be specified only for samples containing balanced panels, and weights may not be
specified. The panels must also have a common initial period.

[SE]

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for this
Hausman-Taylor model.

Reporting
level (#); see [R] estimation options.
small specifies that the p-values from the Wald tests in the output and all subsequent Wald tests

obtained via test use t and F distributions instead of the large-sample normal and x? distributions.
By default, the p-values are obtained using the normal and 2 distributions.

Remarks

If you have not read [XT] xt, please do so.

Consider a random-effects model of the form
Vit = X14tB1 + Xoit By + 2101 + Zig;i02 + i + €44

where

X1+ is a 1 x Ky vector of observations on exogenous, time-varying variables assumed to be
uncorrelated with p; and €;;;
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Xoi is a 1 x ko vector of observations on endogenous, time-varying variables assumed to be
(possibly) correlated with p; but orthogonal to €;4;

Zy; is a 1 x g7 vector of observations on exogenous, time-invariant variables assumed to be
uncorrelated with p; and €;4;

Zs; is a 1 x go vector of observations on endogenous, time-invariant variables assumed to be
(possibly) correlated pu; but orthogonal to €;;

W; is the unobserved, panel-level random effect that is assumed to have zero mean and finite

variance O'i and to be independently and identically distributed (i.i.d.) over the panels;

€;¢ 1s the idiosyncratic error that is assumed to have zero mean and finite variance 062 and to be
1.1.d. over all the observations in the data;

B, 85,01, and &2 are k1 X 1, ko X 1, g1 X 1, and g X 1 coefficient vectors, respectively; and
i =1,...,n, where n is the number of panels in the sample and, for each 7, t = 1,...,T;.

Because Xo;; and Zo; may be correlated with p;, the simple random-effects estimators—xtreg,
re and xtreg, mle—are generally not consistent for the parameters in this model. Because the within
estimator, xtreg, fe, removes the ;; by mean-differencing the data before estimating 3; and 3,, it
is consistent for these parameters. However, in the process of removing the p;, the within estimator
also eliminates the Zi; and the Zs;. Thus it cannot estimate §; nor do. The Hausman—Taylor and
Amemiya—MaCurdy estimators implemented in xthtaylor are designed to resolve this problem.

The within estimator con51stently estimates 3; and (3,. Using these estimates, we can obtain the

thhm residuals, called d Intermediate, albeit consistent, estimates of d; and d5—called 611\/ and
dor1v, respectively—are obtained by regressing the within residuals on Z1; and Zo;, using X1;; and
Z1; as instruments. The order condition for identification requires that the number of variables in
X14t, k1, be at least as large as the number of elements in Zs;, go and that there be sufficient
correlation between the instruments and Zs; to avoid a weak-instrument problem.

The within estimates of 3; and 35 and the intermediate estimates d1ry and dory can be used to
obtain sets of within and overall residuals. These two sets of residuals can be used to estimate the
variance components (see Methods and formulas for details).

The estimated variance components can then be used to perform a GLS transform on each of the
variables. For what follows, define the general notation w;; to represent the GLS transform of the
variable w;;, W; to represent the within-panel mean of w;;, and w;; to represent the within transform
of w;;. With this notational convention, the Hausman—Taylor (1981) estimator of the coefficients of
interest can be obtained by the instrumental-variables regression

Yit = Xut,@l + X2itﬂ2 + Z1i01 + Zgiy + fii + Eit (1)

using Xy, Xai, X14, Xai, and Zi1; as instruments.
7 t [ 7 [

For the instruments to be valid, this estimator requires that X;. and Z1; be uncorrelated with the
random-effect ;. More precisely, the instruments are valid when

. 1 G~
plim,, Z Xyipi =0
=1
and
1 n
plimn—m)og Z; Zyip; =0
p
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Amemiya and MaCurdy (1986) place stricter requirements on the instruments that vary within panels
to obtain a more efficient estimator. Specifically, Amemiya and MaCurdy (1986) assume that X;; is
orthogonal to y; in every period; that is, plimnﬂm% Z?:l Xyip; =0fort = 1,...,T. With this
restriction, they derive the Amemiya—MaCurdy estimator as the instrumental-variables regression of
(1) using instruments Xy, Xoi, X7;;, and Zy;. The order condition for the Amemiya—MaCurdy
estimator is now T'k; > go. xthtaylor uses the Amemiya—MaCurdy estimator when the amacurdy
option is specified.

> Example 1

This example replicates the results of Baltagi and Khanti-Akom (1990, table II, column HT) using
595 observations on individuals over 1976—1982 that were extracted from the Panel Study of Income
Dynamics (PSID). In the model, the log-transformed wage lwage is assumed to be a function of how
long the person has worked for a firm, wks; binary variables indicating whether a person lives in a
large metropolitan area or in the south, smsa and south; marital status is ms; years of education,
ed; a quadratic of work experience, exp and exp2; occupation, occ; a binary variable indicating
employment in a manufacture industry, ind; a binary variable indicating that wages are set by a union
contract, union; a binary variable indicating gender, fem; and a binary variable indicating whether
the individual is African American, blk.

We suspect that the time-varying variables exp, exp2, wks, ms, and union are all correlated
with the unobserved individual random effect. We can inspect these variables to see if they exhibit
sufficient within-panel variation to serve as their own instruments.

. use http://www.stata-press.com/data/r12/psidextract

. xtsum exp exp2 wks ms union

Variable Mean Std. Dev. Min Max Observations
exp overall 19.85378 10.96637 1 51 N 4165
between 10.79018 4 48 n 595
within 2.00024 16.85378 22.85378 T 7
exp2 overall 514.405  496.9962 1 2601 N = 4165
between 489.0495 20 2308 n = 595
within 90.44581 231.405 807.405 T = 7
wks overall 46.81152 5.129098 5 52 N = 4165
between 3.284016 31.57143 51.57143 n = 595
within 3.941881 12.2401 63.66867 T = 7
ms overall .8144058 .3888256 0 1 N = 4165
between .3686109 0 1 n = 595
within .1245274 -.0427371 1.671549 T = 7
union overall .3639856 .4812023 0 1 N = 4165
between .4543848 0 1 n = 595
within .1593351 -.4931573 1.221128 T 7

We are also going to assume that the exogenous variables occ, south, smsa, ind, fem, and blk are
instruments for the endogenous, time-invariant variable ed. The output below indicates that although
fem appears to be a weak instrument, the remaining instruments are probably sufficiently correlated
to identify the coefficient on ed. (See Baltagi and Khanti-Akom [1990] for more discussion.)
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. correlate fem blk occ south smsa ind ed
(obs=4165)

fem blk occ south smsa ind ed

fem 1.0000
blk 0.2086 1.0000
occ -0.0847 0.0837 1.0000
south 0.0516 0.1218 0.0413 1.0000
smsa 0.1044 0.1154 -0.2018 -0.1350 1.0000
ind -0.1778 -0.0475 0.2260 -0.0769 -0.0689 1.0000
-0.

ed -0.0012 1196 -0.6194 -0.1216 0.1843 -0.2365 1.0000

We will assume that the correlations are strong enough and proceed with the estimation. The
output below gives the Hausman—Taylor estimates for this model.

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed)

Hausman-Taylor estimation Number of obs = 4165
Group variable: id Number of groups = 595
Obs per group: min = 7
avg = 7
max = 7
Random effects u_i ~ i.i.d. Wald chi2(12) = 6891.87
Prob > chi2 = 0.0000
lwage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
TVexogenous
occ -.0207047 .0137809 -1.50 0.133 -.0477149 .0063055
south .0074398 .031955 0.23 0.816 -.0551908 .0700705
smsa -.0418334 .0189581 -2.21  0.027 -.0789906  -.0046761
ind .0136039 .0152374 0.89 0.372 -.0162608 .0434686
TVendogenous
exp .1131328 .002471 45.79  0.000 .1082898 .1179758
exp2 -.0004189 .0000546 -7.67 0.000 -.00052569  -.0003119
wks .0008374 .0005997 1.40 0.163 -.0003381 .0020129
ms -.0298508 .01898 -1.57 0.116 -.0670508 .0073493
union .0327714 .0149084 2.20 0.028 .0035514 .0619914
TIexogenous
fem -.1309236 .126659 -1.03 0.301 -.3791707 .1173234
blk -.2857479 .1557019 -1.84 0.066 -.5909179 .0194221
TIendogenous
ed .137944 .0212485 6.49 0.000 .0962977 .1795902
_cons 2.912726 .2836522 10.27  0.000 2.356778 3.468674
sigma_u .94180304
sigma_e .15180273
rho .97467788  (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

The estimated o, and o, are 0.9418 and 0.1518, respectively, indicating that a large fraction of the
total error variance is attributed to u;. The z statistics indicate that several the coefficients may not
be significantly different from zero. Whereas the coefficients on the time-invariant variables fem and
blk have relatively large standard errors, the standard error for the coefficient on ed is relatively
small.

Baltagi and Khanti-Akom (1990) also present evidence that the efficiency gains of the Amemiya—
MaCurdy estimator over the Hausman—Taylor estimator are small for these data. This point is especially
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important given the additional restrictions that the estimator places on the data-generating process.
The output below replicates the Baltagi and Khanti-Akom (1990) results from column AM of table II.

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed) amacurdy

Amemiya-MaCurdy estimation Number of obs = 4165

Group variable: id Number of groups = 595

Time variable: t Obs per group: min = 7

avg = 7

max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6879.20

Prob > chi2 = 0.0000

lwage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
TVexogenous

occ -.0208498 .0137653 -1.51 0.130 -.0478292 .0061297

south .0072818 .0319365 0.23 0.820 -.0553126 .0698761

smsa -.0419507 .0189471 -2.21  0.027 -.0790864  -.0048149

ind .0136289 .015229 0.89 0.371 -.0162194 .0434771
TVendogenous

exp .1129704 .0024688 45.76  0.000 .1081316 .1178093

exp2 -.0004214 .0000546 -7.72 0.000 -.0005283 -.0003145

wks .0008381 .0005995 1.40 0.162 -.0003368 .002013

ms -.0300894 .0189674 -1.59 0.113 -.0672649 .0070861

union .0324752 .0148939 2.18 0.029 .0032837 .0616667
TIexogenous

fem -.132008 .1266039 -1.04 0.297 -.380147 .1161311

blk -.2859004 .1554857 -1.84 0.066 -.5906468 .0188459
TIendogenous

ed .1372049 .0205695 6.67 0.000 .0968894 .1775205

_cons 2.927338 .2751274 10.64  0.000 2.388098 3.466578

sigma_u .94180304
sigma_e .15180273
rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Q Technical note

We mentioned earlier that insufficient correlation between an endogenous variable and the instru-
ments can give rise to a weak-instrument problem. Suppose that we simulate data for a model of the
form

Yy=3+3v1,+3x1p + 322+ 321 + 322 +u; + e

and purposely construct the instruments so that they exhibit little correlation with the endogenous
variable zs.
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. use http://www.stata-press.com/data/r12/xthtaylorl

. correlate ui zl z2 xla x1b x2 eit
(obs=10000)

ui zl z2 xla x1b x2 eit
ui 1.0000
z1 0.0268 1.0000
z2 0.8777 0.0286 1.0000
xla -0.0145 0.0065 -0.0034 1.0000
x1b 0.0026 0.0079 0.0038 -0.0030 1.0000
x2 0.8765 0.0191 0.7671 -0.0192 0.0037 1.0000
eit 0.0060 -0.0198 0.0123 -0.0100 -0.0138 0.0092 1.0000

In the output below, weak instruments have serious consequences on the estimates produced by
xthtaylor. The estimate of the coefficient on z2 is three times larger than its true value, and its
standard error is rather large. Without sufficient correlation between the endogenous variable and
its instruments in a given sample, there is insufficient information for identifying the parameter.
Also, given the results of Stock, Wright, and Yogo (2002), weak instruments will cause serious size
distortions in any tests performed.

. xthtaylor yit xla x1b x2 zl1 z2, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 10000

Group variable: id Number of groups = 1000

Obs per group: min = 10

avg = 10

max = 10

Random effects u_i ~ i.i.d. Wald chi2(5) = 24172.91

Prob > chi2 = 0.0000

yit Coef.  Std. Err. z P>|z| [95% Conf. Intervall
TVexogenous

xla 2.959736 .0330233 89.63 0.000 2.895011 3.02446

x1b 2.953891 .0333051 88.69  0.000 2.888614 3.019168
TVendogenous

x2 3.022685 .033085 91.36 0.000 2.957839 3.08753
TIexogenous

z1 2.709179 .587031 4.62 0.000 1.55862 3.859739
TIendogenous

z2 9.525973  8.572966 1.11  0.266 -7.276732 26.32868

_cons 2.837072 .4276595 6.63 0.000 1.998875 3.675269

sigma_u 8.729479
sigma_e 3.1657492
rho .88377062  (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

> Example 2

Now let’s consider why we might want to specify the constant (varlisty;) option. For this example,
we will use simulated data. In the output below, we fit a model over the full sample. Note the placement
in the output of the coefficient on the exogenous variable x1c.
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. use http://www.stata-press.com/data/r12/xthtaylor2
. xthtaylor yit xla x1b xlc x2 zl z2, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 10000

Group variable: id Number of groups = 1000

Obs per group: min = 10

avg = 10

max = 10

Random effects u_i ~ i.i.d. Wald chi2(6) = 10341.63

Prob > chi2 = 0.0000

yit Coef. Std. Err. z P>|z| [95% Conf. Intervall
TVexogenous

xla 3.023647 .0570274 63.02 0.000 2.911875 3.135418

x1b 2.966666 .0572659 51.81 0.000 2.854427 3.078905

xlc .2355318 .123502 1.91  0.057 -.0065276 .4775912
TVendogenous

x2 14.17476  3.128385 4.53 0.000 8.043234 20.30628
TIexogenous

z1 1.741709 .4280022 4.07 0.000 .9028398 2.580578
TIendogenous

z2 7.983849 .6970903 11.45 0.000 6.617577 9.350121

_cons 2.146038 .3794179 5.66 0.000 1.402393 2.889684

sigma_u 5.6787791
sigma_e 3.1806188
rho .76120931 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Now suppose that we want to fit the model using only the first eight periods. Below, x1c now
appears under the TIexogenous heading rather than the TVexogenous heading because x1c is time
invariant in the subsample defined by t<9.
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. xthtaylor yit xla x1b xlc x2 zl1 z2 if t<9, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 8000

Group variable: id Number of groups = 1000

Obs per group: min = 8

avg = 8

max = 8

Random effects u_i ~ i.i.d. Wald chi2(6) = 15354.87

Prob > chi2 = 0.0000

yit Coef.  Std. Err. z P>|z| [95% Conf. Intervall
TVexogenous

xla 3.051966 .0367026 83.15  0.000 2.98003 3.123901

x1b 2.967822 .0368144 80.62 0.000 2.895667 3.039977
TVendogenous

x2 .7361217  3.199764 0.23 0.818 -5.5353 7.007543
TIexogenous

xlc 3.215907 .5657191 5.68 0.000 2.107118 4.324696

z1 3.347644 .56819756 5.75 0.000 2.206992 4.488295
TIendogenous

z2 2.010578  1.143982 1.76  0.079 -.231586 4.252742

_cons 3.257004 .5295828 6.15 0.000 2.219041 4.294967

sigma_u 15.445594
sigma_e 3.175083
rho .95945606  (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

To prevent a variable from becoming time invariant, you can use either constant (varlist;)
or varying(varlisty,). constant (varlist;;) specifies the subset of variables in varlist that are
time invariant and requires the remaining variables in varlist to be time varying. If you specify
constant (varlist;) and any of the variables contained in varlisty; are time varying, or if any of the
variables not contained in varlist;; are time invariant, xthtaylor will not perform the estimation and
will issue an error message.

. xthtaylor yit xla x1b xlc x2 zl z2 if t<9, endog(x2 z2) constant(zl z2)
x1c not included in -constant()-.

r(198);

The same thing happens when you use the varying(varlist;,) option.
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Saved results

xthtaylor saves the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(df_r) residual degrees of freedom (small only)
e(g—_min) smallest group size
e(g—avg) average group size
e(g_max) largest group size
e(Tcon) 1 if panels balanced; O otherwise
e(sigma_u) panel-level standard deviation
e(sigma_e) standard deviation of €;4
e(chi2) X2
e(rho) p
e(F) model F (small only)
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)
Macros
e(cmd) xthtaylor
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups, amacurdy only
e(TVexogenous) exogenous time-varying variables
e(TIexogenous) exogenous time-invariant variables
e(TVendogenous) endogenous time-varying variables
e(TIendogenous) endogenous time-invariant variables
e (wtype) weight type
e (wexp) weight expression
e(title) Hausman-Taylor or Amemiya-MaCurdy
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vee ()
e(vcetype) title used to label Std. Err.
e(properties) bV
e(predict) program used to implement predict
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

Methods and formulas

xthtaylor is implemented as an ado-file.

Consider an error-components model of the form

Yit = X1ty + X2itBy + Z1i01 + Zigi02 + j1i + €5t
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for i =1,...,n and, for each i, t = 1,...,T;, of which T; periods are observed; n is the number
of panels in the sample. The covariates in X are time varying, and the covariates in Z are time
invariant. Both X and Z are decomposed into two parts. The covariates in X; and Z; are assumed
to be uncorrelated with p; and e;;, whereas the covariates in Xo and Zs are allowed to be correlated
with p; but not with €;;. Hausman and Taylor (1981) suggest an instrumental-variable estimator for
this model.

For some variable w, the within transformation of w is defined as

1 &
Wit = Wit —W;, W, = - Z Wit
t=1
Because the within estimator removes Z, the within transformation reduces the model to
Vit = X1ty + XoifBy + €3

The within estimators (1, and (3,, are consistent for 3; and 3,, but they may not be efficient. Also,
note that the within estimator cannot estimate §; and 8,.

From the within estimator, we can be obtain an estimate of the idiosyncratic error component, 062,

as
5 RSS

o
¢ N-—-n

where RSS is the residual sum of squares from the within regression and IV is the total number of
observations in the sample.

Using the results of the within estimation, we can define

dit = Yy — X1itPrw — X2itBow
where v;,, X1, and Xo;; contain the panel level means of these variables in all observations.

Regressing d;; on Zy and Zo, using X and Z; as instruments, provides intermediate, consistent
estimates of 41 and 85, which we will call 611\/ and 621\/

Using the within estimates, 511\/, and 621\;, we can obtain an estimate of the variance of the
random effect, ai. First, let

e = (yit — X1itBr — X2itBoy, — Li1it11v — ZZit62IV)

Then define ,
- Eu(nn)

Hausman and Taylor (1981) showed that, for balanced panels,

plim = chi + 02

n—)OOS
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For unbalanced panels,

plim s? = Tai + o2

n—oo

where
n

1
i T

After we plug in 862, our consistent estimate for 062, a little algebra suggests the estimate

T:

Define (9\1 as
1
~2 3
~ o
0, =1— <,\25,\2>
o; + Tio,

With 6; in hand, we can perform the standard random-effects GLS transform on each of the
variables. The transform is given by

* N —
wyy = wyy — 0;W;,
where w;_ is the within-panel mean.

We can then obtain the Hausman—Taylor estimates of the coefficients in (2) and the conventional
VCE by fitting an instrumental-variables regression of the GLS-transformed ¥}, on X7, and Z7,, with
instruments X;;, Xq;., and Z;.

We can obtain Amemiya—MaCurdy estimates of the coefficients in (2) and the conventional VCE

*

by fitting an instrumental-variables regression of the GLS-transformed 3, on X7, and Zj,, using X,

Xm, and Zi; as instruments, where )V(m = X1, X142, - .., X147;. The order condition for the
Amemiya—MaCurdy estimator is Tk; > go, and this estimator is available only for balanced panels.
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Also see

[XT] xthtaylor postestimation — Postestimation tools for xthtaylor

[XT] xtset — Declare data to be panel data

[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[U] 20 Estimation and postestimation commands


http://www.stata.com/bookstore/eapd.html
http://www.stata.com/bookstore/ceapd.html

Title

xthtaylor postestimation — Postestimation tools for xthtaylor

Description

The following postestimation commands are available after xthtaylor:

Command Description
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict [rype] newvar [zf] [m] [, statistic]

statistic Description
Main
xb Xit,g' + Zig, fitted values; the default
stdp standard error of the fitted values
ue 11; + €, the combined residual
*xbu Xit,@ + Zig + 1i;, prediction including effect
*u 1i;, the random-error component
i) €;¢, prediction of the idiosyncratic error component

Unstarred statistics are available both in and out of sample; type predict ...

if e(sample) ... if wanted

only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

Menu

Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict
Main

Is

xb, the default, calculates the linear prediction, that is, Xitﬁ + Zitg.

stdp calculates the standard error of the linear prediction.

ue calculates the prediction of [i; + €.

xbu calculates the prediction of Xit,@ + Zitg + U;, the prediction including the random effect.
u calculates the prediction of i;, the estimated random effect.

e calculates the prediction of €;;.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xthtaylor — Hausman-Taylor estimator for error-components models

[U] 20 Estimation and postestimation commands



Title

xtintreg — Random-effects interval-data regression models

Syntax

xtintreg depvariower depvarypper [indepvars] [lf] [in] [weight] [, options]

options Description
Model
noconstant suppress constant term
offset (varname) include varname in model with coefficient constrained to 1
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE
vce (veetype) vcetype may be oim, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1evel (95)
noskip perform overall model test as a likelihood-ratio test
intreg perform likelihood-ratio test against pooled model
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration
intmethod (intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod (mvaghermite)
intpoints (#) use # quadrature points; default is intpoints(12)
Maximization
maximize_options control the maximization process; see [R] maximize
coeflegend display legend instead of statistics

A panel variable must be specified; use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvariower, depvarypper, and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.

iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Censored outcomes > Interval regression (RE)
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Description

xtintreg fits a random-effects regression model whose dependent variable may be measured
as point data, interval data, left-censored data, or right-censored data. depvariower and depvarypper
represent how the dependent variable was measured.

The values in depvariower and depvarypper should have the following form:

Type of data depvariower depvarypper
point data a=la,al a
interval data [a,b] b
left-censored data (—00,b] . b
right-censored data  [a, +00) a

Options
_ [Model

noconstant, offset (varname), constraints (constraints), collinear; see [R] estimation op-
tions.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

Reporting

level(#), noskip; see [R] estimation options.

intreg specifies that a likelihood-ratio test comparing the random-effects model with the pooled
(intreg) model be included in the output.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fimt), pformat (% fmt), sformat (% fmt), and nolstretch; see [R] estimation options.

Integration

intmethod (intmethod), intpoints (#); see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

The following option is available with xtintreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

Consider the linear regression model with panel-level random effects
Yit =XaB+ v + €t

for i = 1,...,n panels, where t = 1,...,n;. The random effects, v;, are i.i.d., N(0,02), and €;
are i.i.d., N(0,0?) independently of v;. The observed data consist of the couples, (y1i¢,¥2it), such
that all that is known is that y1;; < vy < Y244, Where Y14, is possibly —oo and ys;; is possibly +o0.

> Example 1

We begin with the nlswork dataset described in [XT] xt and create two fictional dependent
variables, where the wages are instead reported sometimes as ranges. The wages have been adjusted
to 1988 dollars and have further been recoded such that some of the observations are known exactly,
some are left-censored, some are right-censored, and some are known only in an interval.

We wish to fit a random-effects interval regression model of adjusted (log) wages:

. use http://www.stata-press.com/data/r12/nlsworks
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtintreg 1ln_wagel 1ln_wage2 union age grade south##c.year occ_code, intreg

(output omitted )

Random-effects interval regression Number of obs = 19151
Group variable: idcode Number of groups = 4140
Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 4.6
max = 12
Wald chi2(7) = 2523.84
Log likelihood = -23174.355 Prob > chi2 = 0.0000
Coef. Std. Err. z P>|z| [95% Conf. Intervall
union .1441844 .0094245 15.30  0.000 .1257128 .162656
age .0104083 .0018804 5.54  0.000 .0067228 .0140939
grade .0794958 .0023469 33.87 0.000 .074896 .0840955
1.south -.3778103 .0979415 -3.86 0.000 -.5697722  -.1858485
year .0013528 .0020176 0.67 0.503 -.0026016 .0053071

south#c.year
1 .0034385 .0012105 2.84 0.005 .0010659 .005811
occ_code -.0197912 .0014094 -14.04 0.000 -.0225635 -.0170289
_cons .3791078 .1136641 3.34 0.001 .1563303 .6018853
/sigma_u .2987074 .0052697 56.68 0.000 .2883789 .309036
/sigma_e .3528109 .0030935 114.05 0.000 .3467478 .358874
rho .4175266 .0102529 .3975474 .4377211

Likelihood-ratio test of sigma_u=0: chibar2(01)= 2516.85 Prob>=chibar2 = 0.000

Observation summary: 4757 left-censored observations
4792 uncensored observations
4830 right-censored observations
4772 interval observations

The output includes the overall and panel-level variance components (labeled sigma_e and sigma_u,
respectively) together with p (labeled rho),
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2
v

=2 2
o: + o

o
p

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is
not different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of
the output. This test formally compares the pooled estimator (intreg) with the panel estimator.

4

Q Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy
depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtintreg likelihood function is calculated by Gauss—Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.

a
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Saved results

xtintreg saves the following in e():

e(converged)

Scalars
e(N) number of observations
e(N_g) number of groups
e(N_unc) number of uncensored observations
e(N_1lc) number of left-censored observations
e(N_rc) number of right-censored observations
e(N_int) number of interval observations
e(N_cd) number of completely determined observations
e(k) number of parameters
e(k_aux) number of auxiliary parameters
e(k_eq) number of equations in e (b)
e(k_eq-model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model
e(chi2) :
e(chi2_c) x? for comparison test
e(rho)
e(sigma_u) panel-level standard deviation
e(sigma_e) standard deviation of €;+
e(n_quad) number of quadrature points
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code

1 if converged, O otherwise
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e(asbalanced)
e (asobserved)

Macros
e(cmd) xtintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(ivar) variable denoting groups
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offsetl) offset
e(chi2type) Wald or LR; type of model x? test
e(chi2_ct) Wald or LR; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict

factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log

e(gradient) gradient vector

e (V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

Methods and formulas
xtintreg is implemented as an ado-file.

Assuming a normal distribution, N (0, J?,), for the random effects v;, we have the joint (unconditional
of v;) density of the observed data for the ith panel

FAWrit, v2i1)s - - s Ying, Y2in, ) [ X1i - -+ Xin, | =
oo 671/;2/205 T4

V2ro, HF(ylitvaihx'Ltﬁ‘f“l/i) dv;
- v =1
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where

(VZro.) e we=8® /@02 if (y1i) yoy) € C

P (ywaﬁ) if (Y1ie,Y2it) € L
F(y1it, Yoir, Dit) = A
1—-® (M) if (yrie, y2e) € R

Oe

P <y2ito:Ait) - P (ylit;Az‘t) if (ylitayQit) ceT

where C' is the set of noncensored observations (y1;: = y2;+ and both nonmissing), L is the set
of left-censored observations (yi;; missing and ys;; nonmissing), R is the set of right-censored
observations (y1;; nonmissing and yo;; missing ), I is the set of interval observations (y1;; < Y2t
and both nonmissing), and ®() is the cumulative normal distribution.

The panel-level likelihood I; is given by

oo e—yf/Qaf i
l; = —_— F(y1st, Y2ie, Xt B+ 1) ¢ dvs
- \/ﬂa,, {tl_[l (y1 ty Y2it e )}

o0
= / 9(yits Y2it, Tit, vi)dv;
— 00

This integral can be approximated with M -point Gauss—Hermite quadrature

— 00

0o M
/ efmzh(x)dx R~ Z wy h(ar,)
m=1
This is equivalent to
0o M
[ e Y wen {0} far)
oo m=1

., denote the quadrature weights and the a), denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods ;.

where the w*

The default approximation of the log likelihood is by adaptive Gauss—Hermite quadrature, which
approximates the panel-level likelihood with

M
L~ V26, Y whexp{(an,)?} g, Yair, wir, V25ia5, + 7ii)
m=1

where 0; and [i; are the adaptive parameters for panel i. Therefore, using the definition of
9(Y1it, Yait, Tit, V4 ), the total log likelihood is approximated by
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n M -~ ~)\2 2
~ eXP{*(ﬁaiarn + /u‘l) /ZGV}
L~ w; log | V/26; wr, exp{(a’)?
3tV 3 e {65)) Vara,
=1 m=1
ng
11 Fwait, yoir, 2B+ V26,05, + i)
t=1
where w; is the user-specified weight for panel ¢; if no weights are specified, w; = 1.

The default method of adaptive Gauss—Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for fi; and 7; by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with ;0 = 1 and fi; 0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for I; we use

M
lig = Z V26 kwi, exp{a’,)’ (it y2it, Tit, V26 k_rak, + lik—1)
m=1

Letting
Timko1 = V20, k105, + Hik_1
M .
. V28, 1w}, exp{ (ak,)? Y9 (yrie, Y2its Tits Tim k1)
Mik = Z(ﬂ',m,kq) L
m—1 i,k
and
M o
- o V20 kmawh, exp{(az,)? g (yrie, Yoit, Tits Tomk—1) - 2
Ok = Z (Ti,m,kq) Ik - (Mlk)
m=1 i

and this is repeated until fi; 5, and 7; ;, have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e—6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method (aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

—u,.2/20'2 g

e 7 v

9(Wries Yoit, Tit, Vi) = N tl;[l F(yrit, y2it, XaeB + 1)
and find «; the mode of g(y1:t, Y2it, Tit, vi). We calculate

2
Yi = T2 log{g(y1it, yait, Tit, Vi)}‘w:ai

Then

oo 2 1/2 M
/ 9(Y1it, Y2it, Tit, Vi) dvy = <> Z wy, exp{(afn)z}
m=1

— 00
1/2
2 *
g {ylitay%t; Tit, () a,, + ai}
Vi
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This adaptation is performed on the first iteration only; that is, the a; and ~y; are calculated once at
the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss—Hermite quadrature, the int-
method (ghermite) option:

L= Zwi log f{(y1i1, y2i1)s - - -, (Yrins» Y2in,)

=1

n M n;
1 i

~ Z w; 10%{ NG Z (0 H F (ylm Y2it, Xit 8 + \/50,,@;1) }
i=1 Tmm1 21

X117-~~,Xmi}

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)

can affect whether
Uz

H F(yrit, y2it, X B+ 1)

t=1

is well approximated by a polynomial. As panel size and p increase, the quadrature approximation can
become less accurate. For large p, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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Also see
[XT] xtintreg postestimation — Postestimation tools for xtintreg
[XT] quadchk — Check sensitivity of quadrature approximation
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models
[XT] xttobit — Random-effects tobit models
[R] intreg — Interval regression
[R] tobit — Tobit regression
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Title

xtintreg postestimation — Postestimation tools for xtintreg

Description

The following postestimation commands are available after xtintreg;:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict [type] newvar [zf] [in] [, statistic nooffset]

statistic Description
Main
xb linear prediction assuming a zero random effect, the default
stdp standard error of the linear prediction
stdf standard error of the linear forecast
pr0(a,b) Pr(a < y < b) assuming a zero random effect
e0(a,b) E(y | a <y < b) assuming a zero random effect
ystar0(a,b) E(y*), y* = max{a, min(y;,b)} assuming a zero random effect

These statistics are available both in and out of sample; type predict ...

if e(sample) ... if wanted only

for the estimation sample.

where a and b may be numbers or variables; a missing (¢ > .) means —oo, and b missing (b > .)
means +o00; see [U] 12.2.1 Missing values.
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Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction. It can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the
prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast. This is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress.

pr0(a,b) calculates estimates of Pr(a < y < b|x = x;,v; = 0), which is the probability that y
would be observed in the interval (a, b), given the current values of the predictors, x;;, and given
a zero random effect. In the discussion that follows, these two conditions are implied.

a and b may be specified as numbers or variable names; /b and ub are variable names;
pr0(20,30) calculates Pr(20 < y < 30);

prO(lb,ub) calculates Pr(lb < y < ub); and

pr0(20,ub) calculates Pr(20 < y < ub).

a missing (a > .) means —oo; pr0(.,30) calculates Pr(—oo < y < 30);
pr0(/b,30) calculates Pr(—oo < y < 30) in observations for which b > .
(and calculates Pr(lb < y < 30) elsewhere).

b missing (b > .) means +00; pr0(20,.) calculates Pr(4o00 > y > 20);
pr0(20,ub) calculates Pr(+o0o > y > 20) in observations for which ub > .
(and calculates Pr(20 < y < ub) elsewhere).

e0(a,b) calculates estimates of E(y|a <y < b,x = x;;,v; = 0), which is the expected value of
y conditional on y being in the interval (a,b), meaning that y is truncated. a and b are specified
as they are for pr0().

ystar0(a,b) calculates estimates of E(y*|x = x;,v; = 0), where y* = a if y < a, y* = b if
y > b, and y* = y otherwise, meaning that y* is the censored version of 4. a and b are specified
as they are for pr0().

nooffset is relevant only if you specified offset (varname) for xtintreg. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
X;¢(3 rather than x;;3 + offset;;.

Remarks

> Example 1

In example 1 of [XT] xtintreg, we fit a random-effects model of wages. Say that we want to know
how union membership status affects the probability that a worker’s wage will be “low”, where low
means a log wage that is less than the 20th percentile of all observations in our dataset. First, we
use centile to find the 20th percentile of 1n_wage:
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Now we use margins to obtain the effect of union status on the probability that the log of wages is
in the bottom 20% of women. Given the results from centile that corresponds to the log of wages
being below 1.30. We evaluate the effect for two groups: 1) women age 30 living in the south in
1988 who graduated high school, but had no more schooling, and 2) the same group of women, with

. use http://www.stata-press.com/data/r12/nlsworks
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtintreg 1n_wagel 1n_wage2 i.union age grade south##c.year, intreg
(output omitted )
. centile ln_wage, centile(20)

— Binom. Interp. —

Variable | Obs Percentile Centile [95% Conf. Intervall

1n_wage | 28534 20 1.301507 1.297063 1.308635

the exception that they are college graduates (grade=16).

. margins, dydx(union) predict(pr0(.,1.30))
> at(age=30 south=1 year=88 grade=12 union=0)
> at(age=30 south=1 year=88 grade=16 union=0)

Conditional marginal effects Number of obs = 19224
Model VCE : 0IM
Expression : Pr(ln_wagel<1.30), predict(pr0(.,1.30))
dy/dx w.r.t. 1.union
1._at : union = 0
age = 30
grade = 12
south = 1
year = 88
2._at : union = 0
age = 30
grade = 16
south = 1
year = 88
Delta-method
dy/dx  Std. Err. z P>|z| [95% Conf. Intervall
1.union
_at
1 -.0787117 .0060655 -12.98  0.000 -.0905999 -.0668235
2 -.0378758 .0036595 -10.64  0.000 -.0448523 -.0308993

Note: dy/dx for factor levels is the discrete change from the base level.

For the first group of women, according to our fitted model, being in a union lowers the probability
of being classified as a low-wage worker by almost 7.9 percentage points. Being a college graduate

attenuates this effect to just under 3.8 percentage points.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

N
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Also see

[XT] xtintreg — Random-effects interval-data regression models

[U] 20 Estimation and postestimation commands



Title

xtivreg — Instrumental variables and two-stage least squares for panel-data models

Syntax

GLS random-effects (RE) model

xtivreg depvar [varlisll] (varlisty = varlist;y,) [lf] [m] [, re RE_oplions}

Between-effects (BE) model

xtivreg depvar [varlistl] (varlisty = varlistiy) [lf] [m] , be [BE_opzions]

Fixed-effects (FE) model

xtivreg depvar [varlistl] (varlisty = varlistiy) [zf] [in] , fe [FE_()ptions]

First-differenced (FD) estimator

xtivreg depvar [varlisll] (varlisty = varlist;y,) [lf] [ln] , fd [FD_options]

RE_options Description
Model

re use random-effects estimator; the default

ec2sls use Baltagi’s EC2SLS random-effects estimator

nosa use the Baltagi—Chang estimators of the variance components

regress treat covariates as exogenous and ignore instrumental variables
SE

vce (veetype) vcetype may be conventional, bootstrap, or jackknife
Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report ¢ and F statistics instead of Z and x? statistics

theta report 6

display_options

coeflegend

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

display legend instead of statistics
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BE_options Description
Model

be use between-effects estimator

regress treat covariates as exogenous and ignore instrumental variables
SE

vce (veetype) vcetype may be conventional, bootstrap, or jackknife
Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report t and F statistics instead of Z and x? statistics

display_options

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics

FE_options Description
Model

fe use fixed-effects estimator

regress treat covariates as exogenous and ignore instrumental variables
SE

vce (veetype) vcetype may be conventional, bootstrap, or jackknife
Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report ¢ and F statistics instead of Z and x? statistics

display_options

coeflegend

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

display legend instead of statistics




192 xtivreg — Instrumental variables and two-stage least squares for panel-data models

FD_options Description
Model

noconstant suppress constant term

fd first-differenced estimator

regress treat covariates as exogenous and ignore instrumental variables
SE

vce (veetype) vcetype may be conventional, bootstrap, or jackknife
Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report ¢ and F statistics instead of Z and x? statistics

display_options control column formats, row spacing, line width, and display of omitted

variables
coeflegend display legend instead of statistics

A panel variable must be specified. For xtivreg, fd a time variable must also be specified. Use xtset;

see [XT] xtset.
varlisty and varlist;y may contain factor variables, except for the fd estimator; see [U] 11.4.3 Factor variables.
depvar, varlisty, varlisto, and varlist;y may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Instrumental-variables regression (FE, RE, BE, FD)

Description

xtivreg offers five different estimators for fitting panel-data models in which some of the right-
hand-side covariates are endogenous. These estimators are two-stage least-squares generalizations of
simple panel-data estimators for exogenous variables. xtivreg with the be option uses the two-
stage least-squares between estimator. xtivreg with the fe option uses the two-stage least-squares
within estimator. xtivreg with the re option uses a two-stage least-squares random-effects estimator.
There are two implementations: G2SLS from Balestra and Varadharajan-Krishnakumar (1987) and
EC2SLS from Baltagi. The Balestra and Varadharajan-Krishnakumar G2SLS is the default because it is
computationally less expensive. Baltagi’s EC2SLS can be obtained by specifying the ec2sls option.
xtivreg with the £d option requests the two-stage least-squares first-differenced estimator.

See Baltagi (2008) for an introduction to panel-data models with endogenous covariates. For the
derivation and application of the first-differenced estimator, see Anderson and Hsiao (1981).
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Options for RE model
Model

re requests the G2SLS random-effects estimator. re is the default.

ec2sls requests Baltagi’s EC2SLS random-effects estimator instead of the default Balestra and
Varadharajan-Krishnakumar estimator.

nosa specifies that the Baltagi—Chang estimators of the variance components be used instead of the
default adapted Swamy—Arora estimators.

regress specifies that all the covariates be treated as exogenous and that the instrument list be
ignored. Specifying regress causes xtivreg to fit the requested panel-data regression model of
depvar on varlist; and varlisto, ignoring varlist;,.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

vce (conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Reporting

level (#); see [R] estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of z statistics and that F' statistics be reported
instead of chi-squared statistics.

theta specifies that the output include the estimated value of 6 used in combining the between and
fixed estimators. For balanced data, this is a constant, and for unbalanced data, a summary of the
values is presented in the header of the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for BE model

Model

be requests the between regression estimator.

regress specifies that all the covariates are to be treated as exogenous and that the instrument list
is to be ignored. Specifying regress causes xtivreg to fit the requested panel-data regression
model of depvar on varlist; and varlists, ignoring varlist;,,.

[sE |

Is

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.
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vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Reporting

level (#); see [R] estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of z statistics and that F' statistics be reported
instead of chi-squared statistics.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fint), sformat (% fimt), and nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for FE model
 [Model ]

fe requests the fixed-effects (within) regression estimator.

regress specifies that all the covariates are to be treated as exogenous and that the instrument list
is to be ignored. Specifying regress causes xtivreg to fit the requested panel-data regression
model of depvar on varlist; and varlists, ignoring varlist;,,.

[SE |

Is

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Reporting

level (#); see [R] estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of z statistics and that F' statistics be reported
instead of chi-squared statistics.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for FD model
 [Model ]

noconstant; see [R] estimation options.
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fd requests the first-differenced regression estimator.

regress specifies that all the covariates are to be treated as exogenous and that the instrument list
is to be ignored. Specifying regress causes xtivreg to fit the requested panel-data regression
model of depvar on varlist; and varlisty, ignoring varlist;,,.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

N

vce (conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Reporting

level (#); see [R] estimation options.

first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of z statistics and that F' statistics be reported
instead of chi-squared statistics.

display_options: noomitted, vsquish, cformat (%fimt), pformat (% fint), sformat (% fint), and
nolstretch; see [R] estimation options.
The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

If you have not read [XT] xt, please do so.

Consider an equation of the form
Yit = Yiry + XaitB+ pi + vie = Zitd + p1; + vi (1)

where

y;¢ 1s the dependent variable;

Y,; is an 1 X go vector of observations on g endogenous variables included as covariates, and
these variables are allowed to be correlated with the v;y;

Xy is an 1 X ky vector of observations on the exogenous variables included as covariates;
Zy = [Yit Xit]§

~is a go X 1 vector of coefficients;

B is a k1 x 1 vector of coefficients; and

6 is a K x 1 vector of coefficients, where K = go + k.

Assume that there is a 1 X ko vector of observations on the ks instruments in Xog;;. The order
condition is satisfied if ko > go. Let Xz = [Xy4+ Xo;¢]. xtivreg handles exogenously unbalanced
panel data. Thus define 7; to be the number of observations on panel %, n to be the number of panels
and NN to be the total number of observations; that is, N = Z?zl T;.
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xtivreg offers five different estimators, which may be applied to models having the form of (1). The
first-differenced estimator (FD2SLS) removes the p; by fitting the model in first differences. The within
estimator (FE2SLS) fits the model after sweeping out the p; by removing the panel-level means from
each variable. The between estimator (BE2SLS) models the panel averages. The two random-effects
estimators, G2SLS and EC2SLS, treat the p; as random variables that are independent and identically
distributed (i.i.d.) over the panels. Except for (FD2SLS), all these estimators are generalizations of
estimators in xtreg. See [XT] xtreg for a discussion of these estimators for exogenous covariates.

Although the estimators allow for different assumptions about the p;, all the estimators assume
that the idiosyncratic error term v;; has zero mean and is uncorrelated with the variables in X;;. Just
as when there are no endogenous covariates, as discussed in [XT] xtreg, there are various perspectives
on what assumptions should be placed on the p;. If they are assumed to be fixed, the p; may be
correlated with the variables in X;;, and the within estimator is efficient within a class of limited
information estimators. Alternatively, if the p; are assumed to be random, they are also assumed to
be i.i.d. over the panels. If the w; are assumed to be uncorrelated with the variables in X;;, the
GLS random-effects estimators are more efficient than the within estimator. However, if the p; are
correlated with the variables in X;;, the random-effects estimators are inconsistent but the within
estimator is consistent. The price of using the within estimator is that it is not possible to estimate
coefficients on time-invariant variables, and all inference is conditional on the y; in the sample. See
Mundlak (1978) and Hsiao (2003) for discussions of this interpretation of the within estimator.

> Example 1: Fixed-effects model

For the within estimator, consider another version of the wage equation discussed in [XT] xtreg.
The data for this example come from an extract of women from the National Longitudinal Survey of
Youth that was described in detail in [XT] xt. Restricting ourselves to only time-varying covariates,
we might suppose that the log of the real wage was a function of the individual’s age, age?, her
tenure in the observed place of employment, whether she belonged to union, whether she lives in
metropolitan area, and whether she lives in the south. The variables for these are, respectively, age,
c.age#c.age, tenure, union, not_smsa, and south. If we treat all the variables as exogenous,
we can use the one-stage within estimator from xtreg, yielding
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. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtreg ln_w age c.age#c.age tenure not_smsa union south, fe

Fixed-effects (within) regression Number of obs = 19007

Group variable: idcode Number of groups = 4134

R-sq: within = 0.1333 Obs per group: min = 1

between = 0.2375 avg = 4.6

overall = 0.2031 max = 12

F(6,14867) = 381.19

corr(u_i, Xb) = 0.2074 Prob > F = 0.0000

1n_wage Coef. Std. Err. t P>t [95% Conf. Intervall

age .0311984  .0033902 9.20 0.000 .0245533 .0378436

c.ageftc.age -.0003457 .0000543 -6.37 0.000 -.0004522  -.0002393

tenure .0176205 .0008099 21.76  0.000 .0160331 .0192079

not_smsa -.0972535 .0125377 -7.76  0.000 -.1218289 -.072678

union .0975672 .0069844 13.97  0.000 .0838769 .1112576

south -.0620932 .013327 -4.66  0.000 -.08821568 -.0359706

_cons 1.091612 .0523126 20.87  0.000 .9890729 1.194151
sigma_u .3910683
sigma_e .25545969

rho .70091004  (fraction of variance due to u_i)
F test that all u_i=0: F(4133, 14867) = 8.31 Prob > F = 0.0000

All the coefficients are statistically significant and have the expected signs.

Now suppose that we wish to model tenure as a function of union and south and that we believe that
the errors in the two equations are correlated. Because we are still interested in the within estimates,
we now need a two-stage least-squares estimator. The following output shows the command and the
results from fitting this model:
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. Xtivreg ln_w age c.age#c.age not_smsa (tenure = union south), fe
Fixed-effects (within) IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134
R-sq: within = . Obs per group: min = 1
between = 0.1304 avg = 4.6
overall = 0.0897 max = 12
Wald chi2(4) = 147926.58
corr(u_i, Xb) = -0.6843 Prob > chi2 = 0.0000
1n_wage Coef. Std. Err. z P>|z| [95% Conf. Intervall
tenure .2403531 .0373419 6.44 0.000 .1671643 .3135419
age .0118437 .0090032 1.32  0.188 -.0058023 .0294897
c.age#c.age -.0012145 .0001968 -6.17  0.000 -.0016003  -.0008286
not_smsa -.0167178 .0339236 -0.49 0.622 -.0832069 .0497713
_cons 1.678287 .1626657 10.32  0.000 1.359468 1.997106
sigma_u .70661941
sigma_e .63029359
rho .556690561 (fraction of variance due to u_i)
F test that all u_i=0: F(4133,14869) = 1.44 Prob > F = 0.0000
Instrumented: tenure
Instruments: age c.age#c.age not_smsa union south

Although all the coefficients still have the expected signs, the coefficients on age and not_smsa are
no longer statistically significant. Given that these variables have been found to be important in many
other studies, we might want to rethink our specification. q

If we are willing to assume that the p; are uncorrelated with the other covariates, we can fit a
random-effects model. The model is frequently known as the variance-components or error-components
model. xtivreg has estimators for two-stage least-squares one-way error-components models. In the
one-way framework, there are two variance components to estimate, the variance of the p; and the
variance of the v;;. Because the variance components are unknown, consistent estimates are required to
implement feasible GLS. xtivreg offers two choices: a Swamy—Arora method and simple consistent
estimators from Baltagi and Chang (2000).

Baltagi and Chang (1994) derived the Swamy—Arora estimators of the variance components for
unbalanced panels. By default, xtivreg uses estimators that extend these unbalanced Swamy—Arora
estimators to the case with instrumental variables. The default Swamy—Arora method contains a
degree-of-freedom correction to improve its performance in small samples. Baltagi and Chang (2000)
use variance-components estimators, which are based on the ideas of Amemiya (1971) and Swamy and
Arora (1972), but they do not attempt to make small-sample adjustments. These consistent estimators
of the variance components will be used if the nosa option is specified.

Using either estimator of the variance components, xtivreg offers two GLS estimators of the
random-effects model. These two estimators differ only in how they construct the GLS instruments
from the exogenous and instrumental variables contained in X;; = [Xy;; Xo;¢]. The default method,
G2SLS, which is from Balestra and Varadharajan-Krishnakumar, uses the exogenous variables after
they have been passed through the feasible GLS transform. In math, G2SLS uses X7, for the GLS
instruments, where X7, is constructed by passing each variable in X;; through the GLS transform in
(3) given in Methods and formulas. If the ec2sls option is specified, xtivreg performs Baltagi’s
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EC2SLS. In EC2SLS, the instruments are X;; and X, where X; is constructed by passing each of
the variables in X,;; through the within transform, and X;; is constructed by passing each variable
through the between transform. The within and between transforms are given in the Methods and
formulas section. Baltagi and Li (1992) show that, although the G2SLS instruments are a subset of
those contained in EC2SLS, the extra instruments in EC2SLS are redundant in the sense of White (2001).
Given the extra computational cost, G2SLS is the default.

> Example 2: GLS random-effects model
Here is the output from applying the G2SLS estimator to this model:

. xtivreg ln_w age c.age#c.age not_smsa 2.race (tenure = union birth south), re

G2SLS random-effects IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134
R-sq: within = 0.0664 Obs per group: min = 1
between = 0.2098 avg = 4.6
overall = 0.1463 max = 12
Wald chi2(5) = 1446.37
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
1n_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]
tenure .1391798 .0078756 17.67  0.000 .123744 .1546157
age .0279649 .0054182 5.16  0.000 .0173454 .0385843
c.age#c.age -.0008357 .0000871 -9.60 0.000 -.0010063 -.000665
not_smsa -.2235103 .0111371  -20.07  0.000 -.2453386 -.2016821
2.race -.2078613 .0125803 -16.52  0.000 -.2325183  -.1832044
_cons 1.337684 .0844988 156.83  0.000 1.172069 1.503299
sigma_u .36582493
sigma_e .63031479
rho .25197078 (fraction of variance due to u_i)
Instrumented: tenure
Instruments: age c.age#c.age not_smsa 2.race union birth_yr south

We have included two time-invariant covariates, birth_yr and 2.race. All the coefficients are
statistically significant and are of the expected sign.

Applying the EC2SLS estimator yields similar results:
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. Xtivreg ln_w age c.age#c.age not_smsa 2.race (tenure = union birth south), re

> ec2sls
EC2SLS random-effects IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134
R-sq: within = 0.0898 Obs per group: min = 1
between = 0.2608 avg = 4.6
overall = 0.1926 max = 12
Wald chi2(5) = 2721.92
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
1n_wage Coef . Std. Err. z P>|z| [95% Conf. Intervall
tenure .064822 .0025647 25.27  0.000 .0597953 .0698486
age .0380048 .0039549 9.61 0.000 .0302534 .0457562
c.age#c.age -.0006676 .0000632 -10.56  0.000 -.0007915  -.0005438
not_smsa -.2298961 .0082993 -27.70  0.000 -.2461625  -.2136297
2.race -.1823627 .0092005 -19.82  0.000 -.2003954 -.16433
_cons 1.110564 .0606538 18.31  0.000 .9916849 1.229443
sigma_u .36582493
sigma_e .63031479
rho .25197078 (fraction of variance due to u_i)
Instrumented: tenure
Instruments: age c.age#c.age not_smsa 2.race union birth_yr south

Fitting the same model as above with the G2SLS estimator and the consistent variance components
estimators yields
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. Xtivreg ln_w age c.age#c.age not_smsa 2.race (tenure = union birth south), re

> nosa
G2SLS random-effects IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134
R-sq: within = 0.0664 Obs per group: min = 1
between = 0.2098 avg = 4.6
overall = 0.1463 max = 12
Wald chi2(5) = 1446.93
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
1n_wage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
tenure .1391859 .007873 17.68  0.000 .1237552 .1546166
age .0279697 .005419 5.16 0.000 .0173486 .0385909
c.age#c.age -.0008357 .0000871 -9.60 0.000 -.0010064 -.000665
not_smsa -.2235738 .0111344  -20.08 0.000 -.2453967  -.2017508
2.race -.2078733 .0125761 -16.53  0.000 -.2325201  -.1832265
_cons 1.337522 .0845083 15.83  0.000 1.171889 1.503155
sigma_u .36535633
sigma_e .63020883
rho .25156512 (fraction of variance due to u_i)
Instrumented: tenure
Instruments: age c.age#c.age not_smsa 2.race union birth_yr south

> Example 3: First-differenced estimator

The two-stage least-squares first-differenced estimator (FD2SLS) has been used to fit both fixed-effect
and random-effect models. If the pu; are truly fixed-effects, the FD2SLS estimator is not as efficient
as the two-stage least-squares within estimator for finite 7;. Similarly, if none of the endogenous
variables are lagged dependent variables, the exogenous variables are all strictly exogenous, and the
random effects are i.i.d. and independent of the X;;, the two-stage GLS estimators are more efficient
than the FD2SLS estimator. However, the FD2SLS estimator has been used to obtain consistent estimates
when one of these conditions fails. Anderson and Hsiao (1981) used a version of the FD2SLS estimator
to fit a panel-data model with a lagged dependent variable.

Arellano and Bond (1991) develop new one-step and two-step GMM estimators for dynamic panel
data. See [XT] xtabond for a discussion of these estimators and Stata’s implementation of them. In
their article, Arellano and Bond (1991) apply their new estimators to a model of dynamic labor demand
that had previously been considered by Layard and Nickell (1986). They also compare the results of
their estimators with those from the Anderson—Hsiao estimator using data from an unbalanced panel
of firms from the United Kingdom. As is conventional, all variables are indexed over the firm ¢ and
time £. In this dataset, n;; is the log of employment in firm ¢ inside the United Kingdom at time ¢,
w;; is the natural log of the real product wage, k;; is the natural log of the gross capital stock, and
ys;; is the natural log of industry output. The model also includes time dummies yr1980, yr1981,
yr1982, yr1983, and yr1984. In Arellano and Bond (1991, table 5, column e), the authors present
the results from applying one version of the Anderson—Hsiao estimator to these data. This example
reproduces their results for the coefficients, though standard errors are different because Arellano and
Bond are using robust standard errors.
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. use http://www.stata-press.com/data/r12/abdata
. xtivreg n 12.n 1(0/1).w 1(0/2).(k ys) yr1981-yr1984 (1.n = 13.n), fd

First-differenced IV regression

Group variable: id Number of obs = 471
Time variable: year Number of groups = 140
R-sq: within = 0.0141 Obs per group: min = 3
between = 0.9165 avg = 3.4
overall = 0.9892 max = 5
Wald chi2(14) = 122.53
corr(u_i, Xb) = 0.9239 Prob > chi2 = 0.0000
D.n Coef . Std. Err. z P>|z| [95% Conf. Intervall
n
LD. 1.422765  1.583053 0.90 0.369 -1.679962 4.525493
L2D. -.1645517 .1647179 -1.00 0.318 -.4873928 .1582894
w
D1. -.7524675 .1765733 -4.26 0.000 -1.0985645  -.4063902
LD. .9627611 1.086506 0.89 0.376 -1.166752 3.092275
k
D1. .3221686 .1466086 2.20 0.028 .0348211 .6095161
LD. -.3248778 .5800599 -0.56 0.575 -1.461774 .8120187
L2D. -.0953947 .1960883 -0.49 0.627 -.4797207 .2889314
ys
D1. .7660906 .369694 2.07 0.038 .0415037 1.490678
LD. -1.361881 1.156835 -1.18 0.239 -3.629237 .9054744
L2D. .3212993 .5440403 0.59 0.555 -.745 1.387599
yr1981
D1. -.0574197 .0430158 -1.33 0.182 -.1417291 .0268896
yr1982
D1. -.0882952 .0706214 -1.25 0.211 -.2267106 .0501203
yr1983
D1. -.1063153 .10861 -0.98 0.328 -.319187 .1065563
yr1984
D1. -.1172108 .15196 -0.77  0.441 -.4150468 .1806253
_cons .0161204 .0336264 0.48 0.632 -.0497861 .082027
sigma_u .29069213
sigma_e .18855982
rho .70384993  (fraction of variance due to u_i)
Instrumented: L.n
Instruments: L2.nwL.w k L.k L2.k ys L.ys L2.ys yr1981 yr1982 yr1983 yr1984

L3.n
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Saved results

xtivreg, re saves the following in e ():

Scalars
e(N)
e(N_g)
e(df_m)
e(df_rz)
e(g_min)
e(g_avg)
e(g_max)
e(Tcon)
e(sigma)
e(sigma_u)
e(sigma_e)
e(r2_w)
e(r2_o0)
e(r2_b)
e(chi2)
e(rho)
e(F)
e(m_p)
e(thta_min)
e(thta_5)
e(thta_50)
e(thta_95)
e(thta_max)
e(Tbar)
e(rank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(ivar)
e(tvar)
e(insts)
e(instd)
e (model)
e(small)
e(chi2type)
e(vce)
e(vcetype)
e(properties)
e(predict)
e(marginsok)
e(marginsnotok)
e (asbalanced)
e (asobserved)

number of observations
number of groups
model degrees of freedom
residual degrees of freedom
smallest group size
average group size
largest group size
1 if panels balanced; O otherwise
ancillary parameter (gamma, lnormal)
panel-level standard deviation
standard deviation of €;4
R-squared for within model
R-squared for overall model
R-squared for between model

2
X

P
model F (small only)
p-value from model test
minimum 6

0, Sth percentile

0, 50th percentile

0, 95th percentile

maximum 6

harmonic mean of group sizes
rank of e (V)

xtivreg

command as typed

name of dependent variable

variable denoting groups

variable denoting time within groups
instruments

instrumented variables

g2sls or ec2sls

small, if specified

Wald; type of model x? test

veetype specified in vce()

title used to label Std. Err.

bV

program used to implement predict
predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e (V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

xtivreg, be saves the following in e():

e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)

Matrices

e(b)
e(V)

Functions

e(sample)

Scalars
e() number of observations
e(N_g) number of groups
e(mss) model sum of squares
e(df_m) model degrees of freedom
e(rss) residual sum of squares
e(df_r) residual degrees of freedom
e(df_rz) residual degrees of freedom for the between-transformed regression
e(g_min) smallest group size
e(g_avg) average group size
e(g—_max) largest group size
e(rs—a) adjusted R?
e(r2_w) R-squared for within model
e(r2_o) R-squared for overall model
e(r2_b) R-squared for between model
e(chi2) model Wald
e(chi2_p) p-value for model x? test
e(F) F statistic (small only)
e(rmse) root mean squared error
e(rank) rank of e(V)

Macros
e(cmd) xtivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(insts) instruments
e(instd) instrumented variables
e (model) be
e(small) small, if specified
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(properties) bV
e(predict) program used to implement predict

predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample
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xtivreg, fe saves the following in e ():

Scalars
e(N)
e(N_g)
e(df_m)
e(rss)
e(df_r)
e(df_rz)
e(g_min)
e(g_avg)
e(g_max)
e(sigma)
e(corr)
e(sigma_u)
e(sigma_e)
e(r2_w)
e(r2_o0)
e(r2_b)
e(chi2)
e(df_b)
e(chi2_p)
e(rho)
e(F)
e(F_1)
e(F_fp)
e(df_a)
e(rank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(ivar)
e(tvar)
e(insts)
e(instd)
e (model)
e(small)
e(vce)
e(vcetype)
e(properties)
e(predict)
e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)

Matrices
e(b)
e (V)
Functions
e(sample)

number of observations

number of groups

model degrees of freedom

residual sum of squares

residual degrees of freedom (small only)
residual degrees of freedom for the within-transformed regression
smallest group size

average group size

largest group size

ancillary parameter (gamma, lnormal)
corr(u;, Xb)

panel-level standard deviation

standard deviation of €;¢

R-squared for within model

R-squared for overall model

R-squared for between model

model Wald (not small)

degrees of freedom for x? statistic
p-value for model x? statistic

P
F statistic (small only)

F for H()Z u; =0

p-value for F for Hy:u;=0

degrees of freedom for absorbed effect
rank of e (V)

xtivreg

command as typed

name of dependent variable

variable denoting groups

variable denoting time within groups
instruments

instrumented variables

fe

small, if specified

veetype specified in vee ()

title used to label Std. Err.

bV

program used to implement predict
predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample
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xtivreg, fd saves the following in e ():

e(sample)

Scalars
e(N) number of observations
e(N_g) number of groups
e(rss) residual sum of squares
e(df_r) residual degrees of freedom (small only)
e(df_rz) residual degrees of freedom for first-differenced regression
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(sigma) ancillary parameter (gamma, 1normal)
e(corr) corr(u;, Xb)
e(sigma_u) panel-level standard deviation
e(sigma_e) standard deviation of €;¢
e(r2_w) R-squared for within model
e(r2_o) R-squared for overall model
e(r2_b) R-squared for between model
e(chi2) model Wald (not small)
e(df_b) degrees of freedom for the x? statistic
e(chi2_p) p-value for model x? statistic
e(rho) p
e(F) F statistic (small only)
e(rank) rank of e(V)
Macros
e(cmd) xtivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(insts) instruments
e(instd) instrumented variables
e (model) fd
e(small) small, if specified
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(properties) bV
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions

marks estimation sample
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Methods and formulas

xtivreg is implemented as an ado-file.

Consider an equation of the form

Yir = Yy + XoaB + s + Vig = Zgp 0 + 1y + v (2)

where
y;+ is the dependent variable;
Y, is an 1 X go vector of observations on go endogenous variables included as covariates,

and these variables are allowed to be correlated with the v;;;
X4+ is an 1 x ky vector of observations on the exogenous variables included as covariates;
Z; = [Yit Xz’t];
~is a go X 1 vector of coefficients;
Bis a k1 x 1 vector of coefficients; and
d is a K x 1 vector of coefficients, where K = go + k.

Assume that there is a 1 X ko vector of observations on the ko instruments in Xo;;. The order
condition is satisfied if ko > ga. Let Xz = [X14+ Xo;¢]. xtivreg handles exogenously unbalanced
panel data. Thus define 7; to be the number of observations on panel %, n to be the number of panels,
and NN to be the total number of observations; that is, N = 2?21 T;.

Methods and formulas are presented under the following headings:

xtivreg, fd
xtivreg, fe
xtivreg, be
xtivreg, re

xtivreg, fd

As the name implies, this estimator obtains its estimates and conventional VCE from an instrumental-
variables regression on the first-differenced data. Specifically, first differencing the data yields

Yit — Yit—1 = (Ljg —Zj4—1) 6 + Vit — Vi p—1
With the p; removed by differencing, we can obtain the estimated coefficients and their estimated

variance—covariance matrix from a standard two-stage least-squares regression of Ay;; on AZ;; with
instruments AX;;.

o 2

R? within is reported as {corr{(Zit —7Z;)o,yi+ — @1}} .
. 2
R? between is reported as {corr(Ziﬁ, yi)} .

N 2
R? overall is reported as {corr(Zit(S, ylt)} .

xtivreg, fe

At the heart of this model is the within transformation. The within transform of a variable w is

Wit = Wig — Wi, +W
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where

B
w;, = — E Wit
n

t=1

1 n T;
T= DD v

i=1t=1
and n is the number of groups and NN is the total number of observations on the variable.

The within transform of (2) is

Vit = Lt + Vs

The within transform has removed the p;. With the p; gone, the within 2SLS estimator can be obtained
from a two-stage least-squares regression of ¥;; on Z;; with instruments X;;.

Suppose that there are K variables in Z;;, including the mandatory constant. There are K +n — 1
parameters estimated in the model, and the conventional VCE for the within estimator is

N-K

S S, 7
N-n—-K+1 %W

where Vi is the VCE from the above two-stage least-squares regression.

From the estimate of 8, estimates fi; of pi; are obtained as fi; = ¥, — Zﬁ. Reported from the

calculated Ji; is its standard deviation and its correlation with Z;8. Reported as the standard deviation
of vy is the regression’s estimated root mean squared error, s2, which is adjusted (as previously
stated) for the n — 1 estimated means.

R? within is reported as the R? from the mean-deviated regression.
— ~ 2
R? between is reported as {Corr(Zi(S, @2)} .

N 2
R? overall is reported as {corr(Zit(S, yit)} )

At the bottom of the output, an F' statistic against the null hypothesis that all the u; are zero is
reported. This F statistic is an application of the results in Wooldridge (1990).

xtivreg, be

After passing (2) through the between transform, we are left with
Y=o+ Zid+pi+7; (3)

where

TA
1 L

w; = wait for w € {y,Z,v}
=1

Similarly, define X; as the matrix of instruments X; after they have been passed through the between
transform.
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The BE2SLS estimator of (3) obtains its coefficient estimates and its conventional VCE, a two-stage
least-squares regression of 3, on Z; with instruments X; in which each average appears T; times.

R? between is reported as the R? from the fitted regression.
NN 2
R? within is reported as {corr{(Zit —Z:)6,yir — @1}} .

N 2
R? overall is reported as {corr(Zité, yit)} )

xtivreg, re

Per Baltagi and Chang (2000), let
U = i + Vit

be the N x 1 vector of combined errors. Then under the assumptions of the random-effects model,

1 1
E(uv) = o?diag {ITi T L’Tl] + diag |:sz Ly, ]

where
w; = Tio? + o2
v — Ly v
and ¢, is a vector of ones of dimension Tj.

Because the variance components are unknown, consistent estimates are required to implement

feasible GLS. xtivreg offers two choices. The default is a simple extension of the Swamy—Arora
method for unbalanced panels.

Let o
Up = Yit — LitOu

be the combined residuals from the within estimator. Let u;; be the within-transformed u;;. Then

a_\ Z’L 1Zt 1uzt
Y N-n-K+1

Let
uby = yir — ZitOp

be the combined residual from the between estimator. Let . be the between residuals after they
have been passed through the between transform. Then

T; — ~
52 — Z;L:l Zt:l u?t —(n— K)Ug

® N-—r

N1 ,
r = trace { (Z Z, ) ziz,tzuzi}

Z,, = diag (LTi LlT7)

where

where
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If the nosa option is specified, the consistent estimators described in Baltagi and Chang (2000)
are used. These are given by

a_\ _ Zz-l Zt 1uzt
v N-—n

and

n i —2 ~2
52 — Zi:1 Zt:1 Uy — NO,
B N

The default Swamy—Arora method contains a degree-of-freedom correction to improve its performance
in small samples.

Given estimates of the variance components, o2 and 02 the feasible GLS transform of a variable
w is

w* = wy — 0;,7; 4)
where
T;
=T Z
1
R ~2\ ~32
ezt =1- (?)
Wi
and

Ta +U

Using either estimator of the variance components, xtivreg contains two GLS estimators of the
random-effects model. These two estimators differ only in how they construct the GLS instruments
from the exogenous and instrumental variables contained in X;; = [X1;+X2;¢]. The default method,
G2SLS, which is from Balestra and Varadharajan-Krishnakumar, uses the exogenous variables after
they have been passed through the feasible GLS transform. Mathematically, G2SLS uses X* for the
GLS instruments, where X* is constructed by passing each variable in X though the GLS transform in
(4). The G2SLS estimator obtains its coefficient estimates and conventional VCE from an instrumental
variable regression of vy, on Z7, with instruments X7, .

If the ec2sls option is specified, xtivreg performs Baltagi’s EC2SLS. In EC2SLS, the instruments

are X t and X;;, where th is constructed by each of the variables in X;; throughout the GLS
transform in (4), and X,; is made of the group means of each variable in X;;. The EC2SLS estimator
obtains its coefficient estimates and its VCE from an instrumental variables regression of v, on Z,

with instruments Xit and Xz‘t-

Baltagi and Li (1992) show that although the G2SLS instruments are a subset of those in EC2SLS, the
extra instruments in EC2SLS are redundant in the sense of White (2001). Given the extra computational
cost, G2SLS is the default.

The standard deviation of i; + vy is calculated as 4 /8/% +02.
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. 2
R? between is reported as {corr(ZiJ,yi)} .

. 2
R? within is reported as [corr{(Zit —Z;)d,yi+ — @l}} .

N 2
R? overall is reported as {corr(Zl-td, ylt)} .
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Also see

[XT] xtivreg postestimation — Postestimation tools for xtivreg

[XT] xtset — Declare data to be panel data

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models
[XT] xtabond — Arellano—Bond linear dynamic panel-data estimation

[XT] xthtaylor — Hausman-Taylor estimator for error-components models

[R] ivregress — Single-equation instrumental-variables regression

[U] 20 Estimation and postestimation commands
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Title

xtivreg postestimation — Postestimation tools for xtivreg

Description
The following postestimation commands are available after xtivreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat VCE and estimation sample summary

estimates cataloging estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
For all but the first-differenced estimator

predict [type] newvar [lf] [m] [, statistic]

First-differenced estimator

predict [type] newvar [zf] [in] [, FD_statiszic]

statistic Description
Main
xb Z;.0, fitted values; the default
ue 11; + Vs, the combined residual
*xbu Z::0 + [i;, prediction including effect
*u 11;, the fixed- or random-error component
*e Djt, the overall error component
Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.
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FD_statistic ~ Description

Main
xb ij, fitted values for the first-differenced model; the default
e eit — €;¢1—1, the first-differenced overall error component
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only

for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb, the default, calculates the linear prediction, that is, Zitg.

ue calculates the prediction of fi; + ;. This is not available after the first-differenced model.

xbu calculates the prediction of Zitg + [i;, the prediction including the fixed or random component.
This is not available after the first-differenced model.

u calculates the prediction of fi;, the estimated fixed or random effect. This is not available after the
first-differenced model.

e calculates the prediction of Uy.

Also see
[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models

[U] 20 Estimation and postestimation commands



Title

xtline — Panel-data line plots

Syntax
Graph by panel

xtline varlist [lf] [m} [, panel_options]

Overlaid panels

xtline varname [lf] [in], overlay [overlaid_options]

panel_options Description
Main
i (varname;) use varname; as the panel ID variable
t (varnamey) use varname; as the time variable
Plot
cline_options affect rendition of the plotted points connected by lines
Add plots
addplot (plot) add other plots to the generated graph
Y axis, Time axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options
byopts (byopts) affect appearance of the combined graph
overlaid_options Description
Main
overlay overlay each panel on the same graph
i (varname;) use varname; as the panel ID variable
t (varnamey) use varname; as the time variable
Plots

plot#opts (cline_options) affect rendition of the # panel line

Add plots
addplot (plot) add other plots to the generated graph

Y axis, Time axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway _options

A panel variable and a time variable must be specified. Use xtset (see [XT] xtset) or specify the 1() and t()
options. The t() option allows noninteger values for the time variable, whereas xtset does not.
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Menu
Statistics > Longitudinal/panel data > Line plots

Description

xtline draws line plots for panel data.

Options for graph by panel
[Main |

i(varname;) and t(varname;) override the panel settings from xtset; see [XT] xtset. varname; is
allowed to be a string variable. varname, can take on noninteger values and have repeated values
within panel. That is to say, it can be any numeric variable that you would like to specify for the
x-dimension of the graph. It is an error to specify i () without t() and vice versa.

Plot

cline_options affect the rendition of the plotted points connected by lines; see [G-3] cline_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, Time axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

byopts (byopts) allows all the options documented in [G-3] by_option. These options affect the
appearance of the by-graph. byopts() may not be combined with overlay.

Options for overlaid panels
Main

overlay causes the plot from each panel to be overlaid on the same graph. The default is to generate
plots by panel. This option may not be combined with byopts () or be specified when there are
multiple variables in varlist.

i(varname;) and t(varname;) override the panel settings from xtset; see [XT] xtset. varname; is
allowed to be a string variable. varname, can take on noninteger values and have repeated values
within panel. That is to say, it can be any numeric variable that you would like to specify for the
z-dimension of the graph. It is an error to specify i() without t() and vice versa.

Plots

plot#opts (cline_options) affect the rendition of the #th panel (in sorted order). The cline_options
can affect whether and how the points are connected; see [G-3] cline_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.
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/_fY axis, Time axis, Titles, Legend, Overalﬂ

twoway—_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks

> Example 1

Suppose that Tess, Sam, and Arnold kept a calorie log for an entire calendar year. At the end of
the year, if they pooled their data together, they would have a dataset (for example, xtlinel.dta)
that contains the number of calories each of them consumed for 365 days. They could then use xtset
to identify the date variable and treat each person as a panel and use xtline to plot the calories
versus time for each person separately.

. use http://www.stata-press.com/data/r12/xtlinel

. xtset person day
panel variable: person (strongly balanced)
time variable: day, 01jan2002 to 31dec2002
delta: 1 day

. xtline calories, tlabel (#3)
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Specify the overlay option so that the values are plotted on the same graph to provide a better
comparison among Tess, Sam, and Arnold.
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xtline calories, overlay
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Methods and formulas

xtline is implemented as an ado-file.

Also see
[XT] xtset — Declare data to be panel data
[G-2] graph twoway — Twoway graphs

[TS] tsline — Plot time-series data
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xtlogit — Fixed-effects, random-effects, and population-averaged logit models

Syntax
Random-effects (RE) model

xtlogit depvar [indepvars] [if} [m] [weighl] [, re RE_()pli()ns}

Conditional fixed-effects (FE) model

xtlogit depvar [indepvars] [z_’f} [zn] [weight] , fe [FE_opzions]

Population-averaged (PA) model

xtlogit depvar [indepvars] [zf} [in] [weighr] , pa [PA_()ptions]

RE_options Description
Model
noconstant suppress constant term
re use random-effects estimator; the default

offset (varname)

constraints (constraints)

include varname in model with coefficient constrained to 1
apply specified linear constraints

collinear keep collinear variables
SE

vce (veetype) vecetype may be oim, bootstrap, or jackknife
Reporting

level (#) set confidence level; default is 1level (95)

or report odds ratios

noskip perform overall model test as a likelihood-ratio test

nocnsreport do not display constraints

display_options

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Integration
intmethod (intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod (mvaghermite)
intpoints (#) use # quadrature points; default is intpoints(12)
Maximization

maximize_options

nodisplay
coeflegend

control the maximization process; seldom used

suppress display of header and coefficients
display legend instead of statistics
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FE_options Description
Model
fe use fixed-effects estimator
offset (varname) include varname in model with coefficient constrained to 1
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE
vce (veetype) vcetype may be oim, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
or report odds ratios
noskip perform overall model test as a likelihood-ratio test
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize_options control the maximization process; seldom used

nodisplay suppress display of header and coefficients

coeflegend display legend instead of statistics

PA _options Description
Model

noconstant suppress constant term

pa use population-averaged estimator

offset (varname) include varname in model with coefficient constrained to 1
Correlation

corr (correlation) within-group correlation structure

force estimate even if observations unequally spaced in time
SE/Robust

vce (veetype) vcetype may be conventional, robust, bootstrap, or

jackknife
nmp use divisor N — P instead of the default N
scale(parm) overrides the default scale parameter;

parm may be x2, dev, phi, or #
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Reporting
level (#) set confidence level; default is 1level (95)
or report odds ratios
display_options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells
Optimization
optimize_options control the optimization process; seldom used
nodisplay do not display the header and coefficients
coeflegend display legend instead of statistics
correlation Description
exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

A panel variable must be specified. For xtlogit, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are
allowed for the fixed-effects and random-effects models; see [U] 11.1.6 weight. Weights must be constant
within panel.

nodisplay and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Binary outcomes > Logistic regression (FE, RE, PA)

Description

xtlogit fits random-effects, conditional fixed-effects, and population-averaged logit models.
Whenever we refer to a fixed-effects model, we mean the conditional fixed-effects model. depvar
equal to nonzero and nonmissing (typically depvar equal to one) indicates a positive outcome, whereas
depvar equal to zero indicates a negative outcome.

By default, the population-averaged model is an equal-correlation model; xtlogit, pa assumes
corr (exchangeable). See [XT] xtgee for information on how to fit other population-averaged
models.

See [R] logistic for a list of related estimation commands.



xtlogit — Fixed-effects, random-effects, and population-averaged logit models 221

Options for RE model
_ (Wogel

noconstant; see [R] estimation options.
re requests the random-effects estimator, which is the default.

offset (varname) constraints(constraints), collinear; see [R] estimation options.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.

Reporting

level (#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e® rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

noskip; see [R] estimation options.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fint), and nolstretch; see [R] estimation options.

Integration

intmethod (intmethod), intpoints (#); see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

The following options are available with xtlogit but are not shown in the dialog box:
nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] estimation options.

Options for FE model
Model

fe requests the fixed-effects estimator.

offset (varname), constraints (constraints), collinear; see [R] estimation options.

[sE |

Is

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce_options.
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Reporting

level (#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, b rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

noskip; see [R] estimation options.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fint), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

The following options are available with xtlogit but are not shown in the dialog box:
nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] estimation options.

Options for PA model

Model

noconstant; see [R] estimation options.
pa requests the population-averaged estimator.

offset (varname); see [R] estimation options.

Correlation

corr (correlation), force; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2|dev|phi|#); see [XT] vce_options.

Reporting

level (#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, €® rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.
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display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

Optimization

optimize_options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(le-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtlogit but are not shown in the dialog box:
nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] estimation options.

Remarks
xtlogit is a convenience command if you want the population-averaged model. Typing

. xtlogit ..., pa ...

is equivalent to typing
. xtgee ..., ... family(binomial) link(logit) corr(exchangeable)

It is also a convenience command if you want the fixed-effects model. Typing
. xtlogit ..., fe ...

is equivalent to typing
. clogit ..., group(varnamei) ...

See also [XT] xtgee and [R] clogit for information about xtlogit.

By default or when re is specified, xtlogit fits via maximum likelihood the random-effects
model
Pr(yit # 0lxit) = P(xitB + v;)
fori =1,...,n panels, where t = 1,...,n;, v; are i.i.d., N(0,02), and P(z) = {1 +exp(—2)} 1.

Underlying this model is the variance components model

Yit #0 = XufB+ v+ €4 >0

where €;; are i.i.d. logistic distributed with mean zero and variance o2 = 72 /3, independently of v;.

e =
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> Example 1
We are studying unionization of women in the United States and are using the union dataset; see
[XT] xt. We wish to fit a random-effects model of union membership:

. use http://www.stata-press.com/data/ri12/union
(NLS Women 14-24 in 1968)

. xtlogit union age grade not_smsa south##c.year

(output omitted )

Random-effects logistic regression Number of obs = 26200
Group variable: idcode Number of groups = 4434
Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12
Wald chi2(6) = 227.46
Log likelihood = -10540.274 Prob > chi2 = 0.0000
union Coef.  Std. Err. z P>|z| [95% Conf. Intervall
age .0156732 .0149895 1.056 0.296 -.0137056 .045052
grade .0870851 .0176476 4.93 0.000 .0524965 .1216738
not_smsa -.2511884 .0823508 -3.05 0.002 -.4125929  -.0897839
1.south -2.839112 .6413116 -4.43  0.000 -4.096059 -1.582164
year -.0068604 .0156575 -0.44 0.661 -.0375486 .0238277

south#c.year
1 .0238506 .0079732 2.99 0.003 .0082235 .0394777
_cons -3.009365 .8414963 -3.58  0.000 -4.658667 -1.360062
/1lnsig2u 1.749366 .0470017 1.657245 1.841488
sigma_u 2.398116 .0563577 2.290162 2.511158
rho .6361098 .0108797 .6145307 .6571548

Likelihood-ratio test of rho=0: chibar2(01) = 6004.43 Prob >= chibar2 = 0.000

The output includes the additional panel-level variance component. This is parameterized as the log
of the variance In(0?) (labeled 1nsig2u in the output). The standard deviation o, is also included
in the output and labeled sigma_u together with p (labeled rho),

2

o-l/
P="3 2
of 4+ 0¢

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is
no different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of the
output. This test formally compares the pooled estimator (logit) with the panel estimator.

As an alternative to the random-effects specification, we might want to fit an equal-correlation
logit model:
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. xtlogit union age grade not_smsa south##c.year, pa
Iteration 1: tolerance = .1487877
Iteration 2: tolerance = .00949342
Iteration 3: tolerance = .00040606
Iteration 4: tolerance = .00001602
Iteration 5: tolerance = 6.628e-07
GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups 4434
Link: logit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12
Wald chi2(6) = 235.08
Scale parameter: 1 Prob > chi2 = 0.0000
union Coef. Std. Err. z P>|z| [95% Conf. Intervall
age .0165893 .0092229 1.80 0.072 -.0014873 .0346659
grade .0600669 .0108343 5.54  0.000 .0388321 .0813016
not_smsa -.1215445 .0483713 -2.51  0.012 -.2163505 -.0267384
1.south -1.857094 .372967 -4.98 0.000 -2.588096 -1.126092
year -.0121168 .0095707 -1.27 0.205 -.030875 .0066413
south#c.year
1 .0160193 .0046076 3.48 0.001 .0069886 .0250501
_cons -1.39755 .5089508 -2.75 0.006 -2.395075  -.4000247
N

> Example 2

xtlogit with the pa option allows a vce (robust) option, so we can obtain the population-averaged
logit estimator with the robust variance calculation by typing

. xtlogit union age grade not_smsa south##c.year, pa vce(robust) nolog

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: logit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12
Wald chi2(6) = 154.88
Scale parameter: 1 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on idcode)
Semirobust

union Coef. Std. Err. z P>|z| [95% Conf. Intervall
age .0165893 .008951 1.85 0.064 -.0009543 .0341329
grade .0600669 .0133193 4.51 0.000 .0339616 .0861722
not_smsa -.1215445 .0613803 -1.98 0.048 -.2418477  -.0012412
1.south -1.857094 .5389238 -3.45 0.001 -2.913366  -.8008231
year -.0121168 .0096998 -1.26 0.212 -.0311282 .0068945

south#c.year
1 .0160193 .0067217 2.38 0.017 .002845 .0291937
_cons -1.39755 .5603767 -2.49 0.013 -2.495868  -.2992317

These standard errors are somewhat larger than those obtained without the vce (robust) option.
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Finally, we can also fit a fixed-effects model to these data (see also [R] clogit for details):

. xtlogit union age grade not_smsa south##c.year, fe

note: multiple positive outcomes within groups encountered.
note: 2744 groups (14165 obs) dropped because of all positive or
all negative outcomes.

Iteration O: log likelihood = -4516.5881
Iteration 1: log likelihood = -4510.8906
Iteration 2: log likelihood = -4510.888
Iteration 3: log likelihood = -4510.888
Conditional fixed-effects logistic regression Number of obs = 12035
Group variable: idcode Number of groups = 1690
Obs per group: min = 2
avg = 7.1
max = 12
LR chi2(6) = 78.60
Log likelihood = -4510.888 Prob > chi2 = 0.0000
union Coef . Std. Err. z P>|z| [95% Conf. Intervall
age .0710973 .0960536 0.74 0.459 -.1171643 .2593589
grade .0816111 .0419074 1.95 0.051 -.0005259 .163748
not_smsa .0224809 .1131786 0.20 0.843 -.199345 .2443069
1.south -2.856488 .6765694 -4.22  0.000 -4.182539  -1.530436
year -.0636853 .0967747 -0.66 0.510 -.2533602 .1259896
south#c.year
1 .0264136 .0083216 3.17 0.002 .0101036 .0427235

Q Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy
depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtlogit likelihood function is calculated by Gauss—Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.

a
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Saved results

xtlogit, re saves the following in e ():

e(asbalanced)
e (asobserved)

Scalars
e(N) number of observations
e(N_g) number of groups
e(N_cd) number of completely determined observations
e(k) number of parameters
e(k_aux) number of auxiliary parameters
e(k_eq) number of equations in e (b)
e(k_eq-model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model
e(11l_c) log likelihood, comparison model
e(chi2) X2
e(chi2_c) x? for comparison test
e(rho) p
e(sigma_u) panel-level standard deviation
e(n_quad) number of quadrature points
e(g_min) smallest group size
e(g—avg) average group size
e(g_max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) xtlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model x? test
e(chi2_ct) Wald or LR; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1l method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict

factor variables fvset as asbalanced
factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log

e(gradient) gradient vector

e(\) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

xtlogit, fe saves the following in e():

Scalars
e() number of observations
e(N_g) number of groups
e(N_drop) number of observations dropped because of all positive or all negative outcomes
e(N_group_drop) number of groups dropped because of all positive or all negative outcomes
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq-_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(r2_p) pseudo R-squared

e(11) log likelihood

e(11_0) log likelihood, constant-only model

e(chi2) X2

e(g_min) smallest group size

e(g_avg) average group size

e(g_max) largest group size

e(p) significance

e(rank) rank of e(V)

e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, O otherwise
Macros

e(cmd) clogit

e(cmd2) xtlogit

e(cmdline) command as typed

e(depvar) name of dependent variable

e(ivar) variable denoting groups

e (model) fe

e(wtype) weight type

e (wexp) weight expression

e(title) title in estimation output

e(offset) linear offset variable

e(chi2type) LR; type of model x? test

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. Err.
e(group) name of group() variable
e(multiple) multiple if multiple positive outcomes within groups

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) bV

e(predict) program used to implement predict

e(marginsok)
e(marginsnotok)
e(asbalanced)

e (asobserved)

predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved
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Matrices
e(b)
e(Cns)
e(ilog)
e(gradient)
e (V)

Functions
e(sample)

coefficient vector

constraints matrix

iteration log

gradient vector

variance—covariance matrix of the estimators

marks estimation sample

xtlogit, pa saves the following in e ():

Scalars
e(N)
e(N_g)
e(df_m)
e(chi2)
e(p)
e(df _pear)
e(chi2_dev)
e(chi2_dis)
e(deviance)
e(dispers)
e(phi)
e(g_min)
e(g_avg)
e(g_max)
e(rank)
e(tol)
e(dif)
e(rc)

Macros
e(cmd)
e(cmd2)
e(cmdline)
e(depvar)
e(ivar)
e(tvar)
e(model)
e(family)
e(link)
e(corr)
e(scale)
e (wtype)
e (wexp)
e(offset)
e(chi2type)
e(vce)
e(vcetype)
e (nmp)
e(properties)
e(predict)

e(marginsnotok)

e(asbalanced)

e (asobserved)
Matrices

e(b)

e(R)

e(V)

Functions
e(sample)

number of observations
number of groups
model degrees of freedom

X2

significance

degrees of freedom for Pearson x?2
x?2 test of deviance

x? test of deviance dispersion
deviance

deviance dispersion

scale parameter

smallest group size

average group size

largest group size

rank of e(V)

target tolerance

achieved tolerance

return code

xtgee

xtlogit

command as typed

name of dependent variable

variable denoting groups

variable denoting time within groups
pa

binomial

logit; link function

correlation structure

x2, dev, phi, or #; scale parameter
weight type

weight expression

linear offset variable

Wald; type of model x? test

veetype specified in vce ()

title used to label Std. Err.

nmp, if specified

bV

program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
estimated working correlation matrix
variance—covariance matrix of the estimators

marks estimation sample
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Methods and formulas
xtlogit is implemented as an ado-file.

xtlogit reports the population-averaged results obtained using xtgee, family(binomial)
link(logit) to obtain estimates. The fixed-effects results are obtained using clogit. See [XT] xtgee
and [R] clogit for details on the methods and formulas.

If we assume a normal distribution, N (0, 02), for the random effects v;,

o _—v2/202 g
Pr(yit, -« Yin [Xit, - s Xin,) = c HF(yit7Xit,6+ Vi) ¢ dvi
—0o V2mo, iy
where ]
 ify#0
1+ exp(—=2)
F(y,2) = )
—_— otherwise
1+ exp(z)

The panel-level likelihood I; is given by

oo —v2/202 i
e Vi v
lq'/ = 700@ {t_HlF(yit’Xitﬁ—i_Vi)}dVi

o0
= / 9(Yit, Tit, vi)dv;

—0o0
This integral can be approximated with M -point Gauss—Hermite quadrature

) 2 M
/ e h(z)dx =~ Z w) h(ar)
m=1

—0o0
This is equivalent to
s M
[ e Y wien (@) £(a3)
—o0 m=1

where the w}, denote the quadrature weights and the a), denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods [;.

The default approximation of the log likelihood is by adaptive Gauss—Hermite quadrature, which
approximates the panel-level likelihood with

M
l; ~ V25, Z wy, exp {(a)?} 9(yir, zir, V26:05, + 1i;)
m=1

where &; and [i; are the adaptive parameters for panel 7. Therefore, with the definition of g(yi, T, V4 ),
the total log likelihood is approximated by
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n M B 2,\' * ~ 2 9 2
Lszilog[\/iai E w:fnexp{(a;kn)g}exp{ (\[i};%”;r fii)? 207}
i=1 3

m=1

n;
11 F it 2B + V25ias, + i)
=1

where w; is the user-specified weight for panel 7; if no weights are specified, w; = 1.

The default method of adaptive Gauss—Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for [i; and &; by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with Ei,o =1 and ﬁi,o =0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for [;, we use

M
lig = Z V26, 1w}, exp{a,)? } 9 (i, Tit, V26 g—1a%, + flig—1)
m=1

Letting
Timbo1 = V26, p_ 105, + Hi g1
M .
N V28, 1w, exp{ (ak,)? 9 (its Tit, Timok—1)
fik = Y (Timp—1) 3
m=1 ik
and
. J—1Wy, €XP (@) ? 19 (Yits Tit, Timk—1)
Ok = Z(Ti,m,kq)Q - “ { Tk} T - (Mi,k)Q
m=1 LK

and this is repeated until fi; 1, and 7; ;, have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e—6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method (aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

e*l’i2/2al2/

9(Wit, Tit, vi) = W {H F(yi,xi8+ I/l)}
v \t=1

and find «; the mode of g(yt, zit, ;). We calculate

32
Vi = =57 108{g (Wi wie, vi)}

3
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Then

o 9 1/2 M 9 1/2
/ g(yit,xm Vi)d’/i ~ <> Z wfn exp{(afn)z}g Yit, Tit, (7) afn +
m=1

— 00 Yi i
This adaptation is performed on the first iteration only; that is, the a; and ~y; are calculated once at

the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss—Hermite quadrature, the int-
method (ghermite) option, where p = 02 /(a2 + 1):

L = Z w; IOg{PI‘(yil, ey yznl

=1

xilw"ax’i’ﬂi)}

n 1 M n; 2p 1/2
~ Wy log — wrn F Yit, X't/g + a:n ( >
R PR L A

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

11 F i, xuB+ vi)
t=1

is well approximated by a polynomial. As panel size and p increase, the quadrature approximation can
become less accurate. For large p, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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Also see
[XT] xtlogit postestimation — Postestimation tools for xtlogit
[XT] quadchk — Check sensitivity of quadrature approximation
[XT] xtcloglog — Random-effects and population-averaged cloglog models
[XT] xtgee — Fit population-averaged panel-data models by using GEE
[XT] xtprobit — Random-effects and population-averaged probit models
[MI] estimation — Estimation commands for use with mi estimate
[R] clogit — Conditional (fixed-effects) logistic regression
[R] logit — Logistic regression, reporting coefficients
[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands



Title

xtlogit postestimation — Postestimation tools for xtlogit

Description

The following postestimation commands are available after xtlogit:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat! AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
lrtest likelihood-ratio test
margins? marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1

estat ic is not appropriate after xtlogit, pa.

2 The default prediction statistic for xtlogit, fe, pul, cannot be correctly handled by margins; however,
margins can be used after xtlogit, fe with the predict (pu0) option or the predict(xb) option.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

Random-effects model

predict [type] newvar [lf] [in] [,

RE _statistic nooffset ]

Fixed-effects model

predict [type] newvar [l_'f] [zn] [,

FE_statistic nooffset ]

Population-averaged model

predict [Iype] newvar [zf] [m] [,

PA _statistic nooffset ]

234
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RE _statistic Description

Main
xb linear prediction; the default
puo probability of a positive outcome assuming that the random effect is zero
stdp standard error of the linear prediction

FE _statistic Description

Main
pecl predicted probability of a positive outcome conditional on one positive
B outcome within group; the default
puo probability of a positive outcome assuming that the fixed effect is zero
xb linear prediction
stdp standard error of the linear prediction

PA _statistic Description

Main
mu predicted probability of depvar; considers the offset ()
rate predicted probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to x;3
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only

for the estimation sample.

The predicted probability for the fixed-effects model is conditional on there being only one outcome per
group. See [R] clogit for details.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb calculates the linear prediction. This is the default for the random-effects model.

pcl calculates the predicted probability of a positive outcome conditional on one positive outcome
within group. This is the default for the fixed-effects model.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset (),
and rate ignores those adjustments. mu and rate are equivalent if you did not specify offset ().
mu is the default for the population-averaged model.

puO calculates the probability of a positive outcome, assuming that the fixed or random effect for
that observation’s panel is zero (v = 0). This may not be similar to the proportion of observed
outcomes in the group.
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stdp calculates the standard error of the linear prediction.
score calculates the equation-level score, u; = Oln L;(x,3)/0(x;03).

nooffset is relevant only if you specified offset (varname) for xtlogit. This option modifies
the calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as x;¢(3 rather than x;;3 + offset;.

Remarks

> Example 1

In example 1 of [XT] xtlogit, we fit a random-effects model of union status on the person’s age
and level of schooling, whether she lived in an urban area, and whether she lived in the south. In
fact, we included the full interaction between south and year to capture both the overall effect of
residing in the south and a separate time-trend for southerners. To test whether residing in the south
affects union status, we must determine whether 1.south and south#c.year are jointly significant.
First, we refit our model, save the estimation results for later use, and use test to conduct a Wald
test of the joint significance of those two variables’ parameters:

. use http://www.stata-press.com/data/r12/union

(NLS Women 14-24 in 1968)

. xtlogit union age grade not_smsa south##c.year
(output omitted )

. estimates store fullmodel

. test 1.south 1.south#c.year

(1) [union]i.south = 0
( 2) [union]l.south#c.year = 0

chi2( 2) = 143.93
Prob > chi2 = 0.0000

The test statistic is clearly significant, so we reject the null hypothesis that the coefficients are jointly
zero and conclude that living in the south does significantly affect union status.

We can also test our hypothesis with a likelihood-ratio test. Here we fit the model without
south##c.year and then call 1rtest to compare this restricted model to the full model:

. xtlogit union age grade not_smsa

(output omitted )
. 1lrtest fullmodel .
Likelihood-ratio test LR chi2(2) = 146.55
(Assumption: . nested in fullmodel) Prob > chi2 = 0.0000

These results confirm our finding that living in the south affects union status.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.
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Also see

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands



Title

xtmelogit — Multilevel mixed-effects logistic regression

Syntax

xtmelogit depvar fe_equation || re_equation [ | | re_equation . .. } [ s options}

where the syntax of fe_equation is
[indepvam] [lf] [in] [, fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlisl} [ s re_options}
for random effects among the values of a factor variable
levelvar: R.varname [, re_options]

levelvar is a variable identifying the group structure for the random effects at that level or _all
representing one group comprising all observations.

fe_options Description

Model

noconstant suppress the constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables

options Description

Model

binomial (varname | #) set binomial trials if data are in binomial form

Integration
laplace use Laplacian approximation; equivalent to intpoints(1)
intpoints(# [#...]) set the number of integration (quadrature) points; default is 7

238
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Reporting
level (#)
or
variance

noretable
nofetable
estmetric
noheader
nogroup
@test
display_options

Maximization

maximize_options
retolerance (#)
reiterate(#)
matsqrt

matlog
refineopts (maximize_options)

set confidence level; default is 1level (95)
report fixed-effects coefficients as odds ratios

show random-effects parameter estimates as variances and
covariances

suppress random-effects table

suppress fixed-effects table

show parameter estimates in the estimation metric
suppress output header

suppress table summarizing groups

do not perform LR test comparing with logistic regression

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

control the maximization process during gradient-based
optimization; seldom used

tolerance for random-effects estimates; default is
retolerance(1e-8); seldom used

maximum number of iterations for random-effects estimation;
default is reiterate(50); seldom used

parameterize variance components using matrix square roots;
the default

parameterize variance components using matrix logarithms

control the maximization process during refinement of starting
values

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
zero; the default unless a factor variable is specified

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances zero; the
default if factor variables are specified

unstructured all variances—covariances distinctly estimated

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

indepvars and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Longitudinal/panel data > Multilevel mixed-effects models > Mixed-effects logistic regression

Description

xtmelogit fits mixed-effects models for binary/binomial responses. Mixed models contain both
fixed effects and random effects. The fixed effects are analogous to standard regression coefficients and
are estimated directly. The random effects are not directly estimated (although they may be obtained
postestimation) but are summarized according to their estimated variances and covariances. Random
effects may take the form of either random intercepts or random coefficients, and the grouping structure
of the data may consist of multiple levels of nested groups. The distribution of the random effects
is assumed to be Gaussian. The conditional distribution of the response given the random effects is
assumed to be Bernoulli, with success probability determined by the logistic cumulative distribution
function (c.d.f.). Because the log likelihood for this model has no closed form, it is approximated by
adaptive Gaussian quadrature.

Options

Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype), where vartype is
independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are zero.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p + 1)/2 unique parameters.

covariance (independent) is the default, except when the random-effects equation is a factor-
variable specification R.varname, in which case covariance(identity) is the default, and only
covariance(identity) and covariance(exchangeable) are allowed.

collinear specifies that xtmelogit not omit collinear variables from the random-effects equation.
Usually there is no reason to leave collinear variables in place, and in fact doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.
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binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

Integration

laplace specifies that log likelihoods be calculated using the Laplacian approximation, equivalent
to adaptive Gaussian quadrature with one integration point for each level in the model; laplace
is equivalent to intpoints(1). Computation time increases as a function of the number of
quadrature points raised to a power equaling the dimension of the random-effects specification.
The computational time saved by using laplace can thus be substantial, especially when you
have many levels and/or random coefficients.

The Laplacian approximation has been known to produce biased parameter estimates, but the bias
tends to be more prominent in the estimates of the variance components rather than in estimates
of the fixed effects. If your interest lies primarily with the fixed-effects estimates, the Laplace
approximation may be a viable faster alternative to adaptive quadrature with multiple integration
points.

Specifying a factor variable, R.varname, increases the dimension of the random effects by the
number of distinct values of varname, that is, the number of factor levels. Even when this number
is small to moderate, it increases the total random-effects dimension to the point where estimation
with more than one quadrature point is prohibitively intensive.

For this reason, when you have factor variables in your random-effects equations, the laplace
option is assumed. You can override this behavior by using the intpoints() option.

intpoints(#[# ...]) sets the number of integration points for adaptive Gaussian quadrature. The
more points, the more accurate the approximation to the log likelihood. However, computation
time increases with the number of quadrature points, and in models with many levels and/or many
random coefficients, this increase can be substantial.

You may specify one number of integration points applying to all levels of random effects in
the model, or you may specify distinct numbers of points for each level. intpoints(7) is the
default; that is, by default seven quadrature points are used for each level.

Reporting

level (#); see [R] estimation options.

or reports the fixed-effects coefficients transformed to odds ratios, that is, exp(b) rather than b.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or when replaying
previously estimated results.

variance displays the random-effects parameter estimates as variances and covariances. The default
is to display them as standard deviations and correlations.

noretable suppresses the table of random effects.
nofetable suppresses the table of fixed effects.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level.
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noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents xtmelogit from performing a likelihood-ratio test that compares the mixed-effects
logistic model with standard (marginal) logistic regression. This option may also be specified upon
replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for xtmelogit are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

from(init_specs) is particularly useful when combined with refineopts(iterate(0)), which
bypasses the initial optimization stage; see below.

retolerance (#) specifies the convergence tolerance for the estimated random effects used by adaptive
Gaussian quadrature. Although not estimated as model parameters, random-effects estimators are
used to adapt the quadrature points. Estimating these random effects is an iterative procedure,
with convergence declared when the maximum relative change in the random effects is less than
retolerance (). The default is retolerance(1e-8). You should seldom have to use this option.

reiterate(#) specifies the maximum number of iterations used when estimating the random effects
to be used in adapting the Gaussian quadrature points; see the retolerance () option. The default
is reiterate(50). You should seldom have to use this option.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance—covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance—covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance—covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

refineopts (maximize_options) controls the maximization process during the refinement of starting
values. Estimation in xtmelogit takes place in two stages. In the first stage, starting values
are refined by holding the quadrature points fixed between iterations. During the second stage,
quadrature points are adapted with each evaluation of the log likelihood. Maximization options
specified within refineopts() control the first stage of optimization; that is, they control the
refining of starting values.

maximize_options specified outside refineopts() control the second stage.

The one exception to the above rule is the nolog option, which when specified outside refine-
opts () applies globally.

from(init_specs) is not allowed within refineopts() and instead must be specified globally.
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Refining starting values helps make the iterations of the second stage (those that lead toward the so-
lution) more numerically stable. In this regard, of particular interest is refineopts (iterate (#)),
with two iterations being the default. Should the maximization fail because of instability in the
Hessian calculations, one possible solution may be to increase the number of iterations here.

The following option is available with xtmelogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Remarks are presented under the following headings:

Introduction

Two-level models

Other covariance structures

Distribution theory tor likelihood-ratio tests
Three-level models

Computation time and the Laplacian approximation
Crossed-etfects models

Introduction

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal/panel data, random effects are useful for modeling intracluster correlation; that
is, observations in the same cluster are correlated because they share common cluster-level random
effects.

xtmelogit allows for not just one, but many levels of nested clusters of random effects. For
example, in a three-level model you can specify random effects for schools and then random effects
for classes nested within schools. In this model, the observations (presumably, the students) comprise
the first level, the schools comprise the second level, and the classes comprise the third.

However, for simplicity, for now we consider the two-level model where, for a series of M
independent clusters, and conditional on a set of random effects u;,

Pr(yi; = 1|u;) = H (x50 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of ¢ = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar; #£0,
and y;; = 0 otherwise. The 1 X p row vector X;; are the covariates for the fixed effects, analogous
to the covariates you would find in a standard logistic regression model, with regression coefficients
(fixed effects) 3.

The 1 X g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean O and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is logistic regression, H () is the logistic cumulative distribution function
(c.d.f.). The logistic c.d.f. maps the linear predictor to the probability of a success (y;; = 1), with
H(v) = exp(v)/{1 + exp(v)}.
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Model (1) may also be stated in terms of a latent linear response, where only y;; = I (y;“] > 0)
is observed for the latent

*
Yij = XijB + 2iju; + €ij

The errors €;; are distributed as logistic with mean zero and variance 72 /3 and are independent of
'llj.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
xtmixed. Because of the relationship between LMEs and GLMMs, there is insight to be gained through
examination of the linear mixed model. This is especially true for Stata users because the terminology,
syntax, options, and output for fitting these types of models are nearly identical. See [XT] xtmixed
and the references therein, particularly in the Introduction, for more information.

Multilevel models with binary responses have been used extensively in the health and social
sciences. As just one example, Leyland and Goldstein (2001, sec. 3.6) describe a study of equity of
health care in Great Britain. Multilevel models with binary and other limited dependent responses
also have a long history in econometrics; Rabe-Hesketh, Skrondal, and Pickles (2005) provide an
excellent survey.

Log-likelihood calculations for fitting any mixed-effects model (LME, logistic, or otherwise) require
integrating out the random effects. For LME, this integral has a closed-form solution, but this is not so
with the logistic or any other GLMM. In dealing with this difficulty, early estimation methods avoided
the integration altogether. Two such popular methods are the closely related penalized quasilikelihood
(PQL) and marginal quasilikelihood (MQL) (Breslow and Clayton 1993). Both PQL and MQL use a
combination of iterative reweighted least squares (see [R] glm) and standard estimation techniques for
fitting LMEs. Efficient computational methods for fitting LMEs have existed for some time (Bates and
Pinheiro 1998; Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However,
both these methods suffer from two key disadvantages. First, they have been shown to be biased,
and this bias can be severe when clusters are small and/or intracluster correlation is high (Rodriguez
and Goldman 1995; Lin and Breslow 1996). Second, because they are “quasilikelihood” methods and
not true likelihood methods, their use prohibits comparing nested models via likelihood-ratio tests,
blocking the main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss—Hermite quadrature, or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models. Also,
if done correctly, quadrature approximations can be quite accurate, thus minimizing bias.

In discussing quadrature, it is easiest to relate to the simplest form of (1)—the simplest model
you can fit using xtmelogit—the two-level model with a random intercept,

Pr(y;; = 1) = H (xi;8 + u;)

This model can also be fit using xtlogit with the re option. xtlogit supports three types of Gauss—
Hermite quadrature; see [XT] xtlogit. The estimation method used by xtmelogit is a multicoefficient
and multilevel extension of one of these quadrature types, namely, adaptive Gaussian quadrature (AGQ)
based on conditional modes, with the multicoefficient extension from Pinheiro and Bates (1995) and
the multilevel extension from Pinheiro and Chao (2006); see Methods and formulas.
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Finally, using (1) and its multilevel extensions requires we state our convention of terminology.
Model (1) is what we call a two-level model, with extensions to three, four, or any number of levels.
In (1), the observation y;; is for individual 7 within cluster j and the individuals comprise the first
level and the clusters the second level of the model. In our hypothetical three-level model with classes
nested within schools, the observations within schools (the students, presumably) would constitute the
first level, the classes would constitute the second level, and the schools would constitute the third
level. This differs from certain citations in the classical ANOVA literature and texts such as Pinheiro
and Bates (2000) but is the standard in the vast literature on hierarchical models, for example, Skrondal
and Rabe-Hesketh (2004).

Two-level models

We begin with a simple application of (1). We begin with a two-level model because a one-level
model, in our terminology, is just standard logistic regression; see [R] logistic.

> Example 1

Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.
. use http://www.stata-press.com/data/ri12/bangladesh
(Bangladesh Fertility Survey, 1989)
. describe

Contains data from http://www.stata-press.com/data/r12/bangladesh.dta

obs: 1,934 Bangladesh Fertility Survey, 1989
vars: 7 28 May 2011 20:27
size: 19,340 (_dta has notes)

storage display value
variable name type format label variable label
district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float %9.0g Age, mean centered
childl byte  %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children

Sorted by: district

The women sampled were from 60 districts, identified by variable district. Each district contained
either urban or rural areas (variable urban) or both. Variable c_use is the binary response, with
a value of one indicating contraceptive use. Other covariates include mean-centered age and three
indicator variables recording number of children.

Consider a standard logistic regression model, amended to have random effects for each district.
Defining 7;; = Pr(c_use;; = 1), we have

logit(m;;) = fo + Brurban;; + frage;; + fachildl;; + F4child2;; + B5child3;; +u; (2)

for j = 1,...,60 districts, with ¢ = 1,...,n; women in district j.
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. xtmelogit c_use urban age child* || district:

Refining starting values:

Iteration O: log likelihood = -1219.2682
Iteration 1: log likelihood = -1209.3544
Iteration 2: log likelihood = -1207.1919

Performing gradient-based optimization:

Iteration O: log likelihood = -1207.1919
Iteration 1: log likelihood = -1206.8323
Iteration 2: log likelihood = -1206.8322

Iteration 3: log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60
Obs per group: min = 2

avg = 32.2

max = 118

Integration points = 7 Wald chi2(5) = 109.60
Log likelihood = -1206.8322 Prob > chi2 = 0.0000
c_use Coef. Std. Err. z P>|z| [95% Conf. Intervall

urban . 7322764 .1194857 6.13 0.000 .4980887 .9664641

age -.0264982 .0078916 -3.36 0.001 -.0419654 -.0110309

childl 1.116002 .1580921 7.06 0.000 .8061466 1.425856
child2 1.365895 .1746691 7.82 0.000 1.02355 1.70824
child3 1.344031 .1796549 7.48 0.000 .991914 1.696148

_cons -1.68929 .1477592 -11.43  0.000 -1.978892  -1.399687
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall

district: Identity
sd(_cons) .4643477 .0789531 .3327464 .6479975

LR test vs. logistic regression: chibar2(01) = 43.39 Prob>=chibar2 = 0.0000

Those of you familiar with xtmixed, Stata’s command for fitting linear mixed models, will
recognize the syntax and output. Whether you are familiar with xtmixed, however, there are enough
nuances in xtmelogit to warrant the guided tour:

1. By typing “c_use urban age child*”, we specified the binary response, c_use, and the fixed
portion of the model in the same way we would if we were using logit or any other estimation
command. Our fixed effects are a constant term (intercept) and coefficients on urban, age, and
the indicator variables childl, child2, and child3.

2. When we added “|| district:”, we specified random effects at the level identified by group
variable district. Because we wanted only a random intercept, that is all we had to type.

3. The estimation log consists of two parts:

(a) A set of iterations aimed at refining starting values. These are designed to be relatively quick
iterations aimed at getting the parameter estimates within a neighborhood of the eventual
solution, making the iterations in (b) more numerically stable.

(b) A set of “gradient-based” iterations. By default, these are Newton—Raphson iterations, but other
methods are available by specifying the appropriate maximize_options; see [R] maximize.

4. Within the output header you will find a series of group (district) statistics. District sizes vary
greatly, ranging the all way from n; = 2 to n; = 118.
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5. Just above the reported log likelihood, the number of “Integration Points” is displayed as 7,
the default. As stated previously in Introduction, log likelihoods are approximated using adaptive
Gaussian quadrature, and the more integration points you use, the better the approximation;
see Methods and formulas. You can specify an alternate number of integration points using the
intpoints() option.

In any case, refitting this model with more integration points would demonstrate that seven
integration points is sufficient.

6. The first estimation table reports the fixed effects, and these can be interpreted just as you would
the output from logit. You can also specify the or option at estimation or on replay to display
the fixed effects as odds ratios instead.

If you did display results as odds ratios, you would find urban women to have roughly double the
odds of using contraception as that of their rural counterparts. Having any number of children will
increase the odds from three- to fourfold, when compared with the base category of no children.
Contraceptive use also decreases with age.

7. The second estimation table shows the estimated variance components. The first section of the table
is labeled “district: Identity”, meaning that these are random effects at the district level
and that their variance—covariance matrix is a multiple of the identity matrix; that is, ¥ = UZI.
Because we have only one random effect at this level, xtmelogit knew that Identity is the only
possible covariance structure. In any case, o, was estimated as 0.464 with standard error 0.079.

If you prefer variance estimates, 312“ to standard deviation estimates, &, specify the variance
option either at estimation or on replay.

8. A likelihood-ratio test comparing the model to ordinary logistic regression, (2) without u;, is
provided and is highly significant for these data.

9. Finally, because (2) is a simple random-intercept model, you can also fit it with xtlogit, specifying
the re option.

We now store our estimates for later use.

. estimates store r_int

4

In what follows we will be extending (2), focusing on variable urban. Before we begin, to keep
things short we restate (2) as

logit(mj) =B+ ﬂlurbanij + ]:ij + uj

where F;; is merely shorthand for the portion of the fixed-effects specification having to do with age
and children.

> Example 2

Extending (2) to allow for a random slope on the indicator variable urban yields the model
IOgit(’ITij) = ﬂ() + Blurbanij + .7:7;]' + Uj + vjurbanij (3)

which we can fit by typing

. xtmelogit c_use urban age child* || district: urban
(output omitted )

. estimates store r_urban
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Extending the model was as simple as adding urban to the random effects specification, so that
the model now includes a random intercept and a random coefficient on urban. We dispense with
the output because, although this is an improvement over the random-intercept model (2),

. lrtest r_int r_urban

Likelihood-ratio test LR chi2(1) = 3.66
(Assumption: r_int nested in r_urban) Prob > chi2 = 0.0558

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

we find the default covariance structure for (uj, vj), covariance(Independent),

2
o uj | |oz O
EVarL}j}[O 02}

v

to be inadequate. We state that the random-coefficient model is an “improvement” over the random-
intercept model because the null hypothesis of the LR comparison test (Hp: 02 = 0) is on the boundary
of the parameter test. This makes the reported p-value, 5.6%, an upper bound on the actual p-value,
which is actually half that; see [XT] xtmixed for more details on boundary tests.

We see below that we can reject this model in favor of one that allows correlation between u;
and v;.
J

. xtmelogit c_use urban age child* || district: urban, covariance(unstructured)
> variance
(output omitted )
Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60
Obs per group: min = 2
avg = 32.2
max = 118
Integration points = 7 Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000
c_use Coef. Std. Err. z P>|z]| [95% Conf. Intervall
urban .8157872 .171552 4.76 0.000 .4795516 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902
childl 1.13252 .1603285 7.06 0.000 .8182819 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
child3 1.353827 .1828801 7.40 0.000 .9953881 1.712265
_cons -1.71165 .1605617 -10.66 0.000 -2.026345 -1.396954
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
district: Unstructured
var (urban) .6663222 .3224715 .258071 1.7204
var (_cons) .3897434 .1292459 .2034723 .7465388
cov(urban, _cons) -.4058846 .1755418 -.7499403 -.0618289
LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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. estimates store r_urban_corr
. lrtest r_urban r_urban_corr

Likelihood-ratio test LR chi2(1) 11.38
(Assumption: r_urban nested in r_urban_corr) Prob > chi2 = 0.0007

By specifying covariance (unstructured) above, we told xtmelogit to allow correlation between
random effects at the “district level”; that is,

. 2
Uj Ouv g

v

The variance option is a display option that does not affect estimation but merely displays the
variance components as variances and covariances instead of standard deviations and correlations.
This feature will prove convenient in the discussion that follows.

4

> Example 3

The purpose of introducing a random coefficient on the binary variable urban in (3) was to allow
for separate random effects, within each district, for the urban and rural areas of that district. Hence,
if we had the binary variable rural in our data such that rural;; = 1 — urban;;, then we can
reformulate (3) as

logit(m;;) = forural;; + (o + B1)urban;; + F;; + ujrural;; + (u; + vj)urban;; (3a)

where we have translated both the fixed portion and random portion to be in terms of rural rather
than a random intercept. Translating the fixed portion is not necessary to make the point we make
below, but we do so anyway for uniformity.

Translating the estimated random-effects parameters from the previous output to ones appropriate
for (3a), we get Var(u;) = 52 = 0.390,

Var(u; +v;) = 2 + 02 + 26y

0.390 + 0.666 — 2(0.406) = 0.244

and Cov(uj, uj + v;) = 02 + Oy = 0.390 — 0.406 = —0.016.

An alternative that does not require remembering how to calculate variances and covariances
involving sums—and one that also gives you standard errors—is to let Stata do the work for you:
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. generate byte rural = 1 - urban
. xtmelogit c_use rural urban age child#*, nocons || district: rural urban,
> nocons cov(unstr) var

(output omitted )

Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60
Obs per group: min = 2

avg = 32.2

max = 118

Integration points = 7 Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
c_use Coef. Std. Err. z P>|z| [95% Conf. Intervall

rural -1.71165 .1606618 -10.66  0.000 -2.026345 -1.396954

urban -.8958623 .1704961 -5.256 0.000 -1.230028 -.5616962

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

childl 1.13252 .1603285 7.06 0.000 .818282 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
child3 1.353827 .1828801 7.40 0.000 .9953882 1.712265
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall]

district: Unstructured

var (rural) .3897439 .1292459 .2034726 . 7465394

var (urban) .2442965 .1450673 .0762886 . 7823029

cov(rural,urban) -.0161411 .1057469 -.2234011 .191119

LR test vs. logistic regression: chi2(3) = 58.42  Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The above output demonstrates an equivalent fit to that we displayed for model (3) in example 2,
with the added benefit of a more direct comparison of the parameters for rural and urban areas. qQ

Q Technical note

We used the binary variables, rural and urban, instead of the factor notation i.urban because,
although supported in the fixed-effects specification of the model, such notation is not supported in
random-effected specifications. 0

Q Technical note

Our model fits for (3) and (3a) are equivalent only because we allowed for correlation in the
random effects for both. Had we used the default “Independent” covariance structure, we would
be fitting different models; in (3) we would be making the restriction that Cov(uj, 11]-) = 0, whereas
in (3a) we would be assuming that Cov(u;, u; + v;) = 0.

The moral here is that, although xtmelogit will do this by default, one should be cautious when
imposing an independent covariance structure, because the correlation between random effects is not
invariant to model translations that would otherwise yield equivalent results in standard regression
models. In our example, we remapped an intercept and binary coefficient to two complementary
binary coefficients, something we could do in standard logistic regression without consequence, but
that here required more consideration.

Rabe-Hesketh and Skrondal (2008, 150-153) provide a nice discussion of this phenomenon in the
related case of recentering a continuous covariate. Q
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Other covariance structures

In the above examples, we demonstrated the Independent and Unstructured covariance struc-
tures. Also available are Identity (seen previously in output but not directly specified), which
restricts random effects to be uncorrelated and share a common variance, and Exchangeable, which
assumes a common variance and a common pairwise covariance.

You can also specify multiple random-effects equations at the same level, in which case the above
four covariance types can be combined to form more complex blocked-diagonal covariance structures.
This could be used, for example, to impose an equality constraint on a subset of variance components
or to otherwise group together a set of related random effects.

Continuing the previous example, typing
. xtmelogit c_use urban age child* || district: child*, cov(exchangeable) || district:
would fit a model with the same fixed effects as (3) but with random-effects structure
logit(m;;) = Bo + - - - + uq;childl,; + ugjchild2;; + uzjchild3;; + vj

That is, we have random coefficients on each indicator variable for children (the first district:
specification) and an overall district random intercept (the second district: specification). The
above syntax fits a model with overall covariance structure

U 03 . o. 0
U 0. 02 o 0
Y=Var| Y| =]|"° v "%
U3 o. 0. o, 0
) 2
U; 0 0 0 o

reflecting the relationship among the random coefficients for children. We did not have to specify
noconstant on the first district: specification. xtmelogit automatically avoids collinearity by
including an intercept on only the final specification among repeated-level equations.

Of course, if we fit the above model we would heed our own advice from the previous technical
note and make sure that not only our data but also our specification characterization of the random
effects permitted the above structure. That is, we would check the above against a model that had
an Unstructured covariance for all four random effects and then perhaps against a model that
assumed an Unstructured covariance among the three random coefficients on children, coupled
with independence with the random intercept. All comparisons can be made by storing estimates
(command estimates store) and then using lrtest, as demonstrated previously.

Distribution theory for likelihood-ratio tests

A keen observer of the output for fitting the equivalent models (3) and (3a) may have noticed
that, in the output for (3a), the covariance parameter does not appear at all significant. In fact, an LR
test would confirm this. In the results for (3), however, all three variance components appear to be
significant, and you would be hard pressed to prove otherwise. We thus have two entirely equivalent
model fits, yet the first fit relies on all three variance components, whereas with the second you could
presumably drop the covariance between the random coefficients. Whether generalizing from model
(2) to model (3)/(3a) requires one or two additional parameters is unclear. Asked another way: do
the models differ by 1 or 2 degrees of freedom?

Such paradoxical cases are at the core of the central issue concerning distribution theory for LR
tests, where oftentimes significance levels cannot be exactly computed when models differ by (or
appear to differ by) more than one variance component. We will not go into the details here but
instead direct you to the section in [XT] xtmixed with the same name as this one. What is stated
there applies equally to xtmelogit.
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When significance levels cannot be computed exactly, both xtmelogit and lrtest will caution
you, and you may have noticed the following message at the bottom of some of the xtmelogit
output we have produced:

Note: LR test is conservative and provided only for reference.

In Stata, part of that message is blue, meaning that you can click on it for more details. If you are
not interested in all the details, it suffices to know that by “conservative” we mean that the p-value
displayed is an upper bound on the actual p-value. If you choose to reject the null hypothesis of
a reduced model on the basis of the displayed p-value, you would also reject based on the actual
p-value, because it would be even smaller.

The output of 1rtest will produce a similar note in these situations. However, because 1lrtest
can be used to compare all kinds of nested models, determining whether boundary conditions exist
is up to the user.

Three-level models

The methods we have discussed so far extend from two-level models to three or more level models
with nested random effects. By nested we mean that the random effects shared within lower-level
subgroups are unique to the upper-level groups. For example, assuming that classroom effects would
be nested within schools would be natural, because classrooms are unique to schools.

> Example 4

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive
ability of patients with schizophrenia, compared with their relatives and control subjects. Cognitive
ability was measured as the successful completion of the “Tower of London”, a computerized task,
measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements
(one for each difficulty level), and because patients’ relatives were also tested, a family identifier,
family, was also recorded.

. use http://www.stata-press.com/data/r12/towerlondon, clear
(Tower of London data)
. describe

Contains data from http://www.stata-press.com/data/r12/towerlondon.dta

obs: 677 Tower of London data

vars: 5 31 May 2011 10:41

size: 4,739 (_dta has notes)

storage display value
variable name type format label variable label
family int %8.0g Family ID
subject int %9.0g Subject ID
dtlm byte %9.0g 1 = task completed
difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte 7%8.0g 1: controls; 2: relatives; 3:
schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families.
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. xtmelogit dtlm difficulty i.group || family: || subject:
(output omitted )
Mixed-effects logistic regression Number of obs = 677
No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points
family 118 2 5.7 27 7
subject 226 2 3.0 3 7
Wald chi2(3) = 74.89
Log likelihood = -305.12043 Prob > chi2 = 0.0000
dtlm Coef. Std. Err. z P>|z| [95% Conf. Intervall
difficulty -1.648506 .1932139 -8.53  0.000 -2.027198 -1.269814
group
2 -.24868 .3544065 -0.70 0.483 -.943304 .4459441
3 -1.0523 .3999896 -2.63 0.009 -1.836265  -.2683348
_cons -1.485861 .2848469 -5.22  0.000 -2.04415  -.9275709
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
family: Identity
sd(_cons) . 7544415 .3457249 .3072983 1.852213
subject: Identity
sd(_cons) 1.066739 .3214235 .5909883 1.925472
LR test vs. logistic regression: chi2(2) = 17.54  Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

But we would prefer to see odds ratios and variances for the random-effects parameters:

. xtmelogit, or variance

Mixed-effects logistic regression Number of obs = 677
No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points
family 118 2 5.7 27 7
subject 226 2 3.0 3 7
Wald chi2(3) = 74.89
Log likelihood = -305.12043 Prob > chi2 = 0.0000
dtlm | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
difficulty .192337 .0371622 -8.53  0.000 .131704 .2808839
group
2 . 7798295 .2763767 -0.70 0.483 .3893393 1.561964
3 .3491338 .1396499 -2.63 0.009 .1594117 .7646518
_cons .2263075 .064463 -5.22  0.000 .1294902 .3955133
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Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall]

family: Identity

var (_cons) .569182 .5216584 .0944322 3.430694
subject: Identity

var (_cons) 1.137931 .6857498 .3492672 3.707442
LR test vs. logistic regression: chi2(2) = 17.54  Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

Notes:

1. This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is important—xtmelogit
assumes that subject is nested within family.

2. The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families. Also the number of integration
points for adaptive Gaussian quadrature is displayed within this table, because you can choose to
have it vary by model level. As with two-level models, the default is seven points.

You can suppress this table with the nogroup or the noheader option, which will suppress the
rest of the header as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the random-effects structure, the odds of successful completion of the Tower of
London decrease dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects. Of course we would make similar conclusions
from a standard logistic model fit to the same data, but the odds ratios would differ somewhat.

N

Q Technical note

In the previous example, the subjects are coded with unique values between 1 and 251 (with some
gaps), but such coding is not necessary to produce nesting within families. Once we specified the
nesting structure to xtmelogit, all that was important was the relative coding of subject within
each unique value of family. We could have coded subjects as the numbers 1, 2, 3, and so on,
restarting at 1 with each new family, and xtmelogit would have produced the same results.

Group identifiers may also be coded using string variables.
a

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, xtmelogit can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.
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Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p?>{M + M(Ng)9}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, N¢ is the number of quadrature points, and ¢; is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time is
(Ng)?t. However, because this is a power function, this factor can get prohibitively large. Consider
a model with one random intercept and three random coefficients, such as that discussed in Other
covariance structures. For such a model, (Ng)% = 7% = 2,401 using the default number of quadrature
points. Even a modest reduction to five quadrature points would reduce this factor by almost fourfold
(5% = 625) which, depending on M and p, could drastically speed up estimation.

Ideally, you want to use enough quadrature points such that your estimates are stable and that
adding more quadrature points would not change the estimates much. If you want accurate estimates,
we recommend that you perform this check. We have tacitly followed this advice in all the models
we have fit thus far. In each example, increasing the number of quadrature points from the default
of seven did not make much of a difference.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of Ny = 1, otherwise known as the Laplacian approximation;
see Methods and formulas. You can obtain this estimate either by using the laplace option or by
directly setting intpoints(1). The computational benefit is evident—one raised to any power equals
one—and the Laplacian approximation has been shown to perform well in certain situations (Liu and
Pierce 1994; Tierney and Kadane 1986).

In the previous section, we fit a three-level model to the Tower of London data using seven
quadrature points. We refit the same model, this time via the Laplacian approximation:

. xtmelogit dtlm difficulty i.group || family: || subject:, laplace or variance
(output omitted )
Mixed-effects logistic regression Number of obs = 677
No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points
family 118 2 5.7 27 1
subject 226 2 3.0 3 1
Wald chi2(3) = 76.09
Log likelihood = -306.51035 Prob > chi2 = 0.0000
dtlm | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
difficulty .2044132 .0377578 -8.60 0.000 .1423248 .2935872
group
2 . 7860452 .2625197 -0.72  0.471 .4084766 1.512613
3 .3575718 .1354592 -2.71  0.007 .1701774 .7513194
_cons .2396663 .0639645 -5.35 0.000 .1420464 .4043746
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Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall]

family: Identity
var (_cons) .5229424 .4704255 .0896881 3.049108

subject: Identity
var (_cons) .790933 .5699271 .1926569 3.247094

LR test vs. logistic regression: chi2(2) = 14.76  Prob > chi2 = 0.0006

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

Comparing these results to those previously obtained, we observe the following:

1. Odds ratios and their standard errors are well approximated by the Laplacian method. Therefore,
if your interest lies primarily here, then laplace may be a viable alternative.

2. Estimates of variance components exhibit bias, particularly at the lower (subject) level.
3. The model log-likelihood and comparison LR test are in fair agreement.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
more in the estimated variance components than in the estimates of the fixed effects.

Item 3 is of particular interest, because it demonstrates that laplace can produce a decent estimate
of the model log likelihood. Consequently, you can use laplace during the model building phase of
your analysis, during which you are comparing competing models by using LR tests. Once you settle
on a parsimonious model that fits well, you can then increase the number of quadrature points and
obtain more accurate parameter estimates for further study.

We discuss such a scenario in Other covariance structures, where we posit a blocked-diagonal
exchangeable/identity covariance structure and recommend comparing against more complex structures
to verify our assumptions. The comparisons ruling out the more complex structures can be performed
more quickly using laplace.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas. Asymptotic theory dictates that this approximation improves with larger clusters. Of
course, the key question, as always, is “How large is large enough?” Also, there are data situations
where the Laplacian approximation performs well even with small clusters. Therefore, it is difficult
to make a definitive call as to when you can expect laplace to yield accurate results across all
aspects of the model.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Crossed-effects models

Not all mixed-effects models contain nested random effects.
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> Example 5

Rabe-Hesketh and Skrondal (2008, 481ff) perform an analysis on school data from Fife, Scotland.
The data, originally from Paterson (1991), are from a study measuring students’ attainment as an
integer score from 1 to 10, based on the Scottish school exit examination taken at age 16. The study
comprises 3,435 students who first attended any one of 148 primary schools and then any one of 19
secondary schools.

. use http://www.stata-press.com/data/r12/fifeschool
(School data from Fife, Scotland)
. describe

Contains data from http://www.stata-press.com/data/r12/fifeschool.dta

obs: 3,435 School data from Fife, Scotland
vars: 5 28 May 2011 10:08

size: 24,045 (_dta has notes)

storage display value

variable name type format label variable label
pid int %9.0g Primary school ID

sid byte %9.0g Secondary school ID
attain byte %9.0g Attainment score at age 16
vrq int %9.0g Verbal-reasoning score from final

year of primary school

sex byte %9.0g 1: female; 0: male

Sorted by:

. generate byte attain_gt_6 = attain > 6

To make the analysis relevant to our present discussion, we focus not on the attainment score itself
but instead on whether the score is greater than 6. We wish to model this indicator as a function of
the fixed effect sex and of random effects due to primary and secondary schools.

For this analysis, it would make sense to assume that the random effects are not nested, but instead
crossed, meaning that the effect due to primary school is the same regardless of the secondary school
attended. Our model is thus

logit{Pr(attain;;; > 6)} = Bo + Sisexjr + uj + vk (4)
for student 4, ¢ = 1,...,n;;, who attended primary school j, j = 1,...,148, and then secondary
school k, k=1,...,19.

Because there is no evident nesting, one solution would be to consider the data as a whole and
fit a two-level, one-cluster model with random-effects structure

U1

i 2
_ | w148 ) | oaliag 0
u= o N(0,%); ¥ = [ 0 03119}

L V19

We can fit such a model by using the group designation _all:, which tells xtmelogit to treat
the whole dataset as one cluster, and the factor notation R.varname, which mimics the creation of
indicator variables identifying schools:

. xtmelogit attain_gt_6 sex || _all:R.pid || _all:R.sid, or variance
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But we do not recommend fitting this model this way, because of high total dimension (148419 = 167)
of the random effects. This would require working with matrices of column dimension 167, which
is probably not a problem for most current hardware, but would be if this number got much larger.

An equivalent way to fit (4) that has a smaller dimension is to treat the clusters identified by
primary schools as nested within the entire data, that is, as nested within the “_all” group.

. xtmelogit attain_gt_6 sex || _all:R.sid || pid:, or variance

Note: factor variables specified; option laplace assumed

(output omitted )
Mixed-effects logistic regression Number of obs = 3435
No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points
_all 1 3435 3435.0 3435 1
pid 148 1 23.2 72 1
Wald chi2(1) = 14.28
Log likelihood = -2220.0035 Prob > chi2 = 0.0002
attain_gt_6 | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
sex 1.32512 .0986967 3.78 0.000 1.145135 1.533395
_cons .5311498 .0622641 -5.40 0.000 .4221188 .6683427
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
_all: Identity
var(R.sid) .1239741 .0694743 .0413354 .3718255
pid: Identity
var (_cons) .4520491 .0953864 .2989334 .6835916
LR test vs. logistic regression: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

Choosing the primary schools as those to nest was no accident; because there are far fewer secondary
schools than primary schools, the above required only 19 random coefficients for the secondary
schools, and one random intercept at the primary school level, for a total dimension of 20. Our data
also include a measurement of verbal reasoning, variable vrq. Adding a fixed effect due to vrq in
(4) would negate the effect due to secondary school, a fact we leave to you to verify as an exercise.

4

See [XT] xtmixed for a similar discussion of crossed effects in the context of linear mixed models.
Also see Rabe-Hesketh and Skrondal (2008, chap. 11) for more examples of crossed-effects models,
including models with random interactions, and for more techniques on how to avoid high-dimensional
estimation.

Q Technical note

The estimation in the previous example was performed using a Laplacian approximation, even
though we did not specify this. Whenever factor variables are used in random-effects specifications
(the R.varname notation), estimation reverts to the Laplacian method because of the high dimension
induced by having factor variables.
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In the above example, through some creative nesting we reduced the dimension of the random
effects to 20, but this is still too large to permit estimation via adaptive Gaussian quadrature; see
Computation time and the Laplacian approximation. Even with two quadrature points, our rough
formula for computation time would contain within it a factor of 220 — 1,048,576.

The laplace option is therefore assumed when you use factor variables. If the number of distinct
levels of your factors is small enough (say, five or fewer) to permit estimation via AGQ, you can
override the imposition of laplace by specifying the intpoints() option.

a

Saved results

xtmelogit saves the following in e():

e(reparm_rc)
e(rc)
e(converged)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_f) number of FE parameters
e(k_r) number of RE parameters
e(k_rs) number of standard deviations
e(k_rc) number of correlations
e(df_m) model degrees of freedom
e(11) log likelihood
e(chi2) X2
e(p) p-value for x?
e(11l_c) log likelihood, comparison model
e(chi2_c) x?, comparison model
e(df_c) degrees of freedom, comparison model
e(p_c) p-value, comparison model
e(rank) rank of e(V)

return code, final reparameterization
return code
1 if converged, O otherwise
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Macros

e(cmd) xtmelogit

e(cmdline) command as typed

e(depvar) name of dependent variable

e(ivars) grouping variables

e(model) logistic

e(title) title in estimation output

e(offset) linear offset variable

e(binomial) binomial number of trials

e(redim) random-effects dimensions

e(vartypes) variance-structure types

e(revars) random-effects covariates

e(n_quad) number of integration points

e(laplace) laplace, if Laplace approximation

e(chi2type) Wald, type of model x>

e(vce) bootstrap or jackknife if defined

e(vcetype) title used to label Std. Err.

e (method) ML

e(opt) type of optimization

e(ml_method) type of m1 method

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in checksum

e(properties) bV

e(estat_cmd) program used to implement estat

e(predict) program used to implement predict

e(marginsnotok) predictions disallowed by margins

e(asbalanced) factor variables fvset as asbalanced

e(asobserved) factor variables fvset as asobserved
Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(N_g) group counts

e(g_min) group-size minimums

e(g_avg) group-size averages

e(g_max) group-size maximums

e(V) variance—covariance matrix of the estimator
Functions

e(sample) marks estimation sample

Methods and formulas

xtmelogit is implemented as an ado-file.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by xtmelogit (option binomial()), the methods presented below are in terms of the
more general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a
series of 7;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y; = (y;1,- .- ,yjnj)’, given a set of cluster-level random effects u, is
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ng

=T [(7) 0+ mm P 1~ 1003wy

i=1
= exp (Z [yij (%38 + zi;u;) — 15 log {1 + exp (x;;8+ z;5u;)} + log (y])])
i=1 ij
for H(v) = exp(v)/{1 + exp(v)}.
Defining rj = (rj1,...,7jn,;) and
c(yj,rj) Zlqg( 'j>
Yij

where c(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

fly;hay) = exp [y} (X;8 4 Zjuy) — rllog {1+ exp (X;8+ Zju;)} + ¢ (y;,r5)]

where X; is formed by stacking the row vectors X;;, Z; is formed by stacking the row vectors z;;,
and we extend the definitions of the functions log() and exp() to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and g X ¢ variance matrix
Y, the likelihood contribution for the j cluster is obtained by integrating u; out the joint density

[y u5),
- —1/2 -
L(8,%) = (2m) /2 i / /f(yj|uj)exp (—u}E 1uj/2) du,
- o —q/2 |y ~1/2 . .
= exp {e vy} (20) 2 27 [ exp {9 (8,30, b,
where
9(8.2,u;) =y} (X;8+ Z;ju;) — rjlog {1+ exp(X,;8+ Z;u;)} — ujT " 'u, /2
and for convenience, in the arguments of g() we suppress the dependence on the observable data
(Yjarj7Xj7 ZJ)
The integration in (5) has no closed form and thus must be approximated. The Laplacian approx-

imation (Tierney and Kadane 1986; Pinheiro and Bates 1995) is based on a second-order Taylor
expansion of g (3, X, u;) about the value of u; that maximizes it. Taking first and second derivatives,

we obtain 5 5
9 (8,3,u;) = w =7 {y; —m(B,u;)} — ="'y,
J
0 b
¢ (8,5uy) = TLBE) {Z)V(B.w)Z; +27'}

Ou;0u
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where m(3, u;) is the vector function with 4th element equal to the conditional mean of y;; given
u,, that is, r;; H (x;; 8+ z;;u;). V(B,u;) is the diagonal matrix whose diagonal entries v;; are the
conditional variances of y;; given u;, namely,

vij = rijH (xi58 + ziju;) {1 — H (xi;8 + ziju;) }

The maximizer of g (3, ¥, u;) is uj such that ¢’ (3, £, 1;) = 0. The integrand in (5) is proportional
to the posterior density f (u] ly;), so U, also represents the posterior mode, a plausible estimator of
u; in its own right.

Given the above derivatives, the second-order Taylor approximation then takes the form

- 1 ~ ~ ~
g (/87 2) uj) =g (/67 23 uj) + 5 (uj - uj)/ g// (ﬁ, Ea uj) (uj - uj) (6)
The first-derivative term vanishes because ¢’ (3, %,1;) = 0. Therefore,
/exp {9(B,2,u;)}du; ~exp{g (B, %,u,)}
1 ~ ~ ~
< [ exp [2 (w; = &) {—¢" (8.3.8,)} (w; — ;)| du, (7
_ = q/2__ 1 =\ —1/2
= exp{g(8,%, 1)} (2m)*" |=¢" (B, %, u;)|

because the latter integrand can be recognized as the “kernel” of a multivariate normal density.

Combining the above with (5) (and taking logs) gives the Laplacian log-likelihood contribution of
the jth cluster,

a 1 ~
L]L- P(8,2) = 3 log |X[ — log [R;[ + g (B, %, 1;) + c(yj, 1)

where R is an upper-triangular matrix such that —g” (8, %, 4;) = R;R;. Pinheiro and Chao (2006)
show that U, and R; can be efficiently computed as the iterative solution to a least-squares problem

by using matrix decomposition methods similar to those used in fitting LME models (Bates and
Pinheiro 1998; Pinheiro and Bates 2000; [XT] xtmixed).

The fidelity of the Laplacian approximation is determined wholly by the accuracy of the approxi-
mation in (6). An alternative that does not depend so heavily on this approximation is integration via
adaptive Gaussian quadrature (AGQ; Naylor and Smith 1982; Liu and Pierce 1994).

The application of AGQ to this particular problem is from Pinheiro and Bates (1995). When we
reexamine the integral in question, a transformation of integration variables yields

/exp {9(8,%,u;)}du; = |Rj\71 /exp {g (ﬂ72,ﬁj +R;1t)}dt
(8)
= (2m)92|R,;| /exp {9 (82,0, + R 't) + t't/2} ¢(t)dt

where ¢() is the standard multivariate normal density. Because the integrand is now expressed as
some function multiplied by a normal density, it can be estimated by applying the rules of standard
Gauss—Hermite quadrature. For a predetermined number of quadrature points Ng, define a; = \/iaz
and wy, = wi/y/m, for k = 1,...,Ng, where (a},w;) are a set of abscissas and weights for
Gauss—Hermite quadrature approximations of f exp(—2?) f(x)dw, as obtained from Abramowitz and
Stegun (1972, 924).
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Define ayx = (ag,,Gk,, - - - ,akq)'; that is, ay is a vector that spans the N abscissas over the
dimension g of the random effects. Applying quadrature rules to (8) yields the AGQ approximation,

/eXp {9 (B, %, u;)} du;

Ng Ng q
~@2m) 2Ry TNy YT [eXp {9(8,2.1; + Ry "aw) + ajan/2) [ ] ws,
ki=1  kg=1 p=1

= (27T)Q/2éj (B,%)

resulting in the AGQ log-likelihood contribution of the ith cluster,
1 ~
AG
L399B,2) = —5 log|%] + 1o { G(8, %)} + cly; 1)

The “adaptive” part of adaptive Gaussian quadrature lies in the translation and rescaling of the
integration variables in (8) by using U; and R! respectively. This transformation of quadrature
abscissas (centered at zero in standard form) is chosen to better capture the features of the integrand,
which through (7) can be seen to resemble a multivariate normal distribution with mean u; and
variance Rj_le_T. AGQ is therefore not as dependent as the Laplace method upon the approximation
in (6). In AGQ, (6) serves merely to redirect the quadrature abscissas, with the AGQ approximation
improving as the number of quadrature points, N¢, increases. In fact, Pinheiro and Bates (1995)
point out that AGQ with only one quadrature point (¢ = 0 and w = 1) reduces to the Laplacian
approximation.

The log likelihood for the entire dataset is then simply the sum of the contributions of the M individual
clusters, namely, L(3,%) = ij\il L?ap (8,%) for Laplace and L(B3,X) = Z;Vil L?GQ (8,%) for
adaptive Gaussian quadrature.

Maximization of L(3,X) is performed with respect to (3, ), where 0 is a vector comprising the
unique elements of the matrix square root of X¥. This is done to ensure that ¥ is always positive
semidefinite. If the matlog option is specified, then @ instead consists of the unique elements of
the matrix logarithm of X. For well-conditioned problems both methods produce equivalent results,
yet our experience deems the former as more numerically stable near the boundary of the parameter
space.

Once maximization is achieved, parameter estimates are mapped from (3,8) to (3,7), where
4 is a vector containing the unique (estimated) elements of X, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary to (a) obtain a parameterization under which parameter estimates
can be displayed and interpreted individually, rather than as elements of a matrix square root (or
logarithm), and (b) parameterize these elements such that their ranges each encompass the entire real
line.

Parameter estimates are stored in e (b) as (Zi‘, ), with the corresponding variance—covariance matrix
stored in e(V). Parameter estimates can be displayed in this metric by specifying the estmetric
option. However, in xtmelogit output, variance components are most often displayed either as
variances and covariances (the variance option) or as standard deviations and correlations (the
default).

The approach outlined above can be extended from two-level models to higher-level models; see
Pinheiro and Chao (2006) for details.
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Also see

[XT] xtmelogit postestimation — Postestimation tools for xtmelogit

[XT] xtmepoisson — Multilevel mixed-effects Poisson regression

[XT] xtmixed — Multilevel mixed-effects linear regression

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models
[xT] xtrec — Random-coefficients model

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands
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Title

xtmelogit postestimation — Postestimation tools for xtmelogit

Description

The following postestimation commands are of special interest after xtmelogit:

Command Description
estat group summarize the composition of the nested groups
estat recovariance display the estimated random-effects covariance matrix (or matrices)

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized
predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat group reports number of groups and minimum, average, and maximum group sizes for
each level of the model. Model levels are identified by the corresponding group variable in the data.
Because groups are treated as nested, the information in this summary may differ from what you
would get if you tabulated each group variable individually.

estat recovariance displays the estimated variance—covariance matrix of the random effects
for each level in the model. Random effects can be either random intercepts, in which case the
corresponding rows and columns of the matrix are labeled as _cons, or random coefficients, in which
case the label is the name of the associated variable in the data.
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Syntax for predict

Syntax for obtaining estimated random effects or their standard errors

predict [type] { stubx | newvarlist} [zf} [m] , {gfects | reses }

[level (levelvar) }

Syntax for obtaining other predictions

predict [type] newvar [zf] [in] [, statistic fixedonly nooffset}

statistic Description
Main
mu the predicted mean; the default
xb linear prediction for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
Statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

reffects calculates posterior modal estimates of the random effects. By default, estimates for all
random effects in the model are calculated. However, if the level (levelvar) option is specified,
then estimates for only level levelvar in the model are calculated. For example, if classes are
nested within schools, then typing

. predict b*, reffects level(school)

would yield random-effects estimates at the school level. You must specify ¢ new variables, where
q is the number of random-effects terms in the model (or level). However, it is much easier to
just specify stub* and let Stata name the variables stubl, stub2, ..., stubq for you.

reses calculates standard errors for the random-effects estimates obtained by using the reffects
option. By default, standard errors for all random effects in the model are calculated. However, if
the 1level (levelvar) option is specified, then standard errors for only level levelvar in the model
are calculated. For example, if classes are nested within schools, then typing

. predict se*, reses level(school)
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would yield standard errors at the school level. You must specify ¢ new variables, where ¢ is the
number of random-effects terms in the model (or level). However, it is much easier to just specify
stubx and let Stata name the variables stubl, stub2, ..., stubq for you.

The reffects and reses options often generate multiple new variables at once. When this occurs,
the random effects (or standard errors) contained in the generated variables correspond to the order
in which the variance components are listed in the output of xtmelogit. Still, examining the
variable labels of the generated variables (using the describe command, for instance) can be
useful in deciphering which variables correspond to which terms in the model.

level (levelvar) specifies the level in the model at which predictions for random effects and their
standard errors are to be obtained. levelvar is the name of the model level and is either the name
of the variable describing the grouping at that level or _all, a special designation for a group
comprising all the estimation data.

mu, the default, calculates the predicted mean. By default, this is based on a linear predictor that
includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option (see below) if you want predictions
that include only the fixed portion of the model, that is, if you want random effects set to zero.

xb calculates the linear prediction x/3 based on the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of zero.

stdp calculates the standard error of the fixed-effects linear predictor x3.

pearson calculates Pearson residuals. Pearson residuals large in absolute value may indicate a lack
of fit. By default, residuals include both the fixed portion and the random portion of the model.
The fixedonly option modifies the calculation to include the fixed portion only.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correctly specified. They may be plotted against
the fitted values or against a covariate to inspect the model’s fit. By default, residuals include
both the fixed portion and the random portion of the model. The fixedonly option modifies the
calculation to include the fixed portion only.

anscombe calculates Anscombe residuals, residuals that are designed to closely follow a normal
distribution. By default, residuals include both the fixed portion and the random portion of the
model. The fixedonly option modifies the calculation to include the fixed portion only.

fixedonly modifies predictions to include only the fixed portion of the model, equivalent to setting
all random effects equal to zero; see above.

nooffset is relevant only if you specified offset (varname) for xtmelogit. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as X3 + Zu rather than X3 + Zu + offset.

Syntax for estat group

estat group

Menu

Statistics > Postestimation > Reports and statistics
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Syntax for estat recovariance

estat recovariance [, level(levelvar) correlation matlist_opti()ns}

Menu

Statistics > Postestimation > Reports and statistics

Options for estat recovariance

level (levelvar) specifies the level in the model for which the random-effects covariance matrix is
to be displayed and returned in r(cov). By default, the covariance matrices for all levels in the
model are displayed. levelvar is the name of the model level and is either the name of variable
describing the grouping at that level or _all, a special designation for a group comprising all the
estimation data.

correlation displays the covariance matrix as a correlation matrix and returns the correlation matrix
in r(corr).

matlist_options are style and formatting options that control how the matrix (or matrices) are displayed;
see [P] matlist for a list of what is available.

Remarks

Various predictions, statistics, and diagnostic measures are available after fitting a logistic mixed-
effects model with xtmelogit. For the most part, calculation centers around obtaining estimates of
the subject/group-specific random effects. Random effects are not provided as estimates when the
model is fit but instead need to be predicted after estimation.

> Example 1

In example 3 of [XT] xtmelogit, we represented the probability of contraceptive use among
Bangladeshi women by using the model (stated with slightly different notation here)

logit(m;;) = Borural,;j+3iurban,; + Brage;;+
ﬁgchildlij + ﬂ4child2ij + ﬁ5Child3i]' + ajrural;; + bjurbanij

where 7;; is the probability of contraceptive use, j = 1,...,60 districts, 7 = 1, ..., n; women within
each district, and a; and bj are normally distributed with mean zero and variance—covariance matrix
aj | _ 03 Tub

] Oab g g

EVar[bj



270 xtmelogit postestimation — Postestimation tools for xtmelogit

. use http://www.stata-press.com/data/r12/bangladesh
(Bangladesh Fertility Survey, 1989)

. generate byte rural = 1 - urban

. xtmelogit c_use rural urban age child#*, nocons || district: rural urban,
> nocons cov(unstructured)
(output omitted )
Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60
Obs per group: min = 2
avg = 32.2
max = 118
Integration points = 7 Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
c_use Coef. Std. Err. z P>|z| [95% Conf. Intervall
rural -1.71165 .1605618 -10.66  0.000 -2.026345 -1.396954
urban -.8958623 .1704961 -5.25  0.000 -1.230028 -.5616962
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902
childl 1.13252 .1603285 7.06 0.000 .818282 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
child3 1.353827 .1828801 7.40 0.000 .9953882 1.712265
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
district: Unstructured
sd(rural) .6242947 .1035136 .4510794 .8640251
sd (urban) .4942636 .146751 .2762039 .8844789
corr (rural ,urban) -.0523099 .3384599 -.6153876 .5461173
LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Rather than see the estimated variance components listed as standard deviations and correlations as
above, we can instead see them as variance—covariances in matrix form; that is, we can see ¥

. estat recovariance

Random-effects covariance matrix for level district

| rural urban
rural .3897439
urban -.0161411 .2442965

or we can see X as a correlation matrix

. estat recovariance, correlation

Random-effects correlation matrix for level district

| rural urban
rural 1
urban -.0523099 1

The purpose of using this particular model was to allow for district random effects that were
specific to the rural and urban areas of that district and that could be interpreted as such. We can
obtain predictions of these random effects

. predict re_rural re_urban, reffects
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and their corresponding standard errors

. predict se_rural se_urban, reses

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in xtmelogit output. If in doubt, a simple describe will show how
these newly generated variables are labeled just to be sure.

Having generated estimated random effects and standard errors, we can now list them for the first
10 districts:

. by district, sort: generate tolist = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tolist,

> sep(0)
district re_rural se_rural re_urban se_urban
1. 1 -.9206641 .3129662 -.556512562 .2321872
118. 2 -.0307772 .3784629 .0012746 .4938357
138. 3 -.0149148 .6242095 .2257356 .4689535
140. 4 -.2684802 .3951617 .5760575 .3970433
170. 5 .0787537 .3078451 .004534 .4675104
209. 6 -.3842217 .2741989 .2727722 .4184852
274. 7 -.1742786 .4008164 .0072177 .493866
292. 8 .0447142 .315396 .2256406 .46799
329. 9 -.3561363 .3885605 .0733451 .4555067
352. 10 -.5368572 .4743089 .0222338 .4939776

Q Technical note

When these data were first introduced in [XT] xtmelogit, we noted that not all districts contained
both urban and rural areas. This fact is somewhat demonstrated by the random effects that are nearly
zero in the above. A closer examination of the data would reveal that district 3 has no rural areas,
and districts 2, 7, and 10 have no urban areas.

The estimated random effects are not exactly zero in these cases is because of the correlation
between urban and rural effects. For instance, if a district has no urban areas, it can still yield a
nonzero (albeit small) random-effect estimate for a nonexistent urban area because of the correlation
with its rural counterpart.

Had we imposed an independent covariance structure in our model, the estimated random effects
in the cases in question would be exactly zero.
Q

Q Technical note

The estimated standard errors produced above using the reses option are conditional on the values
of the estimated model parameters: 3 and the components of ¥. Their interpretation is therefore not
one of standard sample-to-sample variability but instead one that does not incorporate uncertainty in
the estimated model parameters; see Methods and formulas.

That stated, conditional standard errors can still be used as a measure of relative precision, provided
that you keep this caveat in mind.
a
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> Example 2

Continuing with example 1, we can obtain predicted probabilities, the default prediction:

. predict p
(option mu assumed; predicted means)

These predictions are based on a linear predictor that includes both the fixed effects and random

effects due to district. Specifying the fixedonly option gives predictions that set the random effects
to their prior mean of zero. Below, we compare both over the first 20 observations:

. predict p_fixed, fixedonly
(option mu assumed; predicted means)

. list c_use p p_fixed age child* in 1/20

c_use P p_fixed age childil child2 child3

1 no .3579543 .4927183 18.44 0 0 1
2. no .2134724 .3210403 -5.56 0 0 0
3. no .4672256 .6044016 1.44 0 1 0
4 no .4206505 .5584864 8.44 0 0 1
5 no .2510909 .3687281  -13.56 0 0 0
6 no .2412878 .3565185  -11.56 0 0 0
7. no .3579543 .4927183 18.44 0 0 1
8. no .4992191 .6345999 -3.56 0 0 1
9 no .4572049 .594723 -5.56 1 0 0
10 no .4662518 .6034657 1.44 0 0 1
11. yes .2412878 .3565185  -11.56 0 0 0
12. no .2004691 .3040173 -2.56 0 0 0
13. no .4506573 .5883407 -4.56 1 0 0
14. no .4400747 .5779263 5.44 0 0 1
15. no .4794194 .6160359 -0.56 0 0 1
16. yes .4465936 .5843561 4.44 0 0 1
17. no .2134724 .3210403 -5.56 0 0 0
18. yes .4794194 .6160359 -0.56 0 0 1
19. yes .4637673 .6010735 -6.56 1 0 0
20. no .5001973 .6355067 -3.56 0 1 0

Q Technical note

Out-of-sample predictions are permitted after xtmelogit, but if these predictions involve estimated
random effects, the integrity of the estimation data must be preserved. If the estimation data have
changed since the model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus, to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.

a
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Saved results

estat recovariance saves the last-displayed random-effects covariance matrix in r (cov) or in
r(corr) if it is displayed as a correlation matrix.

Methods and formulas

Continuing the discussion in Methods and formulas of [XT] xtmelogit, and using the definitions
and formulas defined there, we begin by considering the “prediction” of the random effects u; for
the jth cluster in a two-level model.

Given a set of estimated xtmelogit parameters, (,B’, E), a profile likelihood in u; is derived from
the joint distribution f(y;,u;) as

L;(u;) = exp{c(y;,r;)} (2m)S[7 2exp {g (E’ﬁ’uj)} W)

The conditional MLE of u;—conditional on fixed (B, f))—is the maximizer of £;(u;), or equivalently,
the value of U; that solves

-1

Because (1) is proportional to the conditional density f(u;|y;), you can also refer to U, as the
conditional mode (or posterior mode if you lean toward Bayesian terminology). Regardless, you are
referring to the same estimator.

Conditional standard errors for the estimated random effects are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of U; is the negative inverse
of the Hessian, which is estimated as

(a3 / an 1
g (ﬂ,z,uj) _ {ZjV(ﬁ, 6,)Z; + 38 }
Similar calculations extend to models with more than one level of random effects; see Pinheiro and

Chao (2006).

For any ¢ observation in the j cluster in a two-level model, define the linear predictor as
Mij = XijB + 2ijU;

In a three-level model, for the ith observation within the jth level-two cluster within the kth level-three
cluster,

~ > 3) ~(3 2) ~(2

Mg = XigB + 2077 + 265
where the z®) and u® refer to the level p design variables and random effects, respectively. For
models with more than three levels, the definition of 7) extends in the natural way, with only the
notation becoming more complicated.

If the fixedonly option is specified, 7] contains the linear predictor for only the fixed portion of

the model, for example, in a two-level model ﬁij = xij,a In what follows, we assume a two-level
model, with the only necessary modification for multilevel models being the indexing.

The predicted mean, conditional on the random effects U, is

Hij = iz H(0i5)
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Pearson residuals are calculated as

yP = _Yii — i
UV () 2
for V(i) = i (1 — Fij /7i)-
Deviance residuals are calculated as

vy) = sign(yij — i)\ d

where
21 Tij e —
75 108 Tij — ﬁij if Yij = 0
c@% =< 2y;;log +2(ri; — yiz) log L:yﬂ if 0 < ysj <7ij
//f ij Tij — Mij
2’/‘1']' 10g (i”) if Yij = Tij
Hij

Anscombe residuals are calculated as

3 {%2]/3 (yij/7ij) — ﬁz/gH(ﬁz‘j/T”ij)}

v =
N 2 (1 — 1% /rig)"°

where H(t) is a specific univariate case of the Hypergeometric2F1 function (Wolfram 1999, 771-772).
For Anscombe residuals for binomial regression, the specific form of the Hypergeometric2F1 function

that we require is H(t) = 2F1(2/3,1/3,5/3,t).
For a discussion of the general properties of the above residuals, see Hardin and Hilbe (2007,
chap. 4).
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Title

xtmepoisson — Multilevel mixed-effects Poisson regression

Syntax

xtmepoisson depvar fe_equation || re_equation [ || re—_equation ... ] [ , options]

where the syntax of fe_equation is
[indepvars] [i}"] [m] [ R fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable
levelvar: R.varname [, re_options]

levelvar is a variable identifying the group structure for the random effects at that level or _all
representing one group comprising all observations.

fe_options Description

Model

noconstant suppress constant term from the fixed-effects equation
exposure (varname,) include In(varname.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress the constant term from the random-effects equation
collinear keep collinear variables

options Description

Integration
laplace use Laplacian approximation; equivalent to intpoints(1)
intpoints(# [#...]) set the number of integration (quadrature) points; default is 7

275
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Reporting
level (#)
irr
variance

noretable
nofetable
estmetric
noheader
nogroup
@test
display_options

Maximization

maximize_options
retolerance (#)
reiterate(#)
matsqrt

matlog
refineopts (maximize_options)

set confidence level; default is 1level (95)
report fixed-effects coefficients as incidence-rate ratios

show random-effects parameter estimates as variances and
covariances

suppress random-effects table

suppress fixed-effects table

show parameter estimates in the estimation metric
suppress output header

suppress table summarizing groups

do not perform LR test comparing to Poisson regression

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

control the maximization process during gradient-based
optimization; seldom used

tolerance for random-effects estimates; default is
retolerance(1e-8); seldom used

maximum number of iterations for random-effects estimation;
default is reiterate(50); seldom used

parameterize variance components using matrix square roots;
the default

parameterize variance components using matrix logarithms

control the maximization process during refinement of starting
values

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
zero; the default unless a factor variable is specified

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances zero; the
default if factor variables are specified

unstructured all variances—covariances distinctly estimated

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Longitudinal/panel data > Multilevel mixed-effects models > Mixed-effects Poisson regression

Description

xtmepoisson fits mixed-effects models for count responses. Mixed models contain both fixed
effects and random effects. The fixed effects are analogous to standard regression coefficients and
are estimated directly. The random effects are not directly estimated (although they may be obtained
postestimation) but are summarized according to their estimated variances and covariances. Random
effects may take the form of either random intercepts or random coefficients, and the grouping
structure of the data may consist of multiple levels of nested groups. The distribution of the random
effects is assumed to be Gaussian. The conditional distribution of the response given the random
effects is assumed to be Poisson. Because the log likelihood for this model has no closed form, it is
approximated by adaptive Gaussian quadrature.

Options
_ [Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all the random-effects equations.

exposure (varname,) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname,) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset (varname,) specifies that varname, be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype), where vartype is
independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are zero.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p + 1)/2 unique parameters.

covariance (independent) is the default, except when the random-effects equation is a factor-
variable specification R.varname, in which case covariance (identity) is the default, and only
covariance(identity) and covariance(exchangeable) are allowed.

collinear specifies that xtmepoisson not omit collinear variables from the random-effects equation.
Usually there is no reason to leave collinear variables in place, and in fact doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.
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Integration

laplace specifies that log likelihoods be calculated using the Laplacian approximation, equivalent
to adaptive Gaussian quadrature with one integration point for each level in the model; laplace
is equivalent to intpoints(1). Computation time increases as a function of the number of
quadrature points raised to a power equaling the dimension of the random-effects specification.
The computational time saved by using laplace can thus be substantial, especially when you
have many levels and/or random coefficients.

The Laplacian approximation has been known to produce biased parameter estimates, but the bias
tends to be more prominent in the estimates of the variance components rather than in estimates
of the fixed effects. If your interest lies primarily with the fixed-effects estimates, the Laplace
approximation may be a viable faster alternative to adaptive quadrature with multiple integration
points.

Specifying a factor variable, R.varname, increases the dimension of the random effects by the
number of distinct values of varname, that is, the number of factor levels. Even when this number
is small to moderate, it increases the total random-effects dimension to the point where estimation
with more than one quadrature point is prohibitively intensive.

For this reason, when you have factor variables in your random-effects equations, the laplace
option is assumed. You can override this behavior by using the intpoints() option, but doing
so is not recommended.

intpoints(#[#...]) sets the number of integration points for adaptive Gaussian quadrature. The
more points, the more accurate the approximation to the log likelihood. However, computation
time increases with the number of quadrature points, and in models with many levels and/or many
random coefficients, this increase can be substantial.

You may specify one number of integration points applying to all levels of random effects in
the model, or you may specify distinct numbers of points for each level. intpoints(7) is the
default; that is, by default seven quadrature points are used for each level.

Reporting

level (#); see [R] estimation options.

irr reports the fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(b) rather
than b. Standard errors and confidence intervals are similarly transformed. This option affects how
results are displayed, not how they are estimated. irr may be specified at estimation or when
replaying previously estimated results.

variance displays the random-effects parameter estimates as variances and covariances. The default
is to display them as standard deviations and correlations.

noretable suppresses the table of random effects.
nofetable suppresses the table of fixed effects.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.
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nolrtest prevents xtmepoisson from performing a likelihood-ratio test that compares the mixed-
effects Poisson model with standard (marginal) Poisson regression. This option may also be specified
upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fint), sformat (% fint), and nolstretch; see [R] estimation options.

Maximization

maximize—options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for xtmepoisson are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

from(init_specs) is particularly useful when combined with refineopts(iterate(0)), which
bypasses the initial optimization stage; see below.

retolerance (#) specifies the convergence tolerance for the estimated random effects used by adaptive
Gaussian quadrature. Although not estimated as model parameters, random-effects estimators are
used to adapt the quadrature points. Estimating these random effects is an iterative procedure,
with convergence declared when the maximum relative change in the random effects is less than
retolerance (). The default is retolerance(1e-8). You should seldom have to use this option.

reiterate(#) specifies the maximum number of iterations used when estimating the random effects
to be used in adapting the Gaussian quadrature points; see the retolerance () option. The default
is reiterate(50). You should seldom have to use this option.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance—covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance—covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance—covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

refineopts (maximize_options) controls the maximization process during the refinement of starting
values. Estimation in xtmepoisson takes place in two stages. In the first stage, starting values
are refined by holding the quadrature points fixed between iterations. During the second stage,
quadrature points are adapted with each evaluation of the log likelihood. Maximization options
specified within refineopts() control the first stage of optimization; that is, they control the
refining of starting values.

maximize_options specified outside refineopts() control the second stage.

The one exception to the above rule is the nolog option, which when specified outside refine-
opts () applies globally.

from(init_specs) is not allowed within refineopts() and instead must be specified globally.

Refining starting values helps make the iterations of the second stage (those that lead toward the so-
lution) more numerically stable. In this regard, of particular interest is refineopts (iterate(#)),
with two iterations being the default. Should the maximization fail because of instability in the
Hessian calculations, one possible solution may be to increase the number of iterations here.
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The following option is available with xtmepoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Remarks are presented under the following headings:

Introduction
A two-level model
A three-level model

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal/panel data, random effects are useful for modeling intracluster correlation; that
is, observations in the same cluster are correlated because they share common cluster-level random
effects.

xtmepoisson allows for not just one, but many levels of nested clusters. For example, in a three-
level model you can specify random effects for schools and then random effects for classes nested
within schools. The observations (students, presumably) would comprise level one of the model, the
classes would comprise level two, and the schools would comprise level three.

However, for simplicity, for now we consider the two-level model where, for a series of M
independent clusters and, conditional on a set of random effects u;,

Pr(yij = yluj) = exp (—pij) pf; /y! (1)

for p;; = exp(x;;8+2i;u;), j =1,..., M clusters, and with cluster j consisting of i = 1,...,n,
observations. The responses are counts y;;. The 1 X p row vector X;; are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) 3.

The 1 X g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean O and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of X, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Model (1) is a member of the class of generalized linear mixed models (GLMMs), which generalize
the linear mixed-effects (LME) model to non-Gaussian responses. In particular, model (1) deals with
count responses. Stata also has the xtmelogit command for fitting another type of GLMM, the logistic
model for binary and binomial responses.

From a general prospective, there is not much to distinguish xtmepoisson from xtmelogit, and
most everything said about xtmelogit in [XT] xtmelogit applies to xtmepoisson. If you are anxious
to get started applying xtmepoisson to your count data, continue reading this entry. Examples are
provided below.
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We encourage you to read [XT] xtmelogit, however. In addition to some history and guided tours
of syntax and output, substantive issues are discussed, and these apply equally to Poisson data. These
include conventions for multilevel terminology, specifying covariance structures for random effects,
constructing complex blocked-diagonal covariance structures, distribution theory for likelihood-ratio
tests, factors that affect computation time, the Laplacian approximation, advice on model building,
and fitting crossed-effects models.

A two-level model

We begin with a simple application of (1). We begin with a two-level model because, in multilevel-
model terminology, a one-level model is just standard Poisson regression; see [R] poisson.

> Example 1

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.
. use http://www.stata-press.com/data/r12/epilepsy
(Epilepsy data; progabide drug treatment)
. describe

Contains data from http://localpress.stata.com/data/r12/epilepsy.dta

obs: 236 Epilepsy data; progabide drug
treatment
vars: 8 31 May 2011 14:09
size: 4,956 (_dta has notes)
storage display value
variable name type format label variable label
subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g 1: progabide; 0: placebo
visit float %9.0g Dr. visit; coded as (-.3, -.1,
.1, .3)
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25%baseline seizures),
mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte 7%8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 on progabide, 28
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (1age) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (1bas). Variable lbas_trt represents the
interaction between 1bas and treatment. lage, 1bas, and 1bas_trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator,
v4, for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures
log(,uu) = 60 + ﬂltreatij + ﬂglbasij + ﬁglbas_trtij =+ ﬂ41ageij + ﬁ5v4,»j + U

for j =1,...,59 subjects and 7 = 1, ..., 4 visits. The random effects u; are assumed to be normally

distributed with mean zero and variance 2.
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. xtmepoisson seizures treat lbas lbas_trt lage v4 || subject:
Refining starting values:

Iteration 0: log likelihood = -680.40577 (not concave)
Iteration 1: log likelihood = -668.60112
Iteration 2: log likelihood = -666.37033

Performing gradient-based optimization:

Iteration O: log likelihood = -666.37033
Iteration 1: log likelihood = -665.45248
Iteration 2: log likelihood = -665.29074

Iteration 3: log likelihood = -665.29068

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4

avg = 4.0

max = 4

Integration points = 7 Wald chi2(5) = 121.67
Log likelihood = -665.29068 Prob > chi2 = 0.0000
seizures Coef. Std. Err. p P>|z| [95% Conf. Intervall
treat -.9330384 .4008345 -2.33 0.020 -1.71866  -.1474172

lbas .8844329 .1312313 6.74 0.000 .6272243 1.141642
lbas_trt .3382606 .2033384 1.66 0.096 -.0602754 . 7367966
lage .4842383 .3472776 1.39 0.163 -.1964134 1.16489

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206

_cons 2.154574 .2200426 9.79  0.000 1.723299 2.58585
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall

subject: Identity
sd(_cons) .5028187 .0586255 .4000983 .6319115

LR test vs. Poisson regression: chibar2(01) = 304.74 Prob>=chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant, o, = 0.503 with standard error 0.059. The
above results are also in good agreement with those of Breslow and Clayton (1993, table 4), who fit
this model by the method of penalized quasilikelihood (PQL).

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.

See Two-level models in [XT] xtmelogit for a detailed description of syntax and of reading the
resulting output.

N

> Example 2

In their study of PQL, Breslow and Clayton (1993) also fit a model where they dropped the fixed
effect on v4 and replaced it with a random subject-specific linear trend over the four doctor visits.
The model they fit is

log(pij) = Bo + Pitreat;; + folbas;j+[slbas_trt;;+

ﬂ4lageij —+ ﬁ5visitij —+ U j —+ UjViSitij
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where (uj,v;) are bivariate normal with zero mean and variance—covariance matrix:
Uy o2 o
Uy Ouv [ops

. Xtmepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)

(output omitted )

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4
avg = 4.0
max = 4
Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000
seizures Coef. Std. Err. z P>|z| [95% Conf. Intervall
treat -.9286588 .4021639 -2.31  0.021 -1.716886 -.140432
lbas .8849767 .1312519 6.74 0.000 .6277277 1.142226
lbas_trt .3379757 .2044443 1.65 0.098 -.0627277 . 7386791
lage .4767192 .353622 1.35 0.178 -.2163673 1.169806
visit -.2664098 .1647096 -1.62 0.106 -.5892347 .0564151
_cons 2.099555 .220371 9.53  0.000 1.667635 2.531474
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall

subject: Unstructured
sd(visit) .7290273  .1573227 .477591 1.112837
sd(_cons) .5014906 .0586145 .3988172 .6305967
corr(visit,_cons) .0078543  .2426514 -.43639 .4490197
LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

In the above, we specified the cov(unstructured) option to allow correlation between u; and v;,
although on the basis of the above output it probably was not necessary—the default Independent
structure would have sufficed. In the interest of getting more accurate estimates, we also increased
the number of quadrature points to nine, although the estimates do not change much when compared
with estimates based on the default seven quadrature points.

The essence of the above-fitted model is that, after adjusting for other covariates, the log trend
in seizures is modeled as a random subject-specific line, with intercept distributed as N (3, 02) and

slope distributed as N (35, 02). From the above output, 8y = 2.100, 5, = 0.501, 35 = —0.266, and
o, = 0.729.

You can predict the random effects u; and v; by using predict after xtmepoisson; see
[XT] xtmepoisson postestimation. Better still, you can obtain a predicted number of seizures that
takes these random effects into account.

xtmepoisson also offers a myriad of display options. Among the most useful are variance for
displaying estimated variance components as variance and covariances, and irr for displaying fixed
effects as incidence-rate ratios.
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. Xxtmepoisson, variance irr

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4

avg = 4.0

max = 4

Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000
seizures IRR  Std. Err. z P>|z| [95% Conf. Intervall]
treat .3950833 .1588884 -2.31 0.021 .1796246 .8689834

1lbas 2.422928 .3180141 6.74 0.000 1.873349 3.133736
lbas_trt 1.402106 .2866529 1.65 0.098 .9391988 2.09317
lage 1.610781 .5696077 1.35 0.178 .8054394 3.221366

visit .7661251 .1261882 -1.62 0.106 .5547517 1.058037

_cons 8.162533 1.798787 9.53  0.000 5.29962 12.57203
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall]

subject: Unstructured

var(visit) .5314808 .2293851 .2280931 1.238406

var (_cons) .2514928 .0587892 .1590552 .3976522

cov(visit,_cons) .0028715 .0887018 -.1709808 .1767238

LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.

A three-level model

xtmepoisson can also fit higher-level models with multiple levels of nested random effects.
> Example 3

Rabe-Hesketh and Skrondal (2008, exercise 9.8) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males because
of malignant melanoma during 1971-1980.

. use http://www.stata-press.com/data/r12/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from melanoma.dta

obs: 354 Skin cancer (melanoma) data
vars: 6 30 May 2011 17:10

size: 4,956 (_dta has notes)

storage display value
variable name  type format label variable label
nation byte  %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC
level-II/level-III areas

deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:
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Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being
recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable county,
which identifies the observations). Counties are nested within regions, and regions are nested within
nations.

Variable deaths records the number of deaths for each county, and expected records the expected
number of deaths (the exposure) on the basis of crude rates for the combined countries. Finally, variable
uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(pij1) = log(expected, ;) + Bo + Bruvijk + uk + vjk

for nation k, region j, and county . The model includes an exposure term for expected deaths.

. xtmepoisson deaths uv, exposure(expected) || nation: || region:
(output omitted )
Mixed-effects Poisson regression Number of obs = 354
No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points
nation 9 3 39.3 95 7
region 78 1 4.5 13 7
Wald chi2(1) = 6.12
Log likelihood = -1097.714 Prob > chi2 = 0.0134
deaths Coef.  Std. Err. z P>|z| [95% Conf. Intervall
uv -.0281991 .0114027 -2.47 0.013 -.050548 -.0058503
_cons -.0639477 .1335246 -0.48 0.632 -.3256511 .1977558
1n(expected) 1 (exposure)
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
nation: Identity
sd(_cons) .3701812 .0976276 .2207637 .6207278
region: Identity
sd(_cons) .2199668 .0248379 .1762959 .2744554
LR test vs. Poisson regression: chi2(2) = 1252.12 Prob > chi2 = 0.0000

Note: LR test is comservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio (SMR), the ratio of observed deaths to expected deaths
that is based on a reference population. Here the reference population is all nine nations.

We now add a random-intercept for counties nested within regions, making this a four-level
model. Because counties also identify the observations, the corresponding variance component can
be interpreted as a measure of overdispersion, variability above and beyond that allowed by standard
Poisson; see [R] nbreg.
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. xtmepoisson deaths uv, exposure(expected) || nation: || region: || county:,
> laplace
(output omitted )
Mixed-effects Poisson regression Number of obs = 354
No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points
nation 9 3 39.3 95 1
region 78 1 4.5 13 1
county 354 1 1.0 1 1
Wald chi2(1) = 8.63
Log likelihood = -1086.7309 Prob > chi2 = 0.0033
deaths Coef.  Std. Err. z P>|z| [95% Conf. Intervall
uv -.0334682  .0113919 -2.94 0.003 -.0557959  -.0111404
_cons -.086411 .1298712 -0.67 0.506 -.3409539 .1681319
1n(expected) 1 (exposure)
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
nation: Identity
sd(_cons) .35688058  .0948823 .2136822 .6024909
region: Identity
sd(_cons) .2014854 .026057 .1663732 .2596119
county: Identity
sd(_cons) .1208414  .0210052 .085952 .169893
LR test vs. Poisson regression: chi2(3) = 1274.08 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

In the above, we used a Laplacian approximation, which is not only faster but also produces estimates
that closely agree with those obtained with the default seven quadrature points.

See Computation time and the Laplacian approximation in [XT] xtmelogit for a discussion comparing
Laplacian approximation with adaptive quadrature.

N
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Saved results

xtmepoisson saves the following in e():

e(datasignature)

e(datasignaturevars)

e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)
e (asbalanced)
e(asobserved)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_f) number of FE parameters
e(k_r) number of RE parameters
e(k_rs) number of standard deviations
e(k_rc) number of correlations
e(df_m) model degrees of freedom
e(11) log likelihood
e(chi2) x?
e(p) p-value for x?
e(11l_c) log likelihood, comparison model
e(chi2_c) x2, comparison model
e(df_c) degrees of freedom, comparison model
e(p-c) p-value, comparison model
e(rank) rank of e(V)
e(reparm_rc) return code, final reparameterization
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) Xtmepoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(exposurevar) exposure variable
e (model) Poisson
e(title) title in estimation output
e(offset) linear offset variable
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(n_quad) number of integration points
e(laplace) laplace, if Laplace approximation
e(chi2type) Wald, type of model x>
e(vce) bootstrap or jackknife if defined
e(vcetype) title used to label Std. Err.
e (method) ML
e(opt) type of optimization
e(ml_method) type of ml method
e(technique) maximization technique

the checksum

variables used in checksum

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(N_g) group counts

e(g_min) group-size minimums

e(g_avg) group-size averages

e(g_max) group-size maximums

e(V) variance—covariance matrix of the estimator
Functions

e(sample)

marks estimation sample
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Methods and formulas

xtmepoisson is implemented as an ado-file.

In a two-level Poisson model, for cluster j, j = 1,..., M, the conditional distribution of
v = Wjt,--- 7yjn].)’ , given a set of cluster-level random effects u;, is

Flyshug) = [T Hexp (438 + 2ziu;) 1 exp {—exp (xi;8 + zi;u;)} /4i5]
1=1
=exp | Y {yij (xi;8 + ziju;) — exp (xi;B + zi;1;) — log(yi;!)}
=1

Defining ¢ (y;) = >, log(y;;!), where c(y;) does not depend on the model parameters, we
can express the above compactly in matrix notation,

fly;hay) = exp {y} (X;8+ Z;ju;) — 1" exp (X;8 + Z;u;) — c(y;)}
where X; is formed by stacking the row vectors X;;, Z; is formed by stacking the row vectors z;;,

and we extend the definition of exp() to be a vector function where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and ¢ X g variance matrix
X, the likelihood contribution for the j cluster is obtained by integrating u; out the joint density

f(y5,u5),
£5(6:) = (20 2[5 [ flyslug) exp (w2 w/2) du,
— exp {~c(y;)} (2m) "2 [exp (g (6. 5,u)} du,
where

9(8,%,u)) =y} (X;8+ Zju;) — U'exp (X;8+ Zju;) — ;T 'u; /2

and for convenience, in the arguments of g() we suppress the dependence on the observable data
(yja Xja Zj ) .
The integration in (2) has no closed form and thus must be approximated. The Laplacian approx-

imation (Tierney and Kadane 1986; Pinheiro and Bates 1995) is based on a second-order Taylor
expansion of g (3, %, u;) about the value of u; that maximizes it. Taking first and second derivatives,

we obtain 99 (3.5, u))
y 24, Uy _
g9 (B, 2,u) = % =Z;{y; —m(B,u;)} - ="'y,
J
/ a2g (ﬁ727u') / _
g/(ﬁ727uj) - W = — {Z]V(,B, Uj)Zj + X 1}

where m(3, u;) is the vector function with ith element equal to the conditional mean of y;; given
u;, that is, exp(xij,@ + zijuj'). V(B,u,) is the diagonal matrix whose diagonal entries v;; are the
conditional variances of y;; given u;, namely,

vij = exp (Xi; B + 2zi;;)

because equality of mean and variance is a characteristic of the Poisson distribution.
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The maximizer of g (3, ¥, u;) is uj such that ¢’ (3, X, ;) = 0. The integrand in (2) is proportional
to the posterior density f (u] ly;). so U, also represents the posterior mode, a plausible estimator of
u; in its own right.

Given the above derivatives, the second-order Taylor approximation then takes the form

= 1 N\ = =

The first-derivative term vanishes because ¢’ (3, X, ﬁj) = 0. Therefore,

/exp {9(8,%,u;)} du; ~ exp {g (8,3, ,))

X/eXp [—; i —1;) {-¢" (B,%,1,)} (u; — 4;)| du, (4)
= exp {9 (8.2, 1))} (2m)7/?|—¢" (8,2, 5,) "/

because the latter integrand can be recognized as the “kernel” of a multivariate normal density.

Combining the above with (2) (and taking logs) gives the Laplacian log-likelihood contribution of
the jth cluster,

a 1 P
Li™(8,%) = —5 log %] —log|R;| + ¢ (8, %, 1;) — c(y;)

where R;; is an upper-triangular matrix such that —g” (3, 3, U;) = R;R/;. Pinheiro and Chao (2006)
show that U, and R; can be efficiently computed as the iterative solution to a least-squares problem

by using matrix decomposition methods similar to those used in fitting LME models (Bates and
Pinheiro 1998; Pinheiro and Bates 2000; [XT] xtmixed).

The fidelity of the Laplacian approximation is determined wholly by the accuracy of the approxi-
mation in (3). An alternative that does not depend so heavily on this approximation is integration via
adaptive Gaussian quadrature (AGQ; Naylor and Smith 1982; Liu and Pierce 1994).

The application of AGQ to this particular problem is from Pinheiro and Bates (1995). When we
reexamine the integral in question, a transformation of integration variables yields

/exp {9(B8,%,u;)}du; = |Rj\_1 /exp {g (B, 3,u; + R;lt)}dt
(5)
= (27)1/2 Ry " /exp {9 (82,0, + R, 't) +t't/2} ¢(t)dt

where ¢() is the standard multivariate normal density. Because the integrand is now expressed as
some function multiplied by a normal density, it can be estimated by applying the rules of standard
Gauss—Hermite quadrature. For a predetermined number of quadrature points N¢, define aj, = \/iaz
and wy, = wj/\/m, for k = 1,...,Ng, where (a},w}) are a set of abscissas and weights for
Gauss—Hermite quadrature approximations of [ exp(—x?) f(x)dz, as obtained from Abramowitz and
Stegun (1972, 924).

Define ax = (ag,,ak,,...,ax,)"s that is, ay is a vector that spans the N abscissas over the
dimension g of the random effects. Applying quadrature rules to (5) yields the AGQ approximation,



290 xtmepoisson — Multilevel mixed-effects Poisson regression

/ exp{g (8, %, u;)} du,

Nq Ng q
~ (277)‘1/2 |Rj|71 Z cee Z |f)xp {g (ﬁ7 3, ﬁj + Rj_lak) + a{(ak/2} H Wi,
k=1  k,=1 p=1

= (2m)7/2G;(8,3)

resulting in the AGQ log-likelihood contribution of the jth cluster,
1 ~
L3998, %) = =3 log|Z| + 1og { G;(8, %) } — ()

The “adaptive” part of adaptive Gaussian quadrature lies in the translation and rescaling of the
integration variables in (5) by using U; and R;l respectively. This transformation of quadrature
abscissas (centered at zero in standard form) is chosen to better capture the features of the integrand,
through which (4) can be seen to resemble a multivariate normal distribution with mean ﬁj and
variance R;lR;T. AGQ is therefore not as dependent as the Laplace method upon the approximation
in (3). In AGQ, (3) serves merely to redirect the quadrature abscissas, with the AGQ approximation
improving as the number of quadrature points, N¢, increases. In fact, Pinheiro and Bates (1995)
point out that AGQ with only one quadrature point (¢ = 0 and w = 1) reduces to the Laplacian
approximation.

The log likelihood for the entire dataset is then simply the sum of the contributions of the M individual
M ;La M ;AG
clusters, namely, L(B,E) =3, L; *P(B3,X) for Laplace and L(3,%) = > =1 L; Q(B,%) for
adaptive Gaussian quadrature.

Maximization of L(3, X) is performed with respect to (3, ), where 0 is a vector comprising the
unique elements of the matrix square root of X¥. This is done to ensure that ¥ is always positive
semidefinite. If the matlog option is specified, then O instead consists of the unique elements of
the matrix logarithm of ¥. For well-conditioned problems both methods produce equivalent results,
yet our experience deems the former as more numerically stable near the boundary of the parameter
space.

Once maximization is achieved, parameter estimates are mapped from (3,0) to (3,7), where
7 is a vector containing the unique (estimated) elements of X, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary to (a) obtain a parameterization under which parameter estimates
can be displayed and interpreted individually, rather than as elements of a matrix square root (or
logarithm), and (b) parameterize these elements such that their ranges each encompass the entire real
line.

Parameter estimates are stored in e(b) as (,@, 9), with the corresponding variance—covariance
matrix stored in e (V). Parameter estimates can be displayed in this metric by specifying the estmetric
option. However, in xtmepoisson output, variance components are most often displayed either as
variances and covariances (option variance) or as standard deviations and correlations (the default).

The approach outlined above can be extended from two-level models to three- and higher-level
models; see Pinheiro and Chao (2006) for details.
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Also see

[XT] xtmepoisson postestimation — Postestimation tools for xtmepoisson

[XT] xtmelogit — Multilevel mixed-effects logistic regression

[XT] xtmixed — Multilevel mixed-effects linear regression

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models
[XT] xtrc — Random-coefficients model

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models
[XT] xtgee — Fit population-averaged panel-data models by using GEE

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands



Title

xtmepoisson postestimation — Postestimation tools for xtmepoisson

Description

The following postestimation commands are of special interest after xtmepoisson:

Command Description
estat group summarize the composition of the nested groups
estat recovariance display the estimated random-effects covariance matrix (or matrices)

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized
predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat group reports number of groups and minimum, average, and maximum group sizes for
each level of the model. Model levels are identified by the corresponding group variable in the data.
Because groups are treated as nested, the information in this summary may differ from what you
would get if you tabulated each group variable individually.

estat recovariance displays the estimated variance—covariance matrix of the random effects
for each level in the model. Random effects can be either random intercepts, in which case the
corresponding rows and columns of the matrix are labeled as _cons, or random coefficients, in which
case the label is the name of the associated variable in the data.

293
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Syntax for predict

Syntax for obtaining estimated random effects or their standard errors
predict [type] { stubx | newvarlist} [zf} [m] , {gfects | reses }

[level (levelvar) }

Syntax for obtaining other predictions

predict [type] newvar [zf] [in] [, statistic fixedonly nooffset}

statistic Description
Main
mu the predicted mean; the default
xb linear prediction for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
Statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

reffects calculates posterior modal estimates of the random effects. By default, estimates for all
random effects in the model are calculated. However, if the level (levelvar) option is specified,
then estimates for only level levelvar in the model are calculated. For example, if classes are
nested within schools, then typing

. predict b*, reffects level(school)

would yield random-effects estimates at the school level. You must specify ¢ new variables, where
q is the number of random-effects terms in the model (or level). However, it is much easier to
just specify stub* and let Stata name the variables stubl, stub2, ..., stubq for you.

reses calculates standard errors for the random-effects estimates obtained by using the reffects
option. By default, standard errors for all random effects in the model are calculated. However, if
the 1level (levelvar) option is specified, then standard errors for only level levelvar in the model
are calculated. For example, if classes are nested within schools, then typing

. predict se*, reses level(school)
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would yield standard errors at the school level. You must specify ¢ new variables, where ¢ is the
number of random-effects terms in the model (or level). However, it is much easier to just specify
stubx and let Stata name the variables stubl, stub2, ..., stubq for you.

The reffects and reses options often generate multiple new variables at once. When this occurs,
the random effects (or standard errors) contained in the generated variables correspond to the order
in which the variance components are listed in the output of xtmepoisson. Still, examining the
variable labels of the generated variables (using the describe command, for instance) can be
useful in deciphering which variables correspond to which terms in the model.

level (levelvar) specifies the level in the model at which predictions for random effects and their
standard errors are to be obtained. levelvar is the name of the model level and is either the name
of the variable describing the grouping at that level or _all, a special designation for a group
comprising all the estimation data.

mu, the default, calculates the predicted mean, that is, the predicted count. By default, this is based
on a linear predictor that includes both the fixed effects and the random effects, and the predicted
mean is conditional on the values of the random effects. Use the fixedonly option (see below) if
you want predictions that include only the fixed portion of the model, that is, if you want random
effects set to zero.

xb calculates the linear prediction x3 based on the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of zero.

stdp calculates the standard error of the fixed-effects linear predictor x.3.

pearson calculates Pearson residuals. Pearson residuals large in absolute value may indicate a lack
of fit. By default, residuals include both the fixed portion and the random portion of the model.
The fixedonly option modifies the calculation to include the fixed portion only.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correctly specified. They may be plotted against
the fitted values or against a covariate to inspect the model’s fit. By default, residuals include
both the fixed portion and the random portion of the model. The fixedonly option modifies the
calculation to include the fixed portion only.

anscombe calculates Anscombe residuals, residuals that are designed to closely follow a normal
distribution. By default, residuals include both the fixed portion and the random portion of the
model. The fixedonly option modifies the calculation to include the fixed portion only.

fixedonly modifies predictions to include only the fixed portion of the model, equivalent to setting
all random effects equal to zero; see the mu option.

nooffset is relevant only if you specified offset(varname,) or exposure(varname.) for
xtmepoisson. It modifies the calculations made by predict so that they ignore the off-
set variable; the linear prediction is treated as X3 + Zu rather than X3 + Zu + offset, or
X3+ Zu + In(exposure), whichever is relevant.

Syntax for estat group

estat group
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Menu

Statistics > Postestimation > Reports and statistics

Syntax for estat recovariance

estat recovariance [, level(levelvar) correlation mallisl_oplions}

Menu

Statistics > Postestimation > Reports and statistics

Options for estat recovariance

level(levelvar) specifies the level in the model for which the random-effects covariance matrix is
to be displayed and returned in r(cov). By default, the covariance matrices for all levels in the
model are displayed. levelvar is the name of the model level and is either the name of variable
describing the grouping at that level or _all, a special designation for a group comprising all the
estimation data.

correlation displays the covariance matrix as a correlation matrix and returns the correlation matrix
in r(corr).

matlist_options are style and formatting options that control how the matrix (or matrices) are displayed;
see [P] matlist for a list of what is available.

Remarks

Various predictions, statistics, and diagnostic measures are available after fitting a Poisson mixed-
effects model with xtmepoisson. For the most part, calculation centers around obtaining estimates
of the subject/group-specific random effects. Random effects are not estimated when the model is fit
but instead need to be predicted after estimation.

> Example 1

In example 2 of [XT] xtmepoisson, we modeled the number of observed epileptic seizures as a
function of treatment with the drug progabide and other covariates

log(pi5) = Bo + Pitreat;; + P2lbas;j+F31lbas_trt;;+

ﬁ41ageij =+ ﬁg,ViSitij =+ U —+ 'UjViSitZ'j
where (u;,v;) are bivariate normal with zero mean and variance—covariance matrix

2
S=Var || = | Tw
Uy Oy 0'2

v
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. use http://www.stata-press.com/data/r12/epilepsy
(Epilepsy data; progabide drug treatment)

. xtmepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)
(output omitted )
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4
avg = 4.0
max = 4
Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000
seizures Coef . Std. Err. z P>|z| [95% Conf. Intervall
treat -.9286588 .4021643 -2.31 0.021 -1.716886  -.1404312
lbas .8849767 .131252 6.74 0.000 .6277275 1.142226
lbas_trt .3379757 .2044445 1.65 0.098 -.0627281 . 7386795
lage .4767192 .353622 1.35  0.178 -.2163673 1.169806
visit -.2664098 .1647096 -1.62 0.106 -.5892347 .0564151
_cons 2.099555 .2203712 9.53  0.000 1.667635 2.531474
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
subject: Unstructured
sd(visit) .7290273 .1573227 .4775909 1.112837
sd(_cons) .5014906 .0586145 .3988172 .6305967
corr(visit,_cons) .0078542 .2426514 -.43639 .4490197
LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.

The purpose of this model was to allow subject-specific linear log trends over each subject’s four
doctor visits, after adjusting for the other covariates. The intercepts of these lines are distributed
N(Bo,02), and the slopes N(fB5,02), based on the fixed effects and assumed distribution of the
random effects.

We can use predict to obtain estimates of the random effects u; and v; and combine these with
our estimates of Oy and 5 to obtain the intercepts and slopes of the linear log trends.
. predict re_visit re_cons, reffects
. generate bl = _b[visit] + re_visit
. generate b0 = _b[_cons] + re_cons

. by subject, sort: generate tolist = _n==
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. list subject treat bl b0 if tolist & (subject <=5 | subject >=55)

subject  treat bl b0

1. 1 0 -.4284563 2.164691
5. 2 0 -.2727145 2.179111
9. 3 0 .0026486  2.450811
13. 4 0 -.3194157  2.268827
17. 5 0 .6063656  2.123723
217. 55 1 -.2304782 2.311493
221. 56 1 .2904741  3.211369
225. 57 1 -.4831492  1.457485
229. 58 1 -.252236 1.168154
233. 59 1 -.1266651  2.204869

We list these slopes (b1) and intercepts (b0) for five control subjects and five subjects on the
treatment.

. count if tolist & treat
31

. count if tolist & treat & bl < O
25

. count if tolist & !treat
28

. count if tolist & !treat & bl < O
20

We also find that 25 of the 31 subjects taking progabide were estimated to have a downward trend
in seizures over their four doctor visits, compared with 20 of the 28 control subjects.

We also obtain predictions for number of seizures, and unless we specify the fixedonly option,
these predictions will incorporate the estimated subject-specific random effects.

. predict n
(option mu assumed; predicted means)

. list subject treat visit seizures n if subject <= 2 | subject >= 58, sep(0)

subject  treat visit seizures n

1. 1 0 -.3 5  3.887582
2. 1 0 -.1 3 3.568324
3. 1 0 .1 3  3.275285
4. 1 0 .3 3 3.00631
5. 2 0 -.3 3 3.705628
6. 2 0 -.1 5 3.508926
7. 2 0 .1 3  3.322664
8. 2 0 .3 3 3.14629
229. 58 1 -.3 0 .9972093
230. 58 1 -.1 0 .9481507
231. 58 1 .1 0 .9015056
232. 58 1 .3 0 .8571553
233. 59 1 -.3 1 2.487858
234. 59 1 -.1 4  2.425625
235. 59 1 .1 3 2.364948
236. 59 1 .3 2  2.305789
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Q Technical note

Out-of-sample predictions are permitted after xtmepoisson, but if these predictions involve
estimated random effects, the integrity of the estimation data must be preserved. If the estimation data
have changed since the model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus, to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.

a

Saved results

estat recovariance saves the last-displayed random-effects covariance matrix in r (cov) or in
r(corr) if it is displayed as a correlation matrix.

Methods and formulas

Continuing the discussion in Methods and formulas of [XT] xtmepoisson, and using the definitions
and formulas defined there, we begin by considering the “prediction” of the random effects u; for
the jth cluster in a two-level model.

Given a set of estimated xtmepoisson parameters, (,@, f]), a profile likelihood in u; is derived
from the joint distribution f(y;,u;) as

£,(w) = exp {~e(y,)} (20) S exp {g (B.5w,) ) 1)

The conditional MLE of u;—conditional on fixed (3, 3)—is the maximizer of £;(u;), or equivalently,
the value of U; that solves

a1

Oigl (ngaﬁj) :Z; {y] 7m(B,ﬁJ)}72 ﬁj

Because (1) is proportional to the conditional density f(u;|y;), you can also refer to U, as the
conditional mode (or posterior mode if you lean toward Bayesian terminology). Regardless, you are
referring to the same estimator.

Conditional standard errors for the estimated random effects are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of ﬁj is the negative inverse
of the Hessian, which is estimated as

~ o~ ~ ~—1
' (B.5%) = - {Z V@B u)z; + £}
Similar calculations extend to models with more than one level of random effects; see Pinheiro and
Chao (2006).

For any ¢ observation in the jth cluster in a two-level model, define the linear predictor as

Nij = XiiB + 2iju;
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In a three-level model, for the ith observation within the jth level-two cluster within the kth level-three

cluster,
~ 3 3) ~(3 2) ~(2
Nijk = Xijk/B + ZE]-I)CIIEC ) + zl(-jl)cu;.k)

where the z®) and u(® refer to the level p design variables and random effects, respectively. For
models with more than three levels, the definition of 7 extends in the natural way, with only the
notation becoming more complicated.

If the fixedonly option is specified, 7} contains the linear predictor for only the fixed portion of

the model, for example, in a two-level model 7;; = Xij,@. In what follows, we assume a two-level
model, with the only necessary modification for multilevel models being the indexing.

The predicted mean, conditional on the random effects ﬁj, is
Hij = exp(7iz)
Pearson residuals are calculated as

JP Yij — ﬁij
TV () 2

for V' (1i;) = fiij-
Deviance residuals are calculated as

Vg = sign(yi; — ij)y/ d

ny if y;; =0

~ .

where

ij
Anscombe residuals are calculated as

2/3 ~2/3
A 3(%‘;‘ —Hz‘j>
ij ~1/6

2/%]/

For a discussion of the general properties of the above residuals, see Hardin and Hilbe (2007,
chap. 4).
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Also see

[XT] xtmepoisson — Multilevel mixed-effects Poisson regression

[U] 20 Estimation and postestimation commands



Title

xtmixed — Multilevel mixed-effects linear regression

Syntax

xtmixed depvar fe_equation [ | re_equation] [ | | re_equation . .. } [ s options}

where the syntax of fe_equation is
[indepvars] [zf] [zn] [weighz} [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [Varlist} [ s re_options}
for random effects among the values of a factor variable
levelvar: R.varname [, re_options]

levelvar is a variable identifying the group structure for the random effects at that level or _all
representing one group comprising all observations.

fe—_options Description
Model
noconstant suppress constant term from the fixed-effects equation
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables
fweight (exp) frequency weights at higher levels
pweight (exp) sampling weights at higher levels
vartype Description
independent one unique variance parameter per random effect, all covariances
zero; the default unless a factor variable is specified
exchangeable equal variances for random effects, and one common pairwise
covariance
identity equal variances for random effects, all covariances zero
unstructured all variances and covariances distinctly estimated
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options Description
Model
mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood
pwscale (scale_method) control scaling of sampling weights in two-level models
residuals (rspec) structure of residual errors
SE/Robust
vce (veetype) vcetype may be oim, robust, or cluster clustvar
Reporting
level (#) set confidence level; default is 1level (95)
variance show random-effects parameter estimates as variances and covariances
noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
noheader suppress output header
nogroup suppress table summarizing groups
nostderr do not estimate standard errors of random-effects parameters
nolrtest do not perform LR test comparing to linear regression
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

EM options
emiterate (#) number of EM iterations; default is 20
emtolerance (#) EM convergence tolerance; default is 1e-10
emonly fit model exclusively using EM
emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize_options control the maximization process; seldom used

matsqrt parameterize variance components using matrix square roots; the default
matlog parameterize variance components using matrix logarithms

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Longitudinal/panel data > Multilevel mixed-effects models > Mixed-effects linear regression

Description

xtmixed fits linear mixed models. Mixed models are characterized as containing both fixed effects
and random effects. The fixed effects are analogous to standard regression coefficients and are estimated
directly. The random effects are not directly estimated but are summarized according to their estimated
variances and covariances. Although random effects are not directly estimated, you can form best
linear unbiased predictions (BLUPs) of them (and standard errors) by using predict after xtmixed;
see [XT] xtmixed postestimation. Random effects may take the form of either random intercepts or
random coefficients, and the grouping structure of the data may consist of multiple levels of nested
groups. As such, mixed models are also known in the literature as multilevel models and hierarchical
linear models. The overall error distribution of the linear mixed model is assumed to be Gaussian,
and heteroskedasticity and correlations within lowest-level groups also may be modeled.

Options

Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all the random-effects equations.

covariance (vartype), where vartype is
independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are zero.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p + 1)/2 unique parameters.

covariance (independent) is the default, except when the random-effects equation is a factor-
variable specification R.varname, in which case covariance(identity) is the default, and only
covariance(identity) and covariance(exchangeable) are allowed.

collinear specifies that xtmixed not omit collinear variables from the random-effects equation.
Usually there is no reason to leave collinear variables in place, and in fact doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

fweight (exp) specifies frequency weights at higher levels in a multilevel model, whereas frequency
weights at the first level (the observation level) are specified in the usual manner, for example,
[fw=fwtvarl]. exp can be any valid Stata expression, and you can specify fweight () at levels
two and higher of a multilevel model. For example, in the two-level model

xtmixed fixed_portion [fw = wtl]l || school: ..., fweight(wt2)
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variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

pweight (exp) specifies sampling weights at higher levels in a multilevel model, whereas sampling
weights at the first level (the observation level) are specified in the usual manner, for example,
[pw=pwtvarl]. exp can be any valid Stata expression, and you can specify pweight () at levels
two and higher of a multilevel model. For example, in the two-level model

. xtmixed fixed_portion [pw = wt1l] || school: ..., pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

See Survey data in Remarks below for more information regarding the use of sampling weights
in multilevel models.

Weighted estimation, whether frequency or sampling, is not supported under restricted maximum-
likelihood estimation (REML).

mle and reml specify the statistical method for fitting the model.
mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as
residual maximum likelihood.

pwscale (scale_method), where scale_method is
size|effective|gk

controls how sampling weights (if specified) are scaled in two-level models.

scale_method size specifies that first-level (observation-level) weights be scaled so that they
sum to the sample size of their corresponding second-level cluster. Second-level sampling
weights are left unchanged.

scale_method effective specifies that first-level weights be scaled so that they sum to
the effective sample size of their corresponding second-level cluster. Second-level sampling
weights are left unchanged.

scale_method gk specifies the Graubard and Korn (1996) method. Under this method, second-
level weights are set to the cluster averages of the products of the weights at both levels,
and first-level weights are then set equal to one.

pwscale() is supported only with two-level models. See Survey data in Remarks below for more
details on using pwscale().

residuals (rspec), where rspec is
restype [, residual_options}

specifies the structure of the residual errors within the lowest-level groups (the second level of a
multilevel model with the observations comprising the first level) of the linear mixed model. For
example, if you are modeling random effects for classes nested within schools, then residuals ()
refers to the residual variance—covariance structure of the observations within classes, the lowest-
level groups.

restype is
independent | exchangeable | ar #|ma #|unstructured |

banded # | toeplitz # | exponential
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By default, restype is independent, which means that all residuals are i.i.d. Gaussian with
one common variance. When combined with by (varname), independence is still assumed,
but you estimate a distinct variance for each level of varname. Unlike with the structures
described below, varname does not need to be constant within groups.

restype exchangeable estimates two parameters, one common within-group variance and one
common pairwise covariance. When combined with by (varname), these two parameters
are distinctly estimated for each level of varname. Because you are modeling a within-
group covariance, varname must be constant within lowest-level groups.

restype ar # assumes that within-group errors have an autoregressive (AR) structure of
order #; ar 1 is the default. The t(varname) option is required, where varname is an
integer-valued time variable used to order the observations within groups and to determine
the lags between successive observations. Any nonconsecutive time values will be treated
as gaps. For this structure, # + 1 parameters are estimated (# AR coefficients and one
overall error variance). restype ar may be combined with by (varname), but varname
must be constant within groups.

restype ma # assumes that within-group errors have a moving average (MA) structure of
order #; ma 1 is the default. The t (varname) option is required, where varname is an
integer-valued time variable used to order the observations within groups and to determine
the lags between successive observations. Any nonconsecutive time values will be treated
as gaps. For this structure, # + 1 parameters are estimated (# MA coefficients and one
overall error variance). restype ma may be combined with by (varname), but varname
must be constant within groups.

restype unstructured is the most general structure; it estimates distinct variances for
each within-group error and distinct covariances for each within-group error pair. The
t (varname) option is required, where varname is a nonnegative-integer—valued variable
that identifies the observations within each group. The groups may be unbalanced in that
not all levels of t() need to be observed within every group, but you may not have
repeated t () values within any particular group. When you have p levels of t (), then
p(p + 1)/2 parameters are estimated. resfype unstructured may be combined with
by (varname), but varname must be constant within groups.

restype banded # is a special case of unstructured that restricts estimation to the covariances
within the first # off-diagonals and sets the covariances outside this band to zero. The
t (varname) option is required, where varname is a nonnegative-integer—valued variable
that identifies the observations within each group. # is an integer between zero and p — 1,
where p is the number of levels of t (). By default, # is p — 1; that is, all elements of
the covariance matrix are estimated. When # is zero, only the diagonal elements of the
covariance matrix are estimated. restype banded may be combined with by (varname),
but varname must be constant within groups.

restype toeplitz # assumes that within-group errors have Toeplitz structure of order #,
for which correlations are constant with respect to time lags less than or equal to # and
are zero for lags greater than #. The t(varname) option is required, where varname
is an integer-valued time variable used to order the observations within groups and to
determine the lags between successive observations. # is an integer between one and the
maximum observed lag (the default). Any nonconsecutive time values will be treated as
gaps. For this structure, # + 1 parameters are estimated (# correlations and one overall
error variance). restype toeplitz may be combined with by (varname), but varname
must be constant within groups.
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restype exponential is a generalization of the autoregressive (AR) covariance model
that allows for unequally spaced and noninteger time values. The t (varname) option
is required, where varname is real-valued. For the exponential covariance model, the
correlation between two errors is the parameter p, raised to a power equal to the absolute
value of the difference between the t () values for those errors. For this structure, two
parameters are estimated (the correlation parameter p and one overall error variance).
restype exponential may be combined with by (varname) , but varname must be constant
within groups.

residual _options are by (varname) and t (varname).
by (varname) is for use within the residuals() option and specifies that a set of distinct

residual-error parameters be estimated for each level of varname. In other words, you
use by () to model heteroskedasticity.

t (varname) is for use within the residuals() option to specify a time variable for the
ar, ma, toeplitz, and exponential structures, or to ID the observations when restype
is unstructured or banded.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification and that allow for intragroup correlation; see [R] vce_option.
vce(oim) is the default. If vce (robust) is specified, robust variances are clustered at the highest
level in the multilevel model.

vce(robust) and vce(cluster clustvar) are not supported with REML estimation.

Reporting

level (#); see [R] estimation options.

variance displays the random-effects and residual-error parameter estimates as variances and co-
variances. The default is to display them as standard deviations and correlations.

noretable suppresses the random-effects table from the output.
nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level. Residual-variance parameter estimates are also displayed in their
original estimation metric.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents xtmixed from calculating standard errors for the estimated random-effects
parameters, although standard errors are still provided for the fixed-effects parameters. Specifying
this option will speed up computation times. nostderr is available only when residuals are
modeled as independent with constant variance.

nolrtest prevents xtmixed from fitting a reference linear regression model and using this model
to calculate a likelihood-ratio test comparing the mixed model to ordinary regression. This option
may also be specified on replay to suppress this test from the output.
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display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

EM options

These options control the EM (expectation-maximization) iterations that take place before estimation
switches to a gradient-based method. When residuals are modeled as independent with constant
variance, EM will either converge to the solution or bring parameter estimates close to the solution.
For other residual structures or for weighted estimation, EM is used to obtain starting values.

emiterate (#) specifies the number of EM iterations to perform. The default is emiterate(20).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1le-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to a gradient-based method,
unless emonly is specified, in which case maximization stops.

emonly specifies that the likelihood be maximized exclusively using EM. The advantage of specifying
emonly is that EM iterations are typically much faster than those for gradient-based methods.
The disadvantages are that EM iterations can be slow to converge (if at all) and that EM provides
no facility for estimating standard errors for the random-effects parameters. emonly is available
only with unweighted estimation and when residuals are modeled as independent with constant
variance.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default, not
displayed unless the emonly option is specified.

emdots specifies that the EM iterations be shown as dots. This option can be convenient because
the EM algorithm may require many iterations to converge.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize. Those that require special mention
for xtmixed are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance—covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance—covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance—covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

The following option is available with xtmixed but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

Remarks are presented under the following headings:

Introduction

Two-level models

Covariance structures

Likelihood versus restricted likelihood
Three-level models

Blocked-diagonal covariance structures
Heteroskedastic random effects
Heteroskedastic residual errors

Other residual-error structures
Random-effects factor notation and crossed-effects models
Diagnosing convergence problems
Distribution theory for likelihood-ratio tests
Survey data

Introduction

Linear mixed models are models containing both fixed effects and random effects. They are a
generalization of linear regression allowing for the inclusion of random deviations (effects) other than
those associated with the overall error term. In matrix notation,

y=XB8+Zu+e (1)

where y is the n X 1 vector of responses, X is an n X p design/covariate matrix for the fixed effects
3, and Z is the n X g design/covariate matrix for the random effects u. The n X 1 vector of errors,
€, is assumed to be multivariate normal with mean zero and variance matrix 0’€2R.

The fixed portion of (1), X3, is analogous to the linear predictor from a standard OLS regression
model with 3 being the regression coefficients to be estimated. For the random portion of (1), Zu+e,
we assume that u has variance—covariance matrix G and that u is orthogonal to € so that

v 2] =[5 oin)

The random effects u are not directly estimated (although they may be predicted), but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the overall residual variance o2 and the residual-variance parameters that are contained within R..

The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on (say) age, or both. The general specification of G also provides additional flexibility—the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for residual
errors to be heteroskedastic and correlated, and allows flexibility in exactly how these characteristics
can be modeled.

Comprehensive treatments of mixed models are provided by, among others, Searle, Casella, and
McCulloch (1992); McCulloch, Searle, and Neuhaus (2008); Verbeke and Molenberghs (2000);
Raudenbush and Bryk (2002); Demidenko (2004); and Pinheiro and Bates (2000). In particular,
chapter 2 of Searle, Casella, and McCulloch (1992) provides an excellent history.
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The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in mixed models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the “ANOVA method” to unbalanced data for
general ANOVA designs is due to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38-39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

The most popular methods, however, are maximum likelihood (ML) and restricted maximum-
likelihood (REML), and these are the two methods that are supported by xtmixed. The ML estimates
are based on the usual application of likelihood theory, given the distributional assumptions of the
model. The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects, 3, but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood.

Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

y;i =X;B+Zju; +¢ (2)

for j = 1,..., M, with cluster j consisting of n; observations. The response, y;, comprises the rows
of y corresponding with the jth cluster, with X; and €; defined analogously. The random effects,
u;, can now be thought of as M realizations of a g X 1 vector that is normally distributed with mean
0 and ¢ x g variance matrix X. The matrix Z; is the n; X ¢ design matrix for the jth cluster random
effects. Relating this to (1), note that

Z, 0 - 0 "
0 Z, - 0 1

Z= . . | s G=IyeYE R=Iy®A (3)
0 0 0 Zuy UM

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect “at the school level”, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to allow
random effects at both the school and the class-within-school levels. This we demonstrate later.

Finally, we state our convention on counting and ordering model levels. Model (2) is what we
call a two-level model, with extensions to three, four, or any number of levels. The observation
Yyi; is for individual ¢ within cluster j, and the individuals comprise the first level and the clusters
comprise the second level of the model. In our hypothetical three-level model with classes nested
within schools, the observations within schools (the students, presumably) would constitute the first
level, the classes would constitute the second level, and the schools would constitute the third level.
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This differs from certain citations in the classical ANOVA literature and texts such as Pinheiro and
Bates (2000) but is the standard in the vast literature on hierarchical models, for example, Skrondal
and Rabe-Hesketh (2004).

In the sections that follow, we assume that residuals are independent with constant variance; that
is, in (3) we treat A equal to the identity matrix and limit ourselves to estimating one overall residual
variance, o2. Beginning in Heteroskedastic residual errors, we relax this assumption.

Two-level models

We begin with a simple application of (2). We begin with a two-level model because a one-level
linear model, by our convention, is just standard OLS regression.

> Example 1

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by variable id. Below is a plot of the growth curves for the first 10 pigs.

. use http://www.stata-press.com/data/r12/pig
(Longitudinal analysis of pig weights)

. twoway connected weight week if id<=10, connect(L)

o
@

weight
60
1

40

It seems clear that each pig experiences a linear trend in growth and that overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we
instead treat them as a random sample from a larger population and model the between-pig variability
as a random effect or, in the terminology of (2), as a random-intercept term at the pig level. We thus
wish to fit the model

weightl-j = ﬂo —+ /Blweekij + U j —+ €5 (4)

for i =1,...,9 weeks and j = 1,...,48 pigs. The fixed portion of the model, By + Biweek;;,
simply states that we want one overall regression line representing the population average. The random
effect, u;, serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. xtmixed weight week || id:
Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268
Computing standard errors:
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48
Obs per group: min = 9
avg = 9.0
max = 9
Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000
weight Coef. Std. Err. z P>|z| [95% Conf. Intervall]
week 6.209896 .0390124  159.18  0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
id: Identity
sd(_cons) 3.849352 .4058119 3.130769 4.732866
sd(Residual) 2.093625 .0755472 1.95067 2.247056
LR test vs. linear regression: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:

1.

By typing “weight week”, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

. When we added “|| id:”, we specified random effects at the level identified by group variable

id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

. The estimation log consists of three parts:

a. A set of expectation-maximization (EM) iterations used to refine starting values. By default, the
iterations themselves are not displayed, but you can display them with the emlog option.

b. A set of “gradient-based” iterations. By default, these are Newton—Raphson iterations, but other
methods are available by specifying the appropriate maximize options; see [R] maximize.

c. The message “Computing standard errors:”. This is just to inform you that xtmixed has finished
its iterative maximization and is now reparameterizing from a matrix-based parameterization
(see Methods and formulas) to the natural metric of variance components and their estimated
standard errors.

. The output title, “Mixed-effects ML regression”, informs us that our model was fit using ML, the

default. For REML estimates, use the reml option.

Because this model is a simple random-intercept model fit by ML, it would be equivalent to using
xtreg with its mle option.

. The first estimation table reports the fixed effects. We estimate 3y = 19.36 and [3; = 6.21.



xtmixed — Multilevel mixed-effects linear regression 313

6. The second estimation table shows the estimated variance components. The first section of the
table is labeled “id: Identity”, meaning that these are random effects at the id (pig) level
and that their variance—covariance matrix is a multiple of the identity matrix; that is, ¥ = aiI.
Because we have only one random effect at this level, xtmixed knew that Identity is the only
possible covariance structure. In any case, the standard deviation of the level-two errors, o, is
estimated as 3.85 with standard error 0.406.

If you prefer variance estimates, 83, to standard deviation estimates, &, then specify the variance
option either at estimation or on replay.

7. The row labeled “sd(Residual)” displays the estimated standard deviation of the overall error
term; that is, o, = 2.09. This is the standard deviation of the level-one errors, that is, the residuals.

8. Finally, a likelihood-ratio test comparing the model with one-level ordinary linear regression, model
(4) without u;, is provided and is highly significant for these data.

We now store our estimates for later use:

. estimates store randint d
> Example 2
Extending (4) to allow for a random slope on week yields the model
weightij =By + ﬁlweekij + ug;j + urjweek;; + €;; (5)
fit using xtmixed:
. xtmixed weight week || id: week

Performing EM optimization:
Performing gradient-based optimization:

Iteration O: log likelihood = -869.03825
Iteration 1: log likelihood = -869.03825

Computing standard errors:

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48

Obs per group: min = 9

avg = 9.0

max = 9

Wald chi2(1) = 4689.51

Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coef.  Std. Err. z P>|z| [95% Conf. Intervall

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629

_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
id: Independent

sd(week) .6066851 .0660294 .4901417 .7509396

sd(_cons) 2.599301 .2969073 2.077913 3.251515

sd(Residual) 1.264441 .0487958 1.17233 1.363789

LR test vs. linear regression: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.
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. estimates store randslope

Because we did not specify a covariance structure for the random effects (uoj7 ulj)' , Xtmixed
used the default Independent structure; that is,

EzVar[UOJ} = [Ugo 0 } (6)

U1y Oul

with 7,9 = 2.60 and &,,; = 0.61. Our point estimates of the fixed effects are essentially identical to
those from model (4), but note that this does not hold generally. Given the 95% confidence interval
for 0,1, it would seem that the random slope is significant, and we can use lrtest and our two
saved estimation results to verify this fact:

. lrtest randslope randint

Likelihood-ratio test LR chi2(1) 291.78
(Assumption: randint nested in randslope) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is comnservative.

The near-zero significance level favors the model that allows for a random pig-specific regression
line over the model that allows only for a pig-specific shift.

4

Q Technical note

At the bottom of the previous xtmixed output, there is a note stating that the likelihood ratio
(LR) test comparing our model with standard linear regression is conservative. Also, our lrtest
output warns us that our test comparing the random-slope model with the random-intercept model
may be conservative if the null hypothesis is on the boundary. For the former, the null hypothesis
is Hy: 02, = 02, = 0. For the latter, the null hypothesis is Hy: 02, = 0. Because variances are
constrained to be positive, both null hypotheses are on the boundaries of their respective parameter
spaces. xtmixed is capable of detecting this automatically because it compares with linear regression.
lrtest, on the other hand, can be used to compare a wide variety of nested mixed models, making
automatic detection of boundary conditions impractical. With lrtest, the onus is on the user to
verify testing on the boundary.

By “conservative”, we mean that when boundary conditions exist, the reported significance level
is an upper bound on the actual significance; see Distribution theory for likelihood-ratio tests later in
this entry for further details.

a

Q Technical note

LR tests with REML require identical fixed-effects specifications for both models. As stated in
Ruppert, Wand, and Carroll (2003), “The reason for this is that restricted likelihood is the likelihood
of the residuals after fitting the fixed effects and so is not appropriate when there is more than one
fixed effects model under consideration.” This is not an issue above because we used the default ML
estimation, but had we fit the models using the reml option, we would have to confine our tests to
models comparing different variance structures and not different 3s.
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In our example, the fixed-effects specifications for both models are identical (3y + (B1week), so
either ML or REML would have produced valid LR tests.

Finally, 1rtest is capable of detecting when you change fixed-effects structures under REML and
will issue an error directing you to refit your models with ML. As such, there is no danger of making
an inappropriate inference.

a

Covariance structures

In example 2, we fit a model with the default Independent covariance given in (6). Within any
random-effects level specification, we can override this default by specifying an alternative covariance
structure via the covariance() option.

> Example 3
We generalize (6) to allow ug; and wuy; to be correlated; that is,

2
upq g (o
Y=Var| ¥ |=|u0 (2)1
ulj J01 01

. xtmixed weight week || id: week, covariance(unstructured) variance
(output omitted )
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48
Obs per group: min = 9
avg = 9.0
max = 9
Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000
weight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
id: Unstructured
var (week) .37156251 .0812958 .2419532 .570486
var (_cons) 6.823363 1.566194 4.351297 10.69986
cov (week, _cons) -.0984378 .2b645767 -.5973991 .4005234
var (Residual) 1.596829 .123198 1.372735 1.857505
LR test vs. linear regression: chi2(3) = 764.58 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
But we do not find the correlation to be at all significant.
. lrtest . randslope
Likelihood-ratio test LR chi2(1) = 0.15
(Assumption: randslope nested in .) Prob > chi2 = 0.6959
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In addition to specifying an alternate covariance structure, we specified the variance option to display
variance components in the variance—covariance metric, rather than the default, which displays them
as standard deviations and correlations.

4

Instead, we could have also specified covariance(identity), restricting ug; and u;; to not
only be independent but also to have common variance, or we could have specified covari-
ance (exchangeable), which imposes a common variance but allows for a nonzero correlation.

Likelihood versus restricted likelihood

Thus far, all our examples have used maximum likelihood (ML) to estimate variance components.
We could have just as easily asked for REML estimates. Refitting the model in example 2 by REML,

we get
. xtmixed weight week || id: week, reml
(output omitted )
Mixed-effects REML regression Number of obs = 432
Group variable: id Number of groups = 48
Obs per group: min = 9
avg = 9.0
max = 9
Wald chi2(1) = 4592.10
Log restricted-likelihood = -870.51473 Prob > chi2 = 0.0000
weight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
week 6.209896 .0916387 67.77  0.000 6.030287 6.389504
_cons 19.35561 .4021144 48.13  0.000 18.56748 20.14374
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
id: Independent
sd(week) .6135475 .0673971 .4947037 .7609413
sd(_cons) 2.630134  .3028832 2.09872 3.296107
sd(Residual) 1.26443 .0487971 1.172317 1.363781
LR test vs. linear regression: chi2(2) = 765.92 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Although ML estimators are based on the usual likelihood theory, the idea behind REML is to
transform the response into a set of linear contrasts whose distribution is free of the fixed effects 3.
The restricted likelihood is then formed by considering the distribution of the linear contrasts. Not
only does this make the maximization problem free of (3, it also incorporates the degrees of freedom
used to estimate 3 into the estimation of the variance components. This follows because, by necessity,
the rank of the linear contrasts must be less than the number of observations.

As a simple example, consider a constant-only regression where y; ~ N (u,02) fori =1,...,n.
The ML estimate of o2 can be derived theoretically as the n-divided sample variance. The REML
estimate can be derived by considering the first n — 1 error contrasts, y; — 7, whose joint distribution
is free of . Applying maximum likelihood to this distribution results in an estimate of o2, that is,
the (n — 1) divided sample variance, which is unbiased for o2
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The unbiasedness property of REML extends to all mixed models when the data are balanced, and
thus REML would seem the clear choice in balanced-data problems, although in large samples the
difference between ML and REML is negligible. One disadvantage of REML is that LR tests based
on REML are inappropriate for comparing models with different fixed-effects specifications. ML is
appropriate for such LR tests and has the advantage of being easy to explain and being the method
of choice for other estimators.

Another factor to consider is that ML estimation under xtmixed is more feature-rich, allowing for
weighted estimation and robust variance—covariance matrices, features not supported under REML. In
the end, which method to use should be based both on your needs and on personal taste.

Examining the REML output, we find that the estimates of the variance components are slightly
larger than the ML estimates. This is typical, because ML estimates, which do not incorporate the
degrees of freedom used to estimate the fixed effects, tend to be biased downward.

Three-level models

The clustered-data representation of the mixed model given in (2) can be extended to two nested
levels of clustering, creating a three-level model once the observations are considered. Formally,

Yin = X8+ Zﬁ)uff) T Zﬁ)uﬁ) + €k (7)

for i = 1,...,n;y first-level observations nested within j = 1,..., M} second-level groups, which

are nested within k = 1,..., M third-level groups. Group j, k consists of n;; observations, so y .
Xk, and €;; each have row dimension 7. Zﬁ) is the m;; X g3 design matrix for the third-level

random effects ug}), and Z;i) is the 5 X g2 design matrix for the second-level random effects uﬁ).

Furthermore, assume that
ul’ ~ N(0,55); ull) ~ N(0,5); e ~ N(0,0%0)

and that u,(f’), uﬁ), and €, are independent.
Fitting a three-level model requires you to specify two random-effects “equations”: one for level
three, and then one for level two. The variable list for the first equation represents ZE'S,)’ and for the

second equation represents Zﬁ); that is, you specify the levels top to bottom in xtmixed.

> Example 4

Baltagi, Song, and Jung (2001) estimate a Cobb—Douglas production function examining the
productivity of public capital in each state’s private output. Originally provided by Munnell (1990),
the data were recorded over 1970—1986 for 48 states grouped into nine regions.
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. use http://www.stata-press.com/data/r12/productivity
(Public Capital Productivity)

. describe

Contains data from http://www.stata-press.com/data/r12/productivity.dta

obs: 816 Public Capital Productivity
vars: 11 29 Mar 2011 10:57

size: 29,376 (_dta has notes)

storage display value
variable name  type format label variable label
state byte  %9.0g states 1-48
region byte %9.0g regions 1-9
year int %9.0g years 1970-1986
public float %9.0g public capital stock
hwy float %9.0g log(highway component of public)
water float %9.0g log(water component of public)
other float %9.0g log(bldg/other component of
public)

private float %9.0g log(private capital stock)
gsp float %9.0g log(gross state product)
emp float %9.0g log(non-agriculture payrolls)
unemp float %9.0g state unemployment rate
Sorted by:

Because the states are nested within regions, we fit a three-level mixed model with random intercepts
at both the region and the state-within-region levels. That is, we use (7) with both Zg-i,? and Zﬁ) set
to the nj, X 1 column of ones, and X3 = U§ and Yo = 0% are both scalars.

. xtmixed gsp private emp hwy water other unemp || region: || state:
(output omitted )
Mixed-effects ML regression Number of obs = 816
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
region 9 51 90.7 136
state 48 17 17.0 17
Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000
gsp Coef.  Std. Err. z P>|z| [95% Conf. Intervall
private .2671484  .0212591 12.57  0.000 .2254814 .3088154
emp . 754072 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363
water .0761187 .0139248 5.47  0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331906  -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684  -.0041282
_cons 2.128823 .1543854 13.79  0.000 1.826233 2.431413
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Random-effects Parameters Estimate  Std. Err. [95% Conf. Interval]
region: Identity
sd(_cons) .038087 .0170591 .0158316 .091628
state: Identity
sd(_cons) .0792193 .0093861 .0628027 .0999273
sd(Residual) .0366893 .000939 .0348944 .0385766
LR test vs. linear regression: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Some items of note:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the region level (level three), and the second is a random intercept at the state
level (Ievel two). The order in which these are specified (from left to right) is significant—xtmixed
assumes that state is nested within region.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the nested-level error structure, we find that the highway and water components
of public capital had significant positive effects on private output, whereas the other public buildings
component had a negative effect.

N

Q Technical note

In the previous example, the states are coded 1-48 and are nested within nine regions. xtmixed
treated the states as nested within regions, regardless of whether the codes for each state are unique
between regions. That is, even if codes for states were duplicated between regions, xtmixed would
have enforced the nesting and produced the same results.

The group information at the top of xtmixed output and that produced by the postestimation
command estat group (see [XT] xtmixed postestimation) take the nesting into account. The
statistics are thus not necessarily what you would get if you instead tabulated each group variable
individually.

a

Model (7) extends in a straightforward manner to more than three levels, as does the specification
of such models in xtmixed.

Blocked-diagonal covariance structures

Covariance matrices of random effects within an equation can be modeled either as a multiple
of the identity matrix, diagonal (that is, Independent), exchangeable, or as general symmetric
(Unstructured). These may also be combined to produce more complex block-diagonal covariance
structures, effectively placing constraints on the variance components.



320 xtmixed — Multilevel mixed-effects linear regression

> Example 5

Returning to our productivity data, we now add random coefficients on hwy and unemp at the
region level. This only slightly changes the estimates of the fixed effects, so we focus our attention
on the variance components:

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable
Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17137.94
Log likelihood = 1447.6787 Prob > chi2 = 0.0000
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
region: Independent
sd (hwy) .0045717 .0120663 .0000259 .8066567
sd (unemp) .0048777 .0013807 .0028007 .0084948
sd(_cons) .0550901 .0786743 .0033533 .9050571
state: Identity
sd(_cons) .0797859 .0097832 .0627412 .101461
sd(Residual) .0353108 .0009104 .0335708 .037141
LR test vs. linear regression: chi2(4) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.

. estimates store prodrc

This model is the same as that fit in example 4, except that Z;i) is now the nj; X 3 matrix with
columns determined by the values of hwy, unemp, and an intercept term (one), in that order, and

(because we used the default Independent structure) Xj is

hwy unemp _cons

o2 0 0
Y3 = 0 o} 0
0 0 o?

C
The random-effects specification at the state level remains unchanged; that is, Yo is still treated as
the scalar variance of the random intercepts at the state level.

An LR test comparing this model with that from example 4 favors the inclusion of the two random
coefficients, a fact we leave to the interested reader to verify.

Examining the estimated variance components reveals that the variances of the random coefficients
on hwy and unemp could be treated as equal. That is,

hwy unemp _cons

o2 0 0
Y3 = 0 o2 0
0 0 o?

looks plausible. We can impose this equality constraint by treating ¥s as block diagonal: the first
block is a 2 x 2 multiple of the identity matrix, that is, ngg; the second is a scalar, equivalently, a
1 x 1 multiple of the identity.
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We construct block-diagonal covariances by repeating level specifications:

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable
Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17136.65
Log likelihood = 1447.6784 Prob > chi2 = 0.0000
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
region: Identity
sd(hwy unemp) .0048802 .001376 .0028082 .0084809
region: Identity
sd(_cons) .0530951 .0286555 .0184356 .1529149
state: Identity
sd(_cons) .0797369 .0095999 .0629766 .1009577
sd(Residual) .0353111 .0009104 .0335712 .0371413
LR test vs. linear regression: chi2(3) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We specified two equations for the region level: the first for the random coefficients on hwy and
unemp with covariance set to Identity and the second for the random intercept _cons, whose
covariance defaults to Identity because it is of dimension one. xtmixed labeled the estimate of
0 as “sd(hwy unemp)” to designate that it is common to the random coefficients on both hwy and
unemp.

An LR test shows that the constrained model fits equally well.

. lrtest . prodrc

Likelihood-ratio test LR chi2(1) = 0.00
(Assumption: . nested in prodrc) Prob > chi2 = 0.9784

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

4

Because the null hypothesis for this test is one of equality (Hg: 02 = crf), it is not on the

boundary of the parameter space. As such, we can take the reported significance as precise rather
than a conservative estimate.

You can repeat level specifications as often as you like, defining successive blocks of a block-
diagonal covariance matrix. However, repeated-level equations must be listed consecutively; otherwise,
xtmixed will give an error.

Q Technical note

In the previous estimation output, there was no constant term included in the first region equation,
even though we did not use the noconstant option. When you specify repeated-level equations,
xtmixed knows not to put constant terms in each equation because such a model would be unidentified.
By default, it places the constant in the last repeated-level equation, but you can use noconstant
creatively to override this. a
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Heteroskedastic random effects

Blocked-diagonal covariance structures and repeated-level specifications of random effects can also
be used to model heteroskedasticity among random effects at a given level.

> Example 6

Following Rabe-Hesketh and Skrondal (2008, sec. 5.10), we analyze data from Asian children in
a British community who were weighed up to four times, roughly between the ages of 6 weeks and
27 months. The dataset is a random sample of data previously analyzed by Goldstein (1986) and
Prosser, Rasbash, and Goldstein (1991).
. use http://www.stata-press.com/data/r12/childweight
(Weight data on Asian children)
. describe

Contains data from http://www.stata-press.com/data/r12/childweight.dta

obs: 198 Weight data on Asian children
vars: 5 23 May 2011 15:12

size: 3,168 (_dta has notes)

storage display value

variable name type format label variable label
id int %8.0g child identifier
age float %8.0g age in years
weight float %8.0g weight in Kg
brthut int %8.0g Birth weight in g
girl float %9.0g bg gender

Sorted by: id age
. graph twoway (line weight age, connect(ascending)), by(girl)
> xtitle(Age in years) ytitle(Weight in kg)

boy girl

15 20
| |

Weight in kg
10

Age in years

Graphs by gender

Ignoring gender effects for the moment, we begin with the following model for the ith measurement
on the jth child:

weight,. = Bo + 61ageij + ,Bgage?j + ujo + ujiage;; + €i;
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The above models overall mean growth as quadratic in age and allows for two child-specific
random effects: a random intercept, u o, that represents each child’s vertical shift from the overall
mean (Bp), and a random age slope, u;;, that represents each child’s 