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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data-Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[TS] Stata Time-Series Reference Manual
[ I ] Stata Quick Reference and Index

[M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/

http://www.stata-press.com/manuals/
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Description
This entry describes this manual and what has changed since Stata 11.

Remarks
This manual documents the xt commands and is referred to as [XT] in cross-references.

Following this entry, [XT] xt provides an overview of the xt commands. The other parts of this
manual are arranged alphabetically. If you are new to Stata’s xt commands, we recommend that you
read the following sections first:

[XT] xt Introduction to xt commands
[XT] xtset Declare a dataset to be panel data
[XT] xtreg Fixed-, between-, and random-effects, and population-averaged linear models

Stata is continually being updated, and Stata users are always writing new commands. To find
out about the latest cross-sectional time-series features, type search panel data after installing the
latest official updates; see [R] update.

What’s new
This section is intended for previous Stata users. If you are new to Stata, you may as well skip it.

1. MI support for panel-data and multilevel models includes xtcloglog, xtgee, xtlogit,
xtmelogit, xtmepoisson, xtmixed, xtnbreg, xtpoisson, xtprobit, xtrc, and xtreg. See
[MI] estimation.

2. Survey feature support for multilevel models, xtmixed, including multilevel sampling weights
and robust variance estimators. See [XT] xtmixed.

3. Documentation for xtmixed, xtmelogit, and xtmepoisson has been modified to adopt the
standard “level” terminology from the literature on hierarchical models. For example, what in
previous Stata versions was considered a one-level model is now called a two-level model with
the observations now being counted as “level one”; see the Introduction section of Remarks in
both [XT] xtmixed and [XT] xtmelogit for more details.

4. Contrasts, which is to say, tests of linear hypotheses involving factor variables and their interactions
from the most recently fit model, and that model can be virtually any model that Stata can fit.
Tests include ANOVA-style tests of main effects, simple effects, interactions, and nested effects.
Effects can be decomposed into comparisons with reference categories, comparisons of adjacent
levels, comparisons with the grand mean, and more. New commands contrast and margins,
contrast are available after most xt estimation commands. See [R] contrast and [R] margins,
contrast.

5. Pairwise comparisons of means, estimated cell means, estimated marginal means, predictive
margins of linear and nonlinear responses, intercepts, and slopes. In addition to ANOVA-style
comparisons, comparisons can be made of population averages. New commands pwcompare and
margins, pwcompare are available after most xt estimation commands. See [R] pwcompare and
[R] margins, pwcompare.

1
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6. Graphs of margins, marginal effects, contrasts, and pairwise comparisons. Margins and effects
can be obtained from linear or nonlinear (for example, probability) responses. New command
marginsplot is available after all xt estimation commands; see [R] marginsplot.

7. xtmixed now uses maximum likelihood (ML) as the default method of estimation, where
previously it used restricted maximum likelihood (REML). REML is still available with the reml
option, and previous behavior is preserved under version control.

8. Estimation output improved.
a. Implied zero coefficients now shown. When a coefficient is omitted, it is now shown as being

zero and the reason it was omitted—collinearity, base, empty—is shown in the standard-error
column. (The word “omitted” is shown if the coefficient was omitted because of collinearity.)

b. You can set displayed precision for all values in coefficient tables using set cformat, set
pformat, and set sformat. Or you may use options cformat(), pformat(), and sformat()
now allowed on all estimation commands. See [R] set cformat and [R] estimation options.

c. Estimation commands now respect the width of the Results window. This feature may be
turned off by new display option nolstretch. See [R] estimation options.

d. You can now set whether base levels, empty cells, and omitted are shown using set
showbaselevels, set showemptycells, and set showomitted. See [R] set showbaselevels.

9. Robust and cluster–robust SEs after fixed-effects xtpoisson. See [XT] xtpoisson.

10. New residual covariance structures for multilevel models include exponential, banded, and
Toeplitz. See [XT] xtmixed.

11. Probability predictions now available. predict after random-effects and population-averaged
count-data models, such as xtpoisson and xtgee, can now predict the probability of any count
or count range. See [XT] xtpoisson postestimation, [XT] xtgee postestimation, and [XT] xtnbreg
postestimation.

12. Option addplot() now places added graphs above or below. Commands that allow option
addplot() can now place the added plots above or below the command’s plots. Affected is the
command xtline; see [XT] xtline.

For a complete list of all the new features in Stata 12, see [U] 1.3 What’s new.

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual
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xt — Introduction to xt commands

Syntax
xtcmd . . .

Description

The xt series of commands provides tools for analyzing panel data (also known as longitudinal
data or in some disciplines as cross-sectional time series when there is an explicit time component).
Panel datasets have the form xit, where xit is a vector of observations for unit i and time t. The
particular commands (such as xtdescribe, xtsum, and xtreg) are documented in alphabetical order
in the entries that follow this entry. If you do not know the name of the command you need, try
browsing the second part of this description section, which organizes the xt commands by topic. The
next section, Remarks, describes concepts that are common across commands.

The xtset command sets the panel variable and the time variable; see [XT] xtset. Most xt
commands require that the panel variable be specified, and some require that the time variable also
be specified. Once you xtset your data, you need not do it again. The xtset information is stored
with your data.

If you have previously tsset your data by using both a panel and a time variable, these settings
will be recognized by xtset, and you need not xtset your data.

If your interest is in general time-series analysis, see [U] 26.16 Models with time-series data and
the Time-Series Reference Manual.

Data management and exploration tools
xtset Declare data to be panel data
xtdescribe Describe pattern of xt data
xtsum Summarize xt data
xttab Tabulate xt data
xtdata Faster specification searches with xt data
xtline Panel-data line plots

Linear regression estimators
xtreg Fixed-, between-, and random-effects, and population-averaged linear models
xtregar Fixed- and random-effects linear models with an AR(1) disturbance
xtmixed Multilevel mixed-effects linear regression
xtgls Panel-data models by using GLS
xtpcse Linear regression with panel-corrected standard errors
xthtaylor Hausman–Taylor estimator for error-components models
xtfrontier Stochastic frontier models for panel data
xtrc Random-coefficients regression
xtivreg Instrumental variables and two-stage least squares for panel-data models

3



4 xt — Introduction to xt commands

Unit-root tests
xtunitroot Panel-data unit-root tests

Dynamic panel-data estimators
xtabond Arellano–Bond linear dynamic panel-data estimation
xtdpd Linear dynamic panel-data estimation
xtdpdsys Arellano–Bover/Blundell–Bond linear dynamic panel-data estimation

Censored-outcome estimators
xttobit Random-effects tobit models
xtintreg Random-effects interval-data regression models

Binary-outcome estimators
xtlogit Fixed-effects, random-effects, and population-averaged logit models
xtmelogit Multilevel mixed-effects logistic regression
xtprobit Random-effects and population-averaged probit models
xtcloglog Random-effects and population-averaged cloglog models

Count-data estimators
xtpoisson Fixed-effects, random-effects, and population-averaged Poisson models
xtmepoisson Multilevel mixed-effects Poisson regression
xtnbreg Fixed-effects, random-effects, & population-averaged negative binomial models

Multilevel (hierarchical) mixed-effects estimators
xtmelogit Multilevel mixed-effects logistic regression
xtmepoisson Multilevel mixed-effects Poisson regression
xtmixed Multilevel mixed-effects linear regression

Generalized estimating equations estimator
xtgee Population-averaged panel-data models by using GEE

Remarks
Consider having data on n units—individuals, firms, countries, or whatever—over T periods. The

data might be income and other characteristics of n persons surveyed each of T years, the output and
costs of n firms collected over T months, or the health and behavioral characteristics of n patients
collected over T years. In panel datasets, we write xit for the value of x for unit i at time t. The xt
commands assume that such datasets are stored as a sequence of observations on (i, t, x).

For a discussion of panel-data models, see Baltagi (2008), Greene (2012, chap. 11), Hsiao (2003),
and Wooldridge (2010). Cameron and Trivedi (2010) illustrate many of Stata’s panel-data estimators.
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Example 1

If we had data on pulmonary function (measured by forced expiratory volume, or FEV) along with
smoking behavior, age, sex, and height, a piece of the data might be

. list in 1/6, separator(0) divider

pid yr_visit fev age sex height smokes

1. 1071 1991 1.21 25 1 69 0
2. 1071 1992 1.52 26 1 69 0
3. 1071 1993 1.32 28 1 68 0
4. 1072 1991 1.33 18 1 71 1
5. 1072 1992 1.18 20 1 71 1
6. 1072 1993 1.19 21 1 71 0

The xt commands need to know the identity of the variable identifying patient, and some of the xt
commands also need to know the identity of the variable identifying time. With these data, we would
type

. xtset pid yr_visit

If we resaved the data, we need not respecify xtset.

Technical note
Panel data stored as shown above are said to be in the long form. Perhaps the data are in the wide

form with 1 observation per unit and multiple variables for the value in each year. For instance, a
piece of the pulmonary function data might be

pid sex fev91 fev92 fev93 age91 age92 age93
1071 1 1.21 1.52 1.32 25 26 28
1072 1 1.33 1.18 1.19 18 20 21

Data in this form can be converted to the long form by using reshape; see [D] reshape.

Example 2

Data for some of the periods might be missing. That is, we have panel data on i = 1, . . . , n
and t = 1, . . . , T , but only Ti of those observations are defined. With such missing periods—called
unbalanced data—a piece of our pulmonary function data might be

. list in 1/6, separator(0) divider

pid yr_visit fev age sex height smokes

1. 1071 1991 1.21 25 1 69 0
2. 1071 1992 1.52 26 1 69 0
3. 1071 1993 1.32 28 1 68 0
4. 1072 1991 1.33 18 1 71 1
5. 1072 1993 1.19 21 1 71 0
6. 1073 1991 1.47 24 0 64 0
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Patient ID 1072 is not observed in 1992. The xt commands are robust to this problem.

Technical note
In many of the entries in [XT], we will use data from a subsample of the NLSY data (for Human

Resource Research 1989) on young women aged 14–26 years in 1968. Women were surveyed in
each of the 21 years 1968–1988, except for the six years 1974, 1976, 1979, 1981, 1984, and 1986.
We use two different subsets: nlswork.dta and union.dta.

For nlswork.dta, our subsample is of 4,711 women in years when employed, not enrolled in
school and evidently having completed their education, and with wages in excess of $1/hour but less
than $700/hour.

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. describe

Contains data from http://www.stata-press.com/data/r12/nlswork.dta
obs: 28,534 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 21 7 Dec 2010 17:02
size: 941,622

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
year byte %8.0g interview year
birth_yr byte %8.0g birth year
age byte %8.0g age in current year
race byte %8.0g 1=white, 2=black, 3=other
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
grade byte %8.0g current grade completed
collgrad byte %8.0g 1 if college graduate
not_smsa byte %8.0g 1 if not SMSA
c_city byte %8.0g 1 if central city
south byte %8.0g 1 if south
ind_code byte %8.0g industry of employment
occ_code byte %8.0g occupation
union byte %8.0g 1 if union
wks_ue byte %8.0g weeks unemployed last year
ttl_exp float %9.0g total work experience
tenure float %9.0g job tenure, in years
hours int %8.0g usual hours worked
wks_work int %8.0g weeks worked last year
ln_wage float %9.0g ln(wage/GNP deflator)

Sorted by: idcode year
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. summarize

Variable Obs Mean Std. Dev. Min Max

idcode 28534 2601.284 1487.359 1 5159
year 28534 77.95865 6.383879 68 88

birth_yr 28534 48.08509 3.012837 41 54
age 28510 29.04511 6.700584 14 46

race 28534 1.303392 .4822773 1 3

msp 28518 .6029175 .4893019 0 1
nev_mar 28518 .2296795 .4206341 0 1

grade 28532 12.53259 2.323905 0 18
collgrad 28534 .1680451 .3739129 0 1
not_smsa 28526 .2824441 .4501961 0 1

c_city 28526 .357218 .4791882 0 1
south 28526 .4095562 .4917605 0 1

ind_code 28193 7.692973 2.994025 1 12
occ_code 28413 4.777672 3.065435 1 13

union 19238 .2344319 .4236542 0 1

wks_ue 22830 2.548095 7.294463 0 76
ttl_exp 28534 6.215316 4.652117 0 28.88461
tenure 28101 3.123836 3.751409 0 25.91667
hours 28467 36.55956 9.869623 1 168

wks_work 27831 53.98933 29.03232 0 104

ln_wage 28534 1.674907 .4780935 0 5.263916

Many of the variables in the nlswork dataset are indicator variables, so we have used factor
variables (see [U] 11.4.3 Factor variables) in many of the examples in this manual. You will see
terms like c.age#c.age or 2.race in estimation commands. c.age#c.age is just age interacted
with age, or age-squared, and 2.race is just an indicator variable for black (race = 2).

Instead of using factor variables, you could type

. generate age2 = age*age

. generate black = (race==2)

and substitute age2 and black in your estimation command for c.age#c.age and 2.race, respec-
tively.

There are advantages, however, to using factor variables. First, you do not actually have to create
new variables, so the number of variables in your dataset is less.

Second, by using factor variables, we are able to take better advantage of postestimation commands.
For example, if we specify the simple model

. xtreg ln_wage age age2, fe

then age and age2 are completely separate variables. Stata has no idea that they are related—that
one is the square of the other. Consequently, if we compute the average marginal effect of age on
the log of wages,

. margins, dydx(age)

then the reported marginal effect is with respect to the age variable alone and not with respect to the
true effect of age, which involves the coefficients on both age and age2.

If instead we fit our model using an interaction of age with itself for the square of age,

. xtreg ln_wage age c.age#c.age, fe
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then Stata has a deep understanding that the coefficients age and c.age#c.age are related. After
fitting this model, the marginal effect reported by margins includes the full effect of age on the log
of income, including the contribution of both coefficients.

. margins, dydx(age)

There are other reasons for preferring factor variables; see [R] margins for examples.

For union.dta, our subset was sampled only from those with union membership information from
1970 to 1988. Our subsample is of 4,434 women. The important variables are age (16–46), grade
(years of schooling completed, ranging from 0 to 18), not smsa (28% of the person-time was spent
living outside a standard metropolitan statistical area (SMSA), and south (41% of the person-time
was in the South). The dataset also has variable union. Overall, 22% of the person-time is marked
as time under union membership, and 44% of these women have belonged to a union.

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. describe

Contains data from http://www.stata-press.com/data/r12/union.dta
obs: 26,200 NLS Women 14-24 in 1968

vars: 8 4 May 2011 13:54
size: 235,800

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
year byte %8.0g interview year
age byte %8.0g age in current year
grade byte %8.0g current grade completed
not_smsa byte %8.0g 1 if not SMSA
south byte %8.0g 1 if south
union byte %8.0g 1 if union
black byte %8.0g race black

Sorted by: idcode year

. summarize

Variable Obs Mean Std. Dev. Min Max

idcode 26200 2611.582 1484.994 1 5159
year 26200 79.47137 5.965499 70 88
age 26200 30.43221 6.489056 16 46

grade 26200 12.76145 2.411715 0 18
not_smsa 26200 .2837023 .4508027 0 1

south 26200 .4130153 .4923849 0 1
union 26200 .2217939 .4154611 0 1
black 26200 .274542 .4462917 0 1

In many of the examples where the union dataset is used, we also include an interaction between
the year variable and the south variable—south#c.year. This interaction is created using factor-
variables notation; see [U] 11.4.3 Factor variables.

With both datasets, we have typed

. xtset idcode year
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Technical note
The xtset command sets the t and i index for xt data by declaring them as characteristics of

the data; see [P] char. The panel variable is stored in dta[iis] and the time variable is stored in
dta[tis].

Technical note
xtmixed, xtmelogit, and xtmepoisson do not use the information pertaining to i and t that is

stored by xtset. Unlike the other xt commands, these can handle multiple nested levels of groups
and thus use their own syntax for specifying the group structure of the data.

Technical note
Throughout the entries in [XT], when random-effects models are fit, a likelihood-ratio test that

the variance of the random effects is zero is included. These tests occur on the boundary of the
parameter space, invalidating the usual theory associated with such tests. However, these likelihood-
ratio tests have been modified to be valid on the boundary. In particular, the null distribution of the
likelihood-ratio test statistic is not the usual χ2

1 but is rather a 50:50 mixture of a χ2
0 (point mass at

zero) and a χ2
1, denoted as χ2

01. See Gutierrez, Carter, and Drukker (2001) for a full discussion, and
see [XT] xtmixed for a generalization of the concept as applied to variance-component estimation in
mixed models.
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Title

quadchk — Check sensitivity of quadrature approximation

Syntax
quadchk

[
#1 #2

] [
, nooutput nofrom

]
Menu

Statistics > Longitudinal/panel data > Setup and utilities > Check sensitivity of quadrature approximation

Description
quadchk checks the quadrature approximation used in the random-effects estimators of the following

commands:

xtcloglog
xtintreg
xtlogit
xtpoisson, re with the normal option
xtprobit
xttobit

quadchk refits the model for different numbers of quadrature points and then compares the different
solutions.

#1 and #2 specify the number of quadrature points to use in the comparison runs of the previous
model. The default is to use (roughly) 2nq/3 and 4nq/3 points, where nq is the number of quadrature
points used in the original estimation.

Most options supplied to the original model are respected by quadchk, but some are not. These
are or, vce(), and the maximize options.

Options
nooutput suppresses the iteration log and output of the refitted models.

nofrom forces the refitted models to start from scratch rather than starting from the previous estimation
results. Adaptive quadrature with intmethod(aghermite) is more sensitive to starting values than
nonadaptive quadrature, intmethod(ghermite), or the default method of adaptive quadrature,
intmethod(mvaghermite). Specifying the nofrom option can level the playing field in testing
estimation results.

Remarks
Remarks are presented under the following headings:

What makes a good random-effects model fit?
How do I know whether I have a good quadrature approximation?
What can I do to improve my results?

10
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What makes a good random-effects model fit?

Some random-effects estimators in Stata use adaptive or nonadaptive Gauss–Hermite quadrature
to compute the log likelihood and its derivatives. As a rule, adaptive quadrature, which is the default
integration method, is much more accurate. The quadchk command provides a means to look at the
numerical accuracy of either quadrature approximation. A good random-effects model fit depends on
both the goodness of the quadrature approximation and the goodness of the data.

The accuracy of the quadrature approximation depends on three factors. The first and second
are how many quadrature points are used and where the quadrature points fall. These two factors
directly influence the accuracy of the quadrature approximation. The number of quadrature points may
be specified with the intpoints() option. However, once the number of points is specified, their
abscissas (locations) and corresponding weights are completely determined. Increasing the number of
points expands the range of the abscissas and, to a lesser extent, increases the density of the abscissas.
For this reason, a function that undulates between the abscissas can be difficult to approximate.

Third, the smoothness of the function being approximated influences the accuracy of the quadrature
approximation. Gauss–Hermite quadrature estimates integrals of the type∫ ∞

−∞
e−x

2
f(x)dx

and the approximation is exact if f(x) is a polynomial of degree less than the number of integration
points. Therefore, f(x) that are well approximated by polynomials of a given degree have integrals
that are well approximated by Gauss–Hermite quadrature with that given number of integration points.
Both large panel sizes and high ρ can reduce the accuracy of the quadrature approximation.

A final factor affects the goodness of the random-effects model: the data themselves. For high
ρ, for example, there is high intrapanel correlation, and panels look like observations. The model
becomes unidentified. Here, even with exact quadrature, fitting the model would be difficult.

How do I know whether I have a good quadrature approximation?

quadchk is intended as a tool to help you know whether you have a good quadrature approximation.
As a rule of thumb, if the coefficients do not change by more than a relative difference of 10−4

(0.01%), the choice of quadrature points does not significantly affect the outcome, and the results
may be confidently interpreted. However, if the results do change appreciably—greater than a relative
difference of 10−2 (1%)—then quadrature is not reliably approximating the likelihood.

What can I do to improve my results?

If the quadchk command indicates that the estimation results are sensitive to the number of
quadrature points, there are several things you can do. First, if you are not using adaptive quadrature,
switch to adaptive quadrature.

Adaptive quadrature can improve the approximation by transforming the integrand so that the
abscissas and weights sample the function on a more suitable range. Details of this transformation
are in Methods and formulas for the given commands; for example, see [XT] xtprobit.

If the model still shows sensitivity to the number of quadrature points, increase the number of
quadrature points with the intpoints() option. This option will increase the range and density of
the sampling used for the quadrature approximation.
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If neither of these works, you may then want to consider an alternative model, such as a fixed-
effects, pooled, or population-averaged model. Alternatively, a different random-effects model whose
likelihood is not approximated via quadrature (for example, xtpoisson, re) may be a better choice.

Example 1

Here we synthesize data according to the model

E(y) = 0.05x1 + 0.08x2 + 0.08x3 + 0.1x4 + 0.1x5 + 0.1x6 + 0.1ε

z =
{

1 if y ≥ 0
0 if y < 0

where the intrapanel correlation is 0.5 and the x1 variable is constant within panels. We first fit a
random-effects probit model, and then we check the stability of the quadrature calculation:

. use http://www.stata-press.com/data/r12/quad1

. xtset id
panel variable: id (balanced)

. xtprobit z x1-x6

(output omitted )
Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300

Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0
max = 20

Wald chi2(6) = 29.24
Log likelihood = -3347.1097 Prob > chi2 = 0.0001

z Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0043068 .0607058 0.07 0.943 -.1146743 .1232879
x2 .1000742 .066331 1.51 0.131 -.0299323 .2300806
x3 .1503539 .0662503 2.27 0.023 .0205057 .2802021
x4 .123015 .0377089 3.26 0.001 .0491069 .196923
x5 .1342988 .0657222 2.04 0.041 .0054856 .263112
x6 .0879933 .0455753 1.93 0.054 -.0013325 .1773192

_cons .0757067 .060359 1.25 0.210 -.0425948 .1940083

/lnsig2u -.0329916 .1026847 -.23425 .1682667

sigma_u .9836395 .0505024 .889474 1.087774
rho .4917528 .0256642 .4417038 .5419677

Likelihood-ratio test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000

. quadchk

Refitting model intpoints() = 8

(output omitted )
Refitting model intpoints() = 16

(output omitted )
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Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points

Log -3347.1097 -3347.1153 -3347.1099
likelihood -.00561484 -.00014288 Difference

1.678e-06 4.269e-08 Relative difference

z: .0043068 .0043068 .00430541
x1 8.983e-15 -1.388e-06 Difference

2.086e-12 -.00032222 Relative difference

z: .10007418 .10007418 .10007431
x2 2.540e-15 1.362e-07 Difference

2.538e-14 1.361e-06 Relative difference

z: .15035391 .15035391 .15035406
x3 6.356e-15 1.520e-07 Difference

4.227e-14 1.011e-06 Relative difference

z: .12301495 .12301495 .12301506
x4 4.149e-15 1.099e-07 Difference

3.373e-14 8.931e-07 Relative difference

z: .13429881 .13429881 .13429896
x5 4.913e-15 1.471e-07 Difference

3.658e-14 1.096e-06 Relative difference

z: .08799332 .08799332 .08799346
x6 3.358e-15 1.363e-07 Difference

3.817e-14 1.549e-06 Relative difference

z: .07570675 .07570675 .07570423
_cons 1.962e-14 -2.516e-06 Difference

2.592e-13 -.00003323 Relative difference

lnsig2u: -.03299164 -.03299164 -.03298184
_cons 7.268e-14 9.798e-06 Difference

-2.203e-12 -.00029699 Relative difference

We see that the largest difference is in the x1 variable with a relative difference of 0.03% between
the model with 12 integration points and 16. This example is somewhat rare in that the differences
between eight quadrature points and 12 are smaller than those between 12 and 16. Usually the opposite
occurs: the model results converge as you add quadrature points. Here we have an indication that
perhaps some minor feature of the model was missed with eight points and 12 but seen with 16.
Because all differences are very small, we could accept this model as is. We would like to have a
largest relative difference of about 0.01%, and this is close. The differences and relative differences
are small, indicating that refitting the random-effects probit model with a few more integration points
will yield a satisfactory result. Indeed, refitting the model with the intpoints(20) option yields
completely satisfactory results when checked with quadchk.

Nonadaptive Gauss–Hermite quadrature does not yield such robust results.
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. xtprobit z x1-x6, intmethod(ghermite) nolog

Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300

Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0
max = 20

Wald chi2(6) = 36.15
Log likelihood = -3349.6926 Prob > chi2 = 0.0000

z Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .1156763 .0554925 2.08 0.037 .0069131 .2244396
x2 .1005555 .066227 1.52 0.129 -.0292469 .230358
x3 .1542187 .0660852 2.33 0.020 .0246941 .2837433
x4 .1257616 .0375776 3.35 0.001 .0521108 .1994123
x5 .1366003 .0654696 2.09 0.037 .0082823 .2649182
x6 .0870325 .0453489 1.92 0.055 -.0018497 .1759147

_cons .1098393 .0500514 2.19 0.028 .0117404 .2079382

/lnsig2u -.0791821 .0971063 -.2695071 .1111428

sigma_u .9611824 .0466685 .8739313 1.057145
rho .4802148 .0242386 .4330281 .5277571

Likelihood-ratio test of rho=0: chibar2(01) = 1577.50 Prob >= chibar2 = 0.000

. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points

Log -3349.6926 -3354.6372 -3348.3881
likelihood -4.9446636 1.3045063 Difference

.00147615 -.00038944 Relative difference

z: .11567633 .16153998 .07007833
x1 .04586365 -.045598 Difference

.39648262 -.39418608 Relative difference

z: .10055552 .10317831 .09937417
x2 .00262279 -.00118135 Difference

.02608297 -.01174825 Relative difference

z: .1542187 .15465369 .15150516
x3 .00043499 -.00271354 Difference

.00282062 -.0175954 Relative difference

z: .12576159 .12880254 .1243974
x4 .00304096 -.00136418 Difference

.02418032 -.01084739 Relative difference

z: .13660028 .13475211 .13707075
x5 -.00184817 .00047047 Difference

-.01352978 .00344411 Relative difference

z: .08703252 .08568342 .08738135
x6 -.0013491 .00034883 Difference

-.0155011 .00400809 Relative difference
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z: .10983928 .11031299 .09654975
_cons .00047371 -.01328953 Difference

.00431274 -.12099067 Relative difference

lnsig2u: -.07918212 -.18133821 -.05815644
_cons -.10215609 .02102568 Difference

1.2901408 -.26553572 Relative difference

Here we see that the x1 variable (the one that was constant within panel) changed with a relative
difference of nearly 40%! This example clearly demonstrates the benefit of adaptive quadrature
methods.

Example 2

Here we rerun the previous nonadaptive quadrature model, but using the intpoints(120) option
to increase the number of integration points to 120. We get results close to those from adaptive
quadrature and an acceptable quadchk. This example demonstrates the efficacy of increasing the
number of integration points to improve the quadrature approximation.

. xtprobit z x1-x6, intmethod(ghermite) intpoints(120) nolog

Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300

Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0
max = 20

Wald chi2(6) = 29.24
Log likelihood = -3347.1099 Prob > chi2 = 0.0001

z Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0043059 .0607087 0.07 0.943 -.114681 .1232929
x2 .1000743 .0663311 1.51 0.131 -.0299322 .2300808
x3 .1503541 .0662503 2.27 0.023 .0205058 .2802023
x4 .1230151 .0377089 3.26 0.001 .049107 .1969232
x5 .134299 .0657223 2.04 0.041 .0054856 .2631123
x6 .0879935 .0455753 1.93 0.054 -.0013325 .1773194

_cons .0757054 .0603621 1.25 0.210 -.0426021 .1940128

/lnsig2u -.0329832 .1026863 -.2342446 .1682783

sigma_u .9836437 .0505034 .8894764 1.08778
rho .491755 .0256646 .4417052 .5419706

Likelihood-ratio test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 80
Refitting model intpoints() = 160

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
120 points 80 points 160 points

Log -3347.1099 -3347.1099 -3347.1099
likelihood -.00007138 2.440e-07 Difference

2.133e-08 -7.289e-11 Relative difference

z: .00430592 .00431318 .00430553
x1 7.259e-06 -3.871e-07 Difference

.00168592 -.00008991 Relative difference

z: .10007431 .10007415 .10007431
x2 -1.519e-07 5.585e-09 Difference

-1.517e-06 5.580e-08 Relative difference

z: .15035406 .15035407 .15035406
x3 1.699e-08 7.636e-09 Difference

1.130e-07 5.078e-08 Relative difference

z: .12301506 .12301512 .12301506
x4 6.036e-08 5.353e-09 Difference

4.907e-07 4.352e-08 Relative difference

z: .13429895 .13429962 .13429896
x5 6.646e-07 4.785e-09 Difference

4.949e-06 3.563e-08 Relative difference

z: .08799345 .08799334 .08799346
x6 -1.123e-07 3.049e-09 Difference

-1.276e-06 3.465e-08 Relative difference

z: .07570536 .07570205 .07570442
_cons -3.305e-06 -9.405e-07 Difference

-.00004365 -.00001242 Relative difference

lnsig2u: -.03298317 -.03298909 -.03298186
_cons -5.919e-06 1.304e-06 Difference

.00017945 -.00003952 Relative difference

Example 3

Here we synthesize data the same way as in the previous example, but we make the intrapanel
correlation equal to 0.1 instead of 0.5. We again fit a random-effects probit model and check the
quadrature:
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. use http://www.stata-press.com/data/r12/quad2

. xtset id
panel variable: id (balanced)

. xtprobit z x1-x6

Fitting comparison model:

Iteration 0: log likelihood = -4142.2915
Iteration 1: log likelihood = -4120.4109
Iteration 2: log likelihood = -4120.4099
Iteration 3: log likelihood = -4120.4099

Fitting full model:

rho = 0.0 log likelihood = -4120.4099
rho = 0.1 log likelihood = -4065.7986
rho = 0.2 log likelihood = -4087.7703

Iteration 0: log likelihood = -4065.7986
Iteration 1: log likelihood = -4065.3157
Iteration 2: log likelihood = -4065.3144
Iteration 3: log likelihood = -4065.3144

Random-effects probit regression Number of obs = 6000
Group variable: id Number of groups = 300

Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0
max = 20

Wald chi2(6) = 39.43
Log likelihood = -4065.3144 Prob > chi2 = 0.0000

z Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0246943 .025112 0.98 0.325 -.0245243 .0739129
x2 .1300123 .0587906 2.21 0.027 .0147847 .2452398
x3 .1190409 .0579539 2.05 0.040 .0054533 .2326284
x4 .139197 .0331817 4.19 0.000 .0741621 .2042319
x5 .077364 .0578454 1.34 0.181 -.036011 .1907389
x6 .0862028 .0401185 2.15 0.032 .007572 .1648336

_cons .0922653 .0244392 3.78 0.000 .0443653 .1401652

/lnsig2u -2.343939 .1575275 -2.652687 -2.035191

sigma_u .3097563 .0243976 .2654461 .3614631
rho .0875487 .0125839 .0658236 .1155574

Likelihood-ratio test of rho=0: chibar2(01) = 110.19 Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points

Log -4065.3144 -4065.3144 -4065.3144
likelihood -2.268e-08 5.457e-12 Difference

5.578e-12 -1.342e-15 Relative difference

z: .02469427 .02469427 .02469427
x1 -3.645e-12 -8.007e-12 Difference

-1.476e-10 -3.242e-10 Relative difference

z: .13001229 .13001229 .13001229
x2 -1.566e-11 -6.879e-13 Difference

-1.204e-10 -5.291e-12 Relative difference

z: .11904089 .11904089 .11904089
x3 -6.457e-12 -3.030e-13 Difference

-5.425e-11 -2.545e-12 Relative difference

z: .13919697 .13919697 .13919697
x4 1.442e-12 1.693e-13 Difference

1.036e-11 1.216e-12 Relative difference

z: .07736398 .07736398 .07736398
x5 -5.801e-12 -4.556e-13 Difference

-7.499e-11 -5.890e-12 Relative difference

z: .08620282 .08620282 .08620282
x6 5.903e-12 3.191e-13 Difference

6.848e-11 3.702e-12 Relative difference

z: .09226527 .09226527 .09226527
_cons -2.850e-12 -1.837e-11 Difference

-3.089e-11 -1.991e-10 Relative difference

lnsig2u: -2.3439389 -2.3439389 -2.3439389
_cons -2.946e-09 -2.172e-10 Difference

1.257e-09 9.267e-11 Relative difference

Here we see that the quadrature approximation is stable. With this result, we can confidently interpret
the results. Satisfactory results are also obtained in this case with nonadaptive quadrature.

Methods and formulas
quadchk is implemented as an ado-file.
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vce options — Variance estimators

Syntax

estimation cmd . . .
[
, vce options . . .

]
vce options Description

vce(oim) observed information matrix (OIM)
vce(opg) outer product of the gradient (OPG) vectors
vce(robust) Huber/White/sandwich estimator
vce(cluster clustvar) clustered sandwich estimator
vce(bootstrap

[
, bootstrap options

]
) bootstrap estimation

vce(jackknife
[
, jackknife options

]
) jackknife estimation

nmp use divisor N − P instead of the default N
scale(x2 | dev | phi | #) override the default scale parameter;

available only with population-averaged models

Description

This entry describes the vce options, which are common to most xt estimation commands. Not
all the options documented below work with all xt estimation commands; see the documentation for
the particular estimation command. If an option is listed there, it is applicable.

The vce() option specifies how to estimate the variance–covariance matrix (VCE) corresponding
to the parameter estimates. The standard errors reported in the table of parameter estimates are the
square root of the variances (diagonal elements) of the VCE.

Options

� � �
SE/Robust �

vce(oim) is usually the default for models fit using maximum likelihood. vce(oim) uses the observed
information matrix (OIM); see [R] ml.

vce(opg) uses the sum of the outer product of the gradient (OPG) vectors; see [R] ml. This is the
default VCE when the technique(bhhh) option is specified; see [R] maximize.

vce(robust) uses the robust or sandwich estimator of variance. This estimator is robust to some
types of misspecification so long as the observations are independent; see [U] 20.20 Obtaining
robust variance estimates.

If the command allows pweights and you specify them, vce(robust) is implied; see
[U] 20.22.3 Sampling weights.

19
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vce(cluster clustvar) specifies that the standard errors allow for intragroup correlation, relaxing
the usual requirement that the observations be independent. That is to say, the observations are
independent across groups (clusters) but not necessarily within groups. clustvar specifies to which
group each observation belongs, for example, vce(cluster personid) in data with repeated
observations on individuals. vce(cluster clustvar) affects the standard errors and variance–
covariance matrix of the estimators but not the estimated coefficients; see [U] 20.20 Obtaining
robust variance estimates.

vce(bootstrap
[
, bootstrap options

]
) uses a bootstrap; see [R] bootstrap. After estimation with

vce(bootstrap), see [R] bootstrap postestimation to obtain percentile-based or bias-corrected
confidence intervals.

vce(jackknife
[
, jackknife options

]
) uses the delete-one jackknife; see [R] jackknife.

nmp specifies that the divisor N − P be used instead of the default N , where N is the total number
of observations and P is the number of coefficients estimated.

scale(x2 | dev | phi | #) overrides the default scale parameter. By default, scale(1) is assumed for
the discrete distributions (binomial, negative binomial, and Poisson), and scale(x2) is assumed
for the continuous distributions (gamma, Gaussian, and inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson chi-squared (or generalized chi-
squared) statistic divided by the residual degrees of freedom, which is recommended by McCullagh
and Nelder (1989) as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and for over- or
underdispersed discrete distributions.

scale(phi) specifies that the scale parameter be estimated from the data. xtgee’s default
scaling makes results agree with other estimators and has been recommended by McCullagh and
Nelder (1989) in the context of GLM. When comparing results with calculations made by other
software, you may find that the other packages do not offer this feature. In such cases, specifying
scale(phi) should match their results.

scale(#) sets the scale parameter to #. For example, using scale(1) in family(gamma) models
results in exponential-errors regression (if you assume independent correlation structure).

Remarks
When you are working with panel-data models, we strongly encourage you to use the

vce(bootstrap) or vce(jackknife) option instead of the corresponding prefix command. For
example, to obtain jackknife standard errors with xtlogit, type
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. use http://www.stata-press.com/data/r12/clogitid

. xtlogit y x1 x2, fe vce(jackknife)
(running xtlogit on estimation sample)

Jackknife replications (66)
1 2 3 4 5

.................................................. 50

................

Conditional fixed-effects logistic regression Number of obs = 369
Group variable: id Number of groups = 66

Obs per group: min = 2
avg = 5.6
max = 10

F( 2, 65) = 4.58
Log likelihood = -123.41386 Prob > F = 0.0137

(Replications based on 66 clusters in id)

Jackknife
y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 .653363 .3010608 2.17 0.034 .052103 1.254623
x2 .0659169 .0487858 1.35 0.181 -.0315151 .1633489

If you wish to specify more options to the bootstrap or jackknife estimation, you can include them
within the vce() option. Below we refit our model requesting bootstrap standard errors based on 300
replications, we set the random-number seed so that our results can be reproduced, and we suppress
the display of the replication dots.

. xtlogit y x1 x2, fe vce(bootstrap, reps(300) seed(123) nodots)

Conditional fixed-effects logistic regression Number of obs = 369
Group variable: id Number of groups = 66

Obs per group: min = 2
avg = 5.6
max = 10

Wald chi2(2) = 8.52
Log likelihood = -123.41386 Prob > chi2 = 0.0141

(Replications based on 66 clusters in id)

Observed Bootstrap Normal-based
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .653363 .3015317 2.17 0.030 .0623717 1.244354
x2 .0659169 .0512331 1.29 0.198 -.0344981 .1663319

Technical note

To perform jackknife estimation on panel data, you must omit entire panels rather than individual
observations. To replicate the output above using the jackknife prefix command, you would have
to type

. jackknife, cluster(id): xtlogit y x1 x2, fe
(output omitted )

Similarly, bootstrap estimation on panel data requires you to resample entire panels rather than
individual observations. The vce(bootstrap) and vce(jackknife) options handle this for you
automatically.
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Methods and formulas
By default, Stata’s maximum likelihood estimators display standard errors based on variance

estimates given by the inverse of the negative Hessian (second derivative) matrix. If vce(robust),
vce(cluster clustvar), or pweights are specified, standard errors are based on the robust variance
estimator (see [U] 20.20 Obtaining robust variance estimates); likelihood-ratio tests are not appropriate
here (see [SVY] survey), and the model χ2 is from a Wald test. If vce(opg) is specified, the standard
errors are based on the outer product of the gradients; this option has no effect on likelihood-ratio
tests, though it does affect Wald tests.

If vce(bootstrap) or vce(jackknife) is specified, the standard errors are based on the chosen
replication method; here the model χ2 or F statistic is from a Wald test using the respective replication-
based covariance matrix. The t distribution is used in the coefficient table when the vce(jackknife)
option is specified. vce(bootstrap) and vce(jackknife) are also available with some commands
that are not maximum likelihood estimators.

Reference
McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall/CRC.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] ml — Maximum likelihood estimation

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/glm.html


Title

xtabond — Arellano–Bond linear dynamic panel-data estimation

Syntax
xtabond depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
diffvars(varlist) already-differenced exogenous variables
inst(varlist) additional instrument variables
lags(#) use # lags of dependent variable as covariates; default is lags(1)

maxldep(#) maximum lags of dependent variable for use as instruments
maxlags(#) maximum lags of predetermined and endogenous variables for use

as instruments
twostep compute the two-step estimator instead of the one-step estimator

Predetermined

pre(varlist
[
. . .
]
) predetermined variables; can be specified more than once

Endogenous

endogenous(varlist
[
. . .
]
) endogenous variables; can be specified more than once

SE/Robust

vce(vcetype) vcetype may be gmm or robust

Reporting

level(#) set confidence level; default is level(95)

artests(#) use # as maximum order for AR tests; default is artests(2)

display options control spacing and line width

coeflegend display legend instead of statistics

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
indepvars and all varlists, except pre(varlist[ . . . ]) and endogenous(varlist[ . . . ]), may contain time-series

operators; see [U] 11.4.4 Time-series varlists. The specification of depvar, however, may not contain time-series
operators.

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Arellano-Bond estimation

23
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Description
Linear dynamic panel-data models include p lags of the dependent variable as covariates and

contain unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level
effects are correlated with the lagged dependent variables, making standard estimators inconsistent.
Arellano and Bond (1991) derived a consistent generalized method of moments (GMM) estimator for
the parameters of this model; xtabond implements this estimator.

This estimator is designed for datasets with many panels and few periods, and it requires that
there be no autocorrelation in the idiosyncratic errors. For a related estimator that uses additional
moment conditions, but still requires no autocorrelation in the idiosyncratic errors, see [XT] xtdpdsys.
For estimators that allow for some autocorrelation in the idiosyncratic errors, at the cost of a more
complicated syntax, see [XT] xtdpd.

Options

� � �
Model �

noconstant; see [R] estimation options.

diffvars(varlist) specifies a set of variables that already have been differenced to be included as
strictly exogenous covariates.

inst(varlist) specifies a set of variables to be used as additional instruments. These instruments are
not differenced by xtabond before including them in the instrument matrix.

lags(#) sets p, the number of lags of the dependent variable to be included in the model. The
default is p = 1.

maxldep(#) sets the maximum number of lags of the dependent variable that can be used as
instruments. The default is to use all Ti − p− 2 lags.

maxlags(#) sets the maximum number of lags of the predetermined and endogenous variables that
can be used as instruments. For predetermined variables, the default is to use all Ti − p− 1 lags.
For endogenous variables, the default is to use all Ti − p− 2 lags.

twostep specifies that the two-step estimator be calculated.

� � �
Predetermined �

pre(varlist
[
, lagstruct(prelags, premaxlags)

]
) specifies that a set of predetermined variables

be included in the model. Optionally, you may specify that prelags lags of the specified variables
also be included. The default for prelags is 0. Specifying premaxlags sets the maximum number
of further lags of the predetermined variables that can be used as instruments. The default is to
include Ti − p− 1 lagged levels as instruments for predetermined variables. You may specify as
many sets of predetermined variables as you need within the standard Stata limits on matrix size.
Each set of predetermined variables may have its own number of prelags and premaxlags.

� � �
Endogenous �

endogenous(varlist
[
, lagstruct(endlags, endmaxlags)

]
) specifies that a set of endogenous

variables be included in the model. Optionally, you may specify that endlags lags of the specified
variables also be included. The default for endlags is 0. Specifying endmaxlags sets the maximum
number of further lags of the endogenous variables that can be used as instruments. The default
is to include Ti − p− 2 lagged levels as instruments for endogenous variables. You may specify
as many sets of endogenous variables as you need within the standard Stata limits on matrix size.
Each set of endogenous variables may have its own number of endlags and endmaxlags.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that are robust to some kinds of misspecification; see Remarks below.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce(robust) uses the robust estimator. After one-step estimation, this is the Arellano–Bond robust
VCE estimator. After two-step estimation, this is the Windmeijer (2005) WC-robust estimator.

� � �
Reporting �

level(#); see [R] estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtabond postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display options: vsquish and nolstretch; see [R] estimation options.

The following option is available with xtabond but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Anderson and Hsiao (1981, 1982) propose using further lags of the level or the difference of

the dependent variable to instrument the lagged dependent variables that are included in a dynamic
panel-data model after the panel-level effects have been removed by first-differencing. A version of
this estimator can be obtained from xtivreg (see [XT] xtivreg). Arellano and Bond (1991) build upon
this idea by noting that, in general, there are many more instruments available. Building on Holtz-
Eakin, Newey, and Rosen (1988) and using the GMM framework developed by Hansen (1982), they
identify how many lags of the dependent variable, the predetermined variables, and the endogenous
variables are valid instruments and how to combine these lagged levels with first differences of the
strictly exogenous variables into a potentially large instrument matrix. Using this instrument matrix,
Arellano and Bond (1991) derive the corresponding one-step and two-step GMM estimators, as well
as the robust VCE estimator for the one-step model. They also found that the robust two-step VCE
was seriously biased. Windmeijer (2005) worked out a bias-corrected (WC) robust estimator for VCEs
of two-step GMM estimators, which is implemented in xtabond. The test of autocorrelation of order
m and the Sargan test of overidentifying restrictions derived by Arellano and Bond (1991) can be
obtained with estat abond and estat sargan, respectively; see [XT] xtabond postestimation.

Example 1

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986) using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm i and
time t. In this dataset, nit is the log of employment in firm i at time t, wit is the natural log of
the real product wage, kit is the natural log of the gross capital stock, and ysit is the natural log
of industry output. The model also includes time dummies yr1980, yr1981, yr1982, yr1983, and
yr1984. In table 4 of Arellano and Bond (1991), the authors present the results they obtained from
several specifications.
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In column a1 of table 4, Arellano and Bond report the coefficients and their standard errors from
the robust one-step estimators of a dynamic model of labor demand in which nit is the dependent
variable and its first two lags are included as regressors. To clarify some important issues, we will
begin with the homoskedastic one-step version of this model and then consider the robust case. Here
is the command using xtabond and the subsequent output for the homoskedastic case:

. use http://www.stata-press.com/data/r12/abdata

. xtabond n l(0/1).w l(0/2).(k ys) yr1980-yr1984 year, lags(2) noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 = 0.0000

One-step results

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358

w
--. -.6078208 .0657694 -9.24 0.000 -.7367265 -.4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251

k
--. .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .0562747
L2. -.0199475 .0416274 -0.48 0.632 -.1015357 .0616408

ys
--. .6085073 .1345412 4.52 0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 -.3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912

yr1980 .0029062 .0212705 0.14 0.891 -.0387832 .0445957
yr1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yr1982 -.0652767 .048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .0538664
yr1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061

year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980

D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

The coefficients are identical to those reported in column a1 of table 4, as they should be. Of
course, the standard errors are different because we are considering the homoskedastic case. Although
the moment conditions use first-differenced errors, xtabond estimates the coefficients of the level
model and reports them accordingly.

The footer in the output reports the instruments used. The first line indicates that xtabond used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991) and
Holtz-Eakin, Newey, and Rosen (1988); also see Methods and formulas in [XT] xtdpd. The second
and third lines indicate that the first difference of all the exogenous variables were used as standard
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instruments. GMM-type instruments use the lags of a variable to contribute multiple columns to the
instrument matrix, whereas each standard instrument contributes one column to the instrument matrix.
The notation L(2/.).n indicates that GMM-type instruments were created using lag 2 of n from on
back. (L(2/4).n would indicate that GMM-type instruments were created using only lags 2, 3, and
4 of n.)

After xtabond, estat sargan reports the Sargan test of overidentifying restrictions.

. estat sargan
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid

chi2(25) = 65.81806
Prob > chi2 = 0.0000

Only for a homoskedastic error term does the Sargan test have an asymptotic chi-squared distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce(robust) model, xtabond does not compute it when vce(robust) is specified. The Sargan test,
reported by Arellano and Bond (1991, table 4, column a1), comes from the one-step homoskedastic
estimator and is the same as the one reported here. The output above presents strong evidence against
the null hypothesis that the overidentifying restrictions are valid. Rejecting this null hypothesis
implies that we need to reconsider our model or our instruments, unless we attribute the rejection
to heteroskedasticity in the data-generating process. Although performing the Sargan test after the
two-step estimator is an alternative, Arellano and Bond (1991) found a tendency for this test to
underreject in the presence of heteroskedasticity. (See [XT] xtdpd for an example indicating that this
rejection may be due to misspecification.)

By default, xtabond calculates the Arellano–Bond test for first- and second-order autocorrelation
in the first-differenced errors. (Use artests() to compute tests for higher orders.) There are versions
of this test for both the homoskedastic and the robust cases, although their values are different. Use
estat abond to report the test results.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -3.9394 0.0001
2 -.54239 0.5876

H0: no autocorrelation

When the idiosyncratic errors are independently and identically distributed (i.i.d.), the first-
differenced errors are first-order serially correlated. So, as expected, the output above presents strong
evidence against the null hypothesis of zero autocorrelation in the first-differenced errors at order 1.
Serial correlation in the first-differenced errors at an order higher than 1 implies that the moment
conditions used by xtabond are not valid; see [XT] xtdpd for an example of an alternative estimation
method. The output above presents no significant evidence of serial correlation in the first-differenced
errors at order 2.
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Example 2

Consider the output from the one-step robust estimator of the same model:

. xtabond n l(0/1).w l(0/2).(k ys) yr1980-yr1984 year, lags(2) vce(robust)
> noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 41 Wald chi2(16) = 1727.45
Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6862261 .1445943 4.75 0.000 .4028266 .9696257
L2. -.0853582 .0560155 -1.52 0.128 -.1951467 .0244302

w
--. -.6078208 .1782055 -3.41 0.001 -.9570972 -.2585445
L1. .3926237 .1679931 2.34 0.019 .0633632 .7218842

k
--. .3568456 .0590203 6.05 0.000 .241168 .4725233
L1. -.0580012 .0731797 -0.79 0.428 -.2014308 .0854284
L2. -.0199475 .0327126 -0.61 0.542 -.0840631 .0441681

ys
--. .6085073 .1725313 3.53 0.000 .2703522 .9466624
L1. -.7111651 .2317163 -3.07 0.002 -1.165321 -.2570095
L2. .1057969 .1412021 0.75 0.454 -.1709542 .382548

yr1980 .0029062 .0158028 0.18 0.854 -.0280667 .0338791
yr1981 -.0404378 .0280582 -1.44 0.150 -.0954307 .0145552
yr1982 -.0652767 .0365451 -1.79 0.074 -.1369038 .0063503
yr1983 -.0690928 .047413 -1.46 0.145 -.1620205 .0238348
yr1984 -.0650302 .0576305 -1.13 0.259 -.1779839 .0479235

year .0095545 .0102896 0.93 0.353 -.0106127 .0297217

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980

D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

The coefficients are the same, but now the standard errors match that reported in Arellano and
Bond (1991, table 4, column a1). Most of the robust standard errors are higher than those that assume
a homoskedastic error term.
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The Sargan statistic cannot be calculated after requesting a robust VCE, but robust tests for serial
correlation are available.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -3.5996 0.0003
2 -.51603 0.6058

H0: no autocorrelation

The value of the test for second-order autocorrelation matches those reported in Arellano and
Bond (1991, table 4, column a1) and presents no evidence of model misspecification.

Example 3

xtabond reports the Wald statistic of the null hypothesis that all the coefficients except the constant
are zero. Here the null hypothesis is that all the coefficients are zero, because there is no constant in
the model. In our previous example, the null hypothesis is soundly rejected. In column a1 of table 4,
Arellano and Bond report a chi-squared test of the null hypothesis that all the coefficients are zero,
except the time trend and the time dummies. Here is this test in Stata:

. test l.n l2.n w l.w k l.k l2.k ys l.ys l2.ys

( 1) L.n = 0
( 2) L2.n = 0
( 3) w = 0
( 4) L.w = 0
( 5) k = 0
( 6) L.k = 0
( 7) L2.k = 0
( 8) ys = 0
( 9) L.ys = 0
(10) L2.ys = 0

chi2( 10) = 408.29
Prob > chi2 = 0.0000

Example 4

The two-step estimator with the Windmeijer bias-corrected robust VCE of the same model produces
the following output:
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. xtabond n l(0/1).w l(0/2).(k ys) yr1980-yr1984 year, lags(2) twostep
> vce(robust) noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 41 Wald chi2(16) = 1104.72
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6287089 .1934138 3.25 0.001 .2496248 1.007793
L2. -.0651882 .0450501 -1.45 0.148 -.1534847 .0231084

w
--. -.5257597 .1546107 -3.40 0.001 -.828791 -.2227284
L1. .3112899 .2030006 1.53 0.125 -.086584 .7091638

k
--. .2783619 .0728019 3.82 0.000 .1356728 .4210511
L1. .0140994 .0924575 0.15 0.879 -.167114 .1953129
L2. -.0402484 .0432745 -0.93 0.352 -.1250649 .0445681

ys
--. .5919243 .1730916 3.42 0.001 .252671 .9311776
L1. -.5659863 .2611008 -2.17 0.030 -1.077734 -.0542381
L2. .1005433 .1610987 0.62 0.533 -.2152043 .4162908

yr1980 .0006378 .0168042 0.04 0.970 -.0322978 .0335734
yr1981 -.0550044 .0313389 -1.76 0.079 -.1164275 .0064187
yr1982 -.075978 .0419276 -1.81 0.070 -.1581545 .0061986
yr1983 -.0740708 .0528381 -1.40 0.161 -.1776315 .02949
yr1984 -.0906606 .0642615 -1.41 0.158 -.2166108 .0352896

year .0112155 .0116783 0.96 0.337 -.0116735 .0341045

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980

D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Arellano and Bond recommend against using the two-step nonrobust results for inference on the
coefficients because the standard errors tend to be biased downward (see Arellano and Bond 1991
for details). The output above uses the Windmeijer bias-corrected (WC) robust VCE, which Windmei-
jer (2005) showed to work well. The magnitudes of several of the coefficient estimates have changed,
and one even switched its sign.



xtabond — Arellano–Bond linear dynamic panel-data estimation 31

The test for autocorrelation presents no evidence of model misspecification:

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -2.1255 0.0335
2 -.35166 0.7251

H0: no autocorrelation

� �
Manuel Arellano (1957– ) was born in Elda in Alicante, Spain. He earned degrees in economics
from the University of Barcelona and the London School of Economics. After various posts in
Oxford and London, he returned to Spain as professor of econometrics at Madrid in 1991. He
is a leading expert on panel-data econometrics.

Stephen Roy Bond (1963– ) earned degrees in economics from Cambridge and Oxford. Following
various posts at Oxford, he now works mainly at the Institute for Fiscal Studies in London. His
research interests include company taxation, dividends, and the links between financial markets,
corporate control, and investment.� �

Example 5

Thus far we have been specifying the noconstant option to keep to the standard Arellano–
Bond estimator, which uses instruments only for the differenced equation. The constant estimated by
xtabond is a constant in the level equation, and it is estimated from the level errors. The output
below illustrates that including a constant in the model does not affect the other parameter estimates.
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. xtabond n l(0/1).w l(0/2).(k ys) yr1980-yr1984 year, lags(2) twostep vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 42 Wald chi2(16) = 1104.72
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6287089 .1934138 3.25 0.001 .2496248 1.007793
L2. -.0651882 .0450501 -1.45 0.148 -.1534847 .0231084

w
--. -.5257597 .1546107 -3.40 0.001 -.828791 -.2227284
L1. .3112899 .2030006 1.53 0.125 -.086584 .7091638

k
--. .2783619 .0728019 3.82 0.000 .1356728 .4210511
L1. .0140994 .0924575 0.15 0.879 -.167114 .1953129
L2. -.0402484 .0432745 -0.93 0.352 -.1250649 .0445681

ys
--. .5919243 .1730916 3.42 0.001 .252671 .9311776
L1. -.5659863 .2611008 -2.17 0.030 -1.077734 -.0542381
L2. .1005433 .1610987 0.62 0.533 -.2152043 .4162908

yr1980 .0006378 .0168042 0.04 0.970 -.0322978 .0335734
yr1981 -.0550044 .0313389 -1.76 0.079 -.1164275 .0064187
yr1982 -.075978 .0419276 -1.81 0.070 -.1581545 .0061986
yr1983 -.0740708 .0528381 -1.40 0.161 -.1776315 .02949
yr1984 -.0906606 .0642615 -1.41 0.158 -.2166108 .0352896

year .0112155 .0116783 0.96 0.337 -.0116735 .0341045
_cons -21.53725 23.23138 -0.93 0.354 -67.06992 23.99542

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980

D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year
Instruments for level equation

Standard: _cons

Including the constant does not affect the other parameter estimates because it is identified only by
the level errors; see [XT] xtdpd for details.

Example 6
Sometimes we cannot assume strict exogeneity. Recall that a variable, xit, is said to be strictly

exogenous if E[xitεis] = 0 for all t and s. If E[xitεis] 6= 0 for s < t but E[xitεis] = 0 for all s ≥ t,
the variable is said to be predetermined. Intuitively, if the error term at time t has some feedback
on the subsequent realizations of xit, xit is a predetermined variable. Because unforecastable errors
today might affect future changes in the real wage and in the capital stock, we might suspect that
the log of the real product wage and the log of the gross capital stock are predetermined instead of
strictly exogenous. Here we treat w and k as predetermined and use lagged levels as instruments.



xtabond — Arellano–Bond linear dynamic panel-data estimation 33

. xtabond n l(0/1).ys yr1980-yr1984 year, lags(2) twostep pre(w, lag(1,.))
> pre(k, lag(2,.)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 83 Wald chi2(15) = 958.30
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881

w
--. -.6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441

k
--. .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. -.1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. -.1025833 .0710886 -1.44 0.149 -.2419143 .0367477

ys
--. .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. -.8773678 .2183085 -4.02 0.000 -1.305245 -.449491

yr1980 -.0072451 .017163 -0.42 0.673 -.0408839 .0263938
yr1981 -.0609608 .030207 -2.02 0.044 -.1201655 -.0017561
yr1982 -.1130369 .0454826 -2.49 0.013 -.2021812 -.0238926
yr1983 -.1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yr1984 -.1623177 .0725434 -2.24 0.025 -.3045001 -.0201352

year .0264501 .0119329 2.22 0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back.

Technical note
The above example illustrates that xtabond understands pre(w, lag(1, .)) to mean that L.w

is a predetermined variable and pre(k, lag(2, .)) to mean that L2.k is a predetermined variable.
This is a stricter definition than the alternative that pre(w, lag(1, .)) means only that w is
predetermined but includes a lag of w in the model and that pre(k, lag(2, .)) means only that
k is predetermined but includes first and second lags of k in the model. If you prefer the weaker
definition, xtabond still gives you consistent estimates, but it is not using all possible instruments;
see [XT] xtdpd for an example of how to include all possible instruments.
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Example 7

We might instead suspect that w and k are endogenous in that E[xitεis] 6= 0 for s ≤ t but
E[xitεis] = 0 for all s > t. By this definition, endogenous variables differ from predetermined
variables only in that the former allow for correlation between the xit and the εit at time t, whereas
the latter do not. Endogenous variables are treated similarly to the lagged dependent variable. Levels
of the endogenous variables lagged two or more periods can serve as instruments. In this example,
we treat w and k as endogenous variables.

. xtabond n l(0/1).ys yr1980-yr1984 year, lags(2) twostep endogenous(w, lag(1,.))
> endogenous(k, lag(2,.)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 71 Wald chi2(15) = 967.61
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6640937 .1278908 5.19 0.000 .4134323 .914755
L2. -.041283 .081801 -0.50 0.614 -.2016101 .1190441

w
--. -.7143942 .13083 -5.46 0.000 -.9708162 -.4579721
L1. .3644198 .184758 1.97 0.049 .0023008 .7265388

k
--. .5028874 .1205419 4.17 0.000 .2666296 .7391452
L1. -.2160842 .0972855 -2.22 0.026 -.4067603 -.025408
L2. -.0549654 .0793673 -0.69 0.489 -.2105225 .1005917

ys
--. .5989356 .1779731 3.37 0.001 .2501148 .9477564
L1. -.6770367 .1961166 -3.45 0.001 -1.061418 -.2926553

yr1980 -.0061122 .0155287 -0.39 0.694 -.0365478 .0243235
yr1981 -.04715 .0298348 -1.58 0.114 -.1056252 .0113251
yr1982 -.0817646 .0486049 -1.68 0.093 -.1770285 .0134993
yr1983 -.0939251 .0675804 -1.39 0.165 -.2263802 .0385299
yr1984 -.117228 .0804716 -1.46 0.145 -.2749493 .0404934

year .0208857 .0103485 2.02 0.044 .0006031 .0411684

Instruments for differenced equation
GMM-type: L(2/.).n L(2/.).L.w L(2/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

Although some estimated coefficients changed in magnitude, none changed in sign, and these
results are similar to those obtained by treating w and k as predetermined.

The Arellano–Bond estimator is for datasets with many panels and few periods. (Technically, the
large-sample properties are derived with the number of panels going to infinity and the number of
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periods held fixed.) The number of instruments increases quadratically in the number of periods. If
your dataset is better described by a framework in which both the number of panels and the number
of periods is large, then you should consider other estimators such as those in [XT] xtivreg or xtreg,
fe in [XT] xtreg; see Alvarez and Arellano (2003) for a discussion of this case.

Example 8

Treating variables as predetermined or endogenous quickly increases the size of the instrument
matrix. (See Methods and formulas in [XT] xtdpd for a discussion of how this matrix is created and
what determines its size.) GMM estimators with too many overidentifying restrictions may perform
poorly in small samples. (See Kiviet 1995 for a discussion of the dynamic panel-data case.)

To handle these problems, you can set a maximum number of lagged levels to be included as
instruments for lagged-dependent or the predetermined variables. Here is an example in which a
maximum of three lagged levels of the predetermined variables are included as instruments:

. xtabond n l(0/1).ys yr1980-yr1984 year, lags(2) twostep
> pre(w, lag(1,3)) pre(k, lag(2,3)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 67 Wald chi2(15) = 1116.89
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .931121 .1456964 6.39 0.000 .6455612 1.216681
L2. -.0759918 .0854356 -0.89 0.374 -.2434425 .0914589

w
--. -.6475372 .1687931 -3.84 0.000 -.9783656 -.3167089
L1. .6906238 .1789698 3.86 0.000 .3398493 1.041398

k
--. .3788106 .1848137 2.05 0.040 .0165824 .7410389
L1. -.2158533 .1446198 -1.49 0.136 -.4993028 .0675962
L2. -.0914584 .0852267 -1.07 0.283 -.2584997 .0755829

ys
--. .7324964 .176748 4.14 0.000 .3860766 1.078916
L1. -.9428141 .2735472 -3.45 0.001 -1.478957 -.4066715

yr1980 -.0102389 .0172473 -0.59 0.553 -.0440431 .0235652
yr1981 -.0763495 .0296992 -2.57 0.010 -.1345589 -.0181402
yr1982 -.1373829 .0441833 -3.11 0.002 -.2239806 -.0507853
yr1983 -.1825149 .0613674 -2.97 0.003 -.3027928 -.0622369
yr1984 -.2314023 .0753669 -3.07 0.002 -.3791186 -.083686

year .0310012 .0119167 2.60 0.009 .0076448 .0543576

Instruments for differenced equation
GMM-type: L(2/.).n L(1/3).L.w L(1/3).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year
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Example 9

xtabond handles data in which there are missing observations in the middle of the panels. In the
following example, we deliberately set the dependent variable to missing in the year 1980:

. replace n=. if year==1980
(140 real changes made, 140 to missing)

. xtabond n l(0/1).w l(0/2).(k ys) yr1980-yr1984 year, lags(2) noconstant
> vce(robust)
note: yr1980 dropped from div() because of collinearity
note: yr1981 dropped from div() because of collinearity
note: yr1982 dropped from div() because of collinearity
note: yr1980 dropped because of collinearity
note: yr1981 dropped because of collinearity
note: yr1982 dropped because of collinearity

Arellano-Bond dynamic panel-data estimation Number of obs = 115
Group variable: id Number of groups = 101
Time variable: year

Obs per group: min = 1
avg = 1.138614
max = 2

Number of instruments = 18 Wald chi2(12) = 44.48
Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .1790577 .2204682 0.81 0.417 -.253052 .6111674
L2. .0214253 .0488476 0.44 0.661 -.0743143 .1171649

w
--. -.2513405 .1402114 -1.79 0.073 -.5261498 .0234689
L1. .1983952 .1445875 1.37 0.170 -.0849912 .4817815

k
--. .3983149 .0883352 4.51 0.000 .2251811 .5714488
L1. -.025125 .0909236 -0.28 0.782 -.203332 .1530821
L2. -.0359338 .0623382 -0.58 0.564 -.1581144 .0862468

ys
--. .3663201 .3824893 0.96 0.338 -.3833451 1.115985
L1. -.6319976 .4823958 -1.31 0.190 -1.577476 .3134807
L2. .5318404 .4105269 1.30 0.195 -.2727775 1.336458

yr1983 -.0047543 .024855 -0.19 0.848 -.0534692 .0439606
yr1984 0 (omitted)

year .0014465 .010355 0.14 0.889 -.0188489 .0217419

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1983

D.yr1984 D.year

There are two important aspects to this example. First, xtabond reports that variables have been
dropped from the model and from the div() instrument list. For xtabond, the div() instrument list
is the list of instruments created from the strictly exogenous variables; see [XT] xtdpd for more about
the div() instrument list. Second, because xtabond uses time-series operators in its computations,
if statements and missing values are not equivalent. An if statement causes the false observations to
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be excluded from the sample, but it computes the time-series operators wherever possible. In contrast,
missing data prevent evaluation of the time-series operators that involve missing observations. Thus
the example above is not equivalent to the following one:

. use http://www.stata-press.com/data/r12/abdata, clear

. xtabond n l(0/1).w l(0/2).(k ys) yr1980-yr1984 year if year!=1980,
> lags(2) noconstant vce(robust)
note: yr1980 dropped from div() because of collinearity
note: yr1980 dropped because of collinearity

Arellano-Bond dynamic panel-data estimation Number of obs = 473
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 3
avg = 3.378571
max = 5

Number of instruments = 37 Wald chi2(15) = 1041.61
Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .7210062 .1321214 5.46 0.000 .4620531 .9799593
L2. -.0960646 .0570547 -1.68 0.092 -.2078898 .0157606

w
--. -.6684175 .1739484 -3.84 0.000 -1.00935 -.3274849
L1. .482322 .1647185 2.93 0.003 .1594797 .8051642

k
--. .3802777 .0728546 5.22 0.000 .2374853 .5230701
L1. -.104598 .088597 -1.18 0.238 -.278245 .069049
L2. -.0272055 .0379994 -0.72 0.474 -.101683 .0472721

ys
--. .4655989 .1864368 2.50 0.013 .1001895 .8310082
L1. -.8562492 .2187886 -3.91 0.000 -1.285067 -.4274315
L2. .0896556 .1440035 0.62 0.534 -.192586 .3718972

yr1981 -.0711626 .0205299 -3.47 0.001 -.1114005 -.0309247
yr1982 -.1212749 .0334659 -3.62 0.000 -.1868669 -.0556829
yr1983 -.1470248 .0461714 -3.18 0.001 -.2375191 -.0565305
yr1984 -.1519021 .0543904 -2.79 0.005 -.2585054 -.0452988

year .0203277 .0108732 1.87 0.062 -.0009833 .0416387

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1981

D.yr1982 D.yr1983 D.yr1984 D.year

The year 1980 is dropped from the sample, but when the value of a variable from 1980 is required
because a lag or difference is required, the 1980 value is used.
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Saved results
xtabond saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g max) largest group size
e(g min) smallest group size
e(g avg) average group size
e(t max) maximum time in sample
e(t min) minimum time in sample
e(chi2) χ2

e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of σ2

ε

e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix

Macros
e(cmd) xtabond
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(system) system, if system estimator
e(hascons) hascons, if specified
e(transform) specified transform
e(datasignature) checksum from datasignature
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xtabond is implemented as an ado-file.

A dynamic panel-data model has the form

yit =
p∑
j=1

αjyi,t−j + xitβ1 + witβ2 + νi + εit i = 1, . . . , N t = 1, . . . , Ti (1)
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where

the αj are p parameters to be estimated,
xit is a 1× k1 vector of strictly exogenous covariates,
β1 is a k1 × 1 vector of parameters to be estimated,
wit is a 1× k2 vector of predetermined and endogenous covariates,
β2 is a k2 × 1 vector of parameters to be estimated,
νi are the panel-level effects (which may be correlated with the covariates), and
εit are i.i.d. over the whole sample with variance σ2

ε .

The νi and the εit are assumed to be independent for each i over all t.

By construction, the lagged dependent variables are correlated with the unobserved panel-level
effects, making standard estimators inconsistent. With many panels and few periods, estimators are
constructed by first-differencing to remove the panel-level effects and using instruments to form
moment conditions.

xtabond uses a GMM estimator to estimate α1, . . . , αp, β1, and β2. The moment conditions are
formed from the first-differenced errors from (1) and instruments. Lagged levels of the dependent
variable, the predetermined variables, and the endogenous variables are used to form GMM-type
instruments. See Arellano and Bond (1991) and Holtz-Eakin, Newey, and Rosen (1988) for discussions
of GMM-type instruments. First differences of the strictly exogenous variables are used as standard
instruments.

xtabond uses xtdpd to perform its computations, so the formulas are given in Methods and
formulas of [XT] xtdpd.
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Also see
[XT] xtabond postestimation — Postestimation tools for xtabond

[XT] xtset — Declare data to be panel data

[XT] xtdpdsys — Arellano–Bover/Blundell–Bond linear dynamic panel-data estimation

[XT] xtdpd — Linear dynamic panel-data estimation

[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[U] 20 Estimation and postestimation commands



Title

xtabond postestimation — Postestimation tools for xtabond

Description
The following postestimation commands are of special interest after xtabond:

Command Description

estat abond test for autocorrelation
estat sargan Sargan test of overidentifying restrictions

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands
estat abond reports the Arellano–Bond tests for serial correlation in the first-differenced errors.

estat sargan reports the Sargan test of the overidentifying restrictions.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, xb e stdp difference
]

Menu
Statistics > Postestimation > Predictions, residuals, etc.

41
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.

Syntax for estat abond

estat abond
[
, artests(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat abond
artests(#) specifies the highest order of serial correlation to be tested. By default, the tests computed

during estimation are reported. The model will be refit when artests(#) specifies a higher order
than that computed during the original estimation. The model can be refit only if the data have
not changed.

Syntax for estat sargan
estat sargan

Menu
Statistics > Postestimation > Reports and statistics

Remarks
Remarks are presented under the following headings:

estat abond
estat sargan



xtabond postestimation — Postestimation tools for xtabond 43

estat abond

estat abond reports the Arellano–Bond test for serial correlation in the first-differenced errors at
order m. Rejecting the null hypothesis of no serial correlation in the first-differenced errors at order
zero does not imply model misspecification because the first-differenced errors are serially correlated
if the idiosyncratic errors are independent and identically distributed. Rejecting the null hypothesis
of no serial correlation in the first-differenced errors at an order greater than one implies model
misspecification; see example 5 in [XT] xtdpd for an alternative estimator that allows for idiosyncratic
errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce(robust) has been
specified. (The system estimator is used to estimate the constant in xtabond.)

See Remarks in [XT] xtabond for more remarks about estat abond that are made in the context
of the examples analyzed therein.

estat sargan

The distribution of the Sargan test is known only when the errors are independently and identically
distributed. For this reason, estat sargan does not produce a test statistic when vce(robust) was
specified in the call to xtabond.

See Remarks in [XT] xtabond for more remarks about estat sargan that are made in the context
of the examples analyzed therein.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See [XT] xtdpd postestimation for the formulas.

Also see
[XT] xtabond — Arellano–Bond linear dynamic panel-data estimation

[U] 20 Estimation and postestimation commands



Title

xtcloglog — Random-effects and population-averaged cloglog models

Syntax
Random-effects (RE) model

xtcloglog depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, re RE options
]

Population-averaged (PA) model

xtcloglog depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, pa

[
PA options

]
RE options Description

Model

noconstant suppress constant term
re use random-effects estimator; the default
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform overall model test as a likelihood-ratio test
eform report exponentiated coefficients
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intmethod(intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod(mvaghermite)

intpoints(#) use # quadrature points; default is intpoints(12)

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

44
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PA options Description

Model

noconstant suppress constant term
pa use population-averaged estimator
offset(varname) include varname in model with coefficient constrained to 1

Correlation

corr(correlation) within-group correlation structure; see table below
force estimate even if observations unequally spaced in time

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
scale(parm) overrides the default scale parameter;

parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

correlation Description

exchangeable exchangeable; the default
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

A panel variable must be specified. For xtcloglog, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed

for the random-effects model; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Binary outcomes > Complementary log-log regression (RE, PA)

Description
xtcloglog fits population-averaged and random-effects complementary log-log (cloglog) models.

There is no command for a conditional fixed-effects model, as there does not exist a sufficient statistic
allowing the fixed effects to be conditioned out of the likelihood. Unconditional fixed-effects cloglog
models may be fit with cloglog with indicator variables for the panels. However, unconditional
fixed-effects estimates are biased.

By default, the population-averaged model is an equal-correlation model; that is, xtcloglog, pa
assumes corr(exchangeable). See [XT] xtgee for information on fitting other population-averaged
models.

See [R] logistic for a list of related estimation commands.

Options for RE model

� � �
Model �

noconstant; see [R] estimation options.

re requests the random-effects estimator, which is the default.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#), noskip; see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod), intpoints(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.
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The following option is available with xtcloglog but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for PA model

� � �
Model �

noconstant; see [R] estimation options.

pa requests the population-averaged estimator.

offset(varname); see [R] estimation options

� � �
Correlation �

corr(correlation), force; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtcloglog but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
xtcloglog, pa is a shortcut command for fitting the population-averaged model. Typing

. xtcloglog . . ., pa . . .

is equivalent to typing
. xtgee . . ., . . . family(binomial) link(cloglog) corr(exchangeable)

Also see [XT] xtgee for information about xtcloglog.

By default or when re is specified, xtcloglog fits, via maximum likelihood, the random-effects
model

Pr(yit 6= 0|xit) = P (xitβ+ νi)

for i = 1, . . . , n panels, where t = 1, . . . , ni, νi are i.i.d., N(0, σ2
ν), and P (z) = 1−exp{− exp(z)}.

Underlying this model is the variance-components model

yit 6= 0 ⇐⇒ xitβ+ νi + εit > 0

where εit are i.i.d. extreme-value (Gumbel) distributed with the mean equal to Euler’s constant and
variance σ2

ε = π2/6, independently of νi. The nonsymmetric error distribution is an alternative to
logit and probit analysis and is typically used when the positive (or negative) outcome is rare.

Example 1

Suppose that we are studying unionization of women in the United States and are using the union
dataset; see [XT] xt. We wish to fit a random-effects model of union membership:

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtcloglog union age grade not_smsa south##c.year

(output omitted )
Random-effects complementary log-log model Number of obs = 26200
Group variable: idcode Number of groups = 4434

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12

Wald chi2(6) = 248.58
Log likelihood = -10535.928 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0128659 .0119004 1.08 0.280 -.0104586 .0361903
grade .06985 .0138135 5.06 0.000 .042776 .096924

not_smsa -.198416 .0647943 -3.06 0.002 -.3254104 -.0714215
1.south -2.047645 .488965 -4.19 0.000 -3.005999 -1.089291

year -.0006432 .0123569 -0.05 0.958 -.0248623 .0235759

south#c.year
1 .0164259 .006065 2.71 0.007 .0045387 .0283132

_cons -3.269158 .659029 -4.96 0.000 -4.560831 -1.977485

/lnsig2u 1.24128 .0461705 1.150787 1.331772

sigma_u 1.860118 .0429413 1.77783 1.946214
rho .677778 .0100834 .6577057 .6972152

Likelihood-ratio test of rho=0: chibar2(01) = 6009.36 Prob >= chibar2 = 0.000
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The output includes the additional panel-level variance component, which is parameterized as the log
of the standard deviation, lnσν (labeled lnsig2u in the output). The standard deviation σν is also
included in the output, labeled sigma u, together with ρ (labeled rho),

ρ =
σ2
ν

σ2
ν + σ2

ε

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is not important, and the panel estimator
is no different from the pooled estimator (cloglog). A likelihood-ratio test of this is included at the
bottom of the output, which formally compares the pooled estimator with the panel estimator.

As an alternative to the random-effects specification, you might want to fit an equal-correlation
population-averaged cloglog model by typing

. xtcloglog union age grade not_smsa south##c.year, pa

Iteration 1: tolerance = .11878399
Iteration 2: tolerance = .01424628
Iteration 3: tolerance = .00075278
Iteration 4: tolerance = .00003195
Iteration 5: tolerance = 1.661e-06
Iteration 6: tolerance = 8.308e-08

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: cloglog Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 234.66
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0153737 .0081156 1.89 0.058 -.0005326 .03128
grade .0549518 .0095093 5.78 0.000 .0363139 .0735897

not_smsa -.1045232 .0431082 -2.42 0.015 -.1890138 -.0200326
1.south -1.714868 .3384558 -5.07 0.000 -2.378229 -1.051507

year -.0115881 .0084125 -1.38 0.168 -.0280763 .0049001

south#c.year
1 .0149796 .0041687 3.59 0.000 .0068091 .0231501

_cons -1.488278 .4468005 -3.33 0.001 -2.363991 -.6125652

Example 2

In [R] cloglog, we showed these results and compared them with cloglog, vce(cluster id).
xtcloglog with the pa option allows a vce(robust) option (the random-effects estimator does not
allow the vce(robust) specification), so we can obtain the population-averaged cloglog estimator
with the robust variance calculation by typing
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. xtcloglog union age grade not_smsa south##c.year, pa vce(robust)

(output omitted )
GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: cloglog Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 157.24
Scale parameter: 1 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on idcode)

Semirobust
union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0153737 .0079446 1.94 0.053 -.0001974 .0309448
grade .0549518 .0117258 4.69 0.000 .0319697 .077934

not_smsa -.1045232 .0548598 -1.91 0.057 -.2120465 .0030001
1.south -1.714868 .4864999 -3.52 0.000 -2.66839 -.7613455

year -.0115881 .0085742 -1.35 0.177 -.0283932 .005217

south#c.year
1 .0149796 .0060548 2.47 0.013 .0031124 .0268468

_cons -1.488278 .4924738 -3.02 0.003 -2.453509 -.5230472

These standard errors are similar to those shown for cloglog, vce(cluster id) in [R] cloglog.

Technical note
The random-effects model is calculated using quadrature, which is an approximation whose accuracy

depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtcloglog likelihood function is calculated by Gauss–Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.
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Saved results
xtcloglog, re saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N cd) number of completely determined observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(rho) ρ

e(sigma u) panel-level standard deviation
e(n quad) number of quadrature points
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtcloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample



xtcloglog — Random-effects and population-averaged cloglog models 53

xtcloglog, pa saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code

Macros
e(cmd) xtgee
e(cmd2) xtcloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) binomial
e(link) cloglog; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(nmp) nmp, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
xtcloglog is implemented as an ado-file.

xtcloglog, pa reports the population-averaged results obtained using xtgee, fam-
ily(binomial) link(cloglog) to obtain estimates.
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For the random-effects model, assume a normal distribution, N(0, σ2
ν), for the random effects νi,

Pr(yi1, . . . , yini |xi1, . . . ,xini) =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

where

F (y, z) =

{
1− exp

{
− exp(z)

}
if y 6= 0

exp
{
− exp(z)

}
otherwise

The panel-level likelihood li is given by

li =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

≡
∫ ∞
−∞

g(yit, xit, νi)dνi

This integral can be approximated with M -point Gauss–Hermite quadrature

∫ ∞
−∞

e−x
2
h(x)dx ≈

M∑
m=1

w∗mh(a∗m)

This is equivalent to ∫ ∞
−∞

f(x)dx ≈
M∑
m=1

w∗m exp
{

(a∗m)2
}
f(a∗m)

where the w∗m denote the quadrature weights and the a∗m denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods li.

The default approximation of the log likelihood is by adaptive Gauss–Hermite quadrature, which
approximates the panel-level likelihood with

li ≈
√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}
g(yit, xit,

√
2σ̂ia∗m + µ̂i)

where σ̂i and µ̂i are the adaptive parameters for panel i. Therefore, with the definition of g(yit, xit, νi),
the total log likelihood is approximated by
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L ≈
n∑
i=1

wi log
[√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}exp

{
−(
√

2σ̂ia∗m + µ̂i)2/2σ2
ν

}
√

2πσν
ni∏
t=1

F (yit, xitβ+
√

2σ̂ia∗m + µ̂i)
]

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for µ̂i and σ̂i by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with σ̂i,0 = 1 and µ̂i,0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for li, we use

li,k ≈
M∑
m=1

√
2σ̂i,k−1w

∗
m exp

{
a∗m)2

}
g(yit, xit,

√
2σ̂i,k−1a

∗
m + µ̂i,k−1)

Letting
τi,m,k−1 =

√
2σ̂i,k−1a

∗
m + µ̂i,k−1

µ̂i,k =
M∑
m=1

(τi,m,k−1)

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k

and

σ̂i,k =
M∑
m=1

(τi,m,k−1)2

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k
− (µ̂i,k)2

and this is repeated until µ̂i,k and σ̂i,k have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method(aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

g(yit, xit, νi) =
e−ν

2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
and find αi the mode of g(yit, xit, νi). We calculate

γi = − ∂2

∂ν2
i

log{g(yit, xit, νi)}
∣∣
νi=αi

Then∫ ∞
−∞

g(yit, xit, νi)dνi ≈
(

2
γi

)1/2 M∑
m=1

w∗m exp
{

(a∗m)2
}
g

{
yit, xit,

(
2
γi

)1/2

a∗m + αi

}
This adaptation is performed on the first iteration only; that is, the αi and γi are calculated once at
the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss–Hermite quadrature, the int-
method(ghermite) option, where ρ = σ2

ν/(σ
2
ν + 1):
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L =
n∑
i=1

wi log
{

Pr(yi1, . . . , yini |xi1, . . . ,xini)
}

≈
n∑
i=1

wi log

[
1√
π

M∑
m=1

w∗m

ni∏
t=1

F

{
yit,xitβ+ a∗m

(
2ρ

1− ρ

)1/2
}]

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

ni∏
t=1

F (yit,xitβ+ νi)

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can
become less accurate. For large ρ, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtprobit — Random-effects and population-averaged probit models
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[R] cloglog — Complementary log-log regression
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Title

xtcloglog postestimation — Postestimation tools for xtcloglog

Description
The following postestimation commands are available after xtcloglog:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after xtcloglog, pa.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
Random-effects (RE) model

predict
[

type
]

newvar
[

if
] [

in
] [

, RE statistic nooffset
]

Population-averaged (PA) model

predict
[

type
]

newvar
[

if
] [

in
] [

, PA statistic nooffset
]

RE statistic Description

Main

xb linear prediction; the default
pu0 probability of a positive outcome
stdp standard error of the linear prediction
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PA statistic Description

Main

mu predicted probability of depvar; considers the offset(); the default
rate predicted probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb calculates the linear prediction. This is the default for the random-effects model.

pu0 calculates the probability of a positive outcome, assuming that the random effect for that
observation’s panel is zero (ν = 0). This may not be similar to the proportion of observed
outcomes in the group.

stdp calculates the standard error of the linear prediction.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset().
rate ignores those adjustments. mu and rate are equivalent if you did not specify offset(). mu
is the default for the population-averaged model.

score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for xtcloglog. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as xitβ rather than xitβ+ offsetit.

Remarks

Example 1

In example 1 of [XT] xtcloglog, we fit the model

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtcloglog union age grade not_smsa south##c.year, pa
(output omitted )

Here we use margins to determine the average effect each regressor has on the probability of a
positive response in the sample.
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. margins, dydx(*)

Average marginal effects Number of obs = 26200
Model VCE : Conventional

Expression : Pr(union != 0), predict()
dy/dx w.r.t. : age grade not_smsa 1.south year

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age .0028297 .0014952 1.89 0.058 -.000101 .0057603
grade .0101144 .0017498 5.78 0.000 .0066848 .013544

not_smsa -.0192384 .0079304 -2.43 0.015 -.0347818 -.0036951
1.south -.0913197 .0073101 -12.49 0.000 -.1056473 -.0769921

year -.0012694 .001534 -0.83 0.408 -.004276 .0017371

Note: dy/dx for factor levels is the discrete change from the base level.

We see that an additional year of schooling (covariate grade) increases the probability that a woman
belongs to a union by an average of about one percentage point.

Also see
[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands



Title

xtdata — Faster specification searches with xt data

Syntax

xtdata
[

varlist
] [

if
] [

in
] [

, options
]

options Description

Main

re convert data to a form suitable for random-effects estimation
ratio(#) ratio of random effect to pure residual (standard deviations)
be convert data to a form suitable for between estimation
fe convert data to a form suitable for fixed-effects (within) estimation
nodouble keep original variable type; default is to recast type as double

clear overwrite current data in memory

A panel variable must be specified; use xtset; see [XT] xtset.

Menu
Statistics > Longitudinal/panel data > Setup and utilities > Faster specification searches with xt data

Description

xtdata produces a transformed dataset of the variables specified in varlist or of all the variables
in the data. Once the data are transformed, Stata’s regress command may be used to perform
specification searches more quickly than xtreg; see [R] regress and [XT] xtreg. Using xtdata,
re also creates a variable named constant. When using regress after xtdata, re, specify
noconstant and include constant in the regression. After xtdata, be and xtdata, fe, you need
not include constant or specify regress’s noconstant option.

Options

� � �
Main �

re specifies that the data are to be converted into a form suitable for random-effects estimation. re
is the default if be, fe, or re is not specified. ratio() must also be specified.

ratio(#) (use with xtdata, re only) specifies the ratio σν/σε, which is the ratio of the random
effect to the pure residual. This is the ratio of the standard deviations, not the variances.

be specifies that the data are to be converted into a form suitable for between estimation.

fe specifies that the data are to be converted into a form suitable for fixed-effects (within) estimation.

nodouble specifies that transformed variables keep their original types, if possible. The default is to
recast variables to double.
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Remember that xtdata transforms variables to be differences from group means, pseudodifferences
from group means, or group means. Specifying nodouble will decrease the size of the resulting
dataset but may introduce roundoff errors in these calculations.

clear specifies that the data may be converted even though the dataset has changed since it was last
saved on disk.

Remarks
If you have not read [XT] xt and [XT] xtreg, please do so.

The formal estimation commands of xtreg—see [XT] xtreg—do not produce results instanta-
neously, especially with large datasets. Equations (2), (3), and (4) of [XT] xtreg describe the data
necessary to fit each of the models with OLS. The idea here is to transform the data once to the
appropriate form and then use regress to fit such models more quickly.

Example 1

We will use the example in [XT] xtreg demonstrating between-effects regression. Another way to
estimate the between equation is to convert the data in memory to the between data:

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. generate age2=age^2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp^2

. generate tenure2=tenure^2
(433 missing values generated)

. generate byte black = race==2

. xtdata ln_w grade age* ttl_exp* tenure* black not_smsa south, be clear

. regress ln_w grade age* ttl_exp* tenure* black not_smsa south

Source SS df MS Number of obs = 4697
F( 10, 4686) = 450.23

Model 415.021613 10 41.5021613 Prob > F = 0.0000
Residual 431.954995 4686 .092179896 R-squared = 0.4900

Adj R-squared = 0.4889
Total 846.976608 4696 .180361288 Root MSE = .30361

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade .0607602 .0020006 30.37 0.000 .0568382 .0646822
age .0323158 .0087251 3.70 0.000 .0152105 .0494211

age2 -.0005997 .0001429 -4.20 0.000 -.0008799 -.0003194

(output omitted )
south -.0993378 .010136 -9.80 0.000 -.1192091 -.0794665
_cons .3339113 .1210434 2.76 0.006 .0966093 .5712133

The output is the same as that produced by xtreg, be; the reported R2 is the R2 between. Using
xtdata followed by just one regress does not save time. Using xtdata is justified when you intend
to explore the specification of the model by running many alternative regressions.



62 xtdata — Faster specification searches with xt data

Technical note
When using xtdata, you must eliminate any variables that you do not intend to use and that

have missing values. xtdata follows a casewise-deletion rule, which means that an observation is
excluded from the conversion if it is missing on any of the variables. In the example above, we
specified that the variables be converted on the command line. We could also drop the variables first,
and it might even be useful to preserve our estimation sample:

. use http://www.stata-press.com/data/r12/nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. generate age2 = age^2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp^2

. generate tenure2 = tenure^2
(433 missing values generated)

. generate byte black = race==2

. keep id year ln_w grade age* ttl_exp* tenure* black not_smsa south

. save xtdatasmpl
file xtdatasmpl.dta saved

Example 2

xtdata with the fe option converts the data so that results are equivalent to those from estimating
by using xtreg with the fe option.

. xtdata, fe

. regress ln_w grade age* ttl_exp* tenure* black not_smsa south
note: grade omitted because of collinearity
note: black omitted because of collinearity

Source SS df MS Number of obs = 28091
F( 8, 28082) = 732.64

Model 412.443881 8 51.5554852 Prob > F = 0.0000
Residual 1976.12232 28082 .070369714 R-squared = 0.1727

Adj R-squared = 0.1724
Total 2388.5662 28090 .085032617 Root MSE = .26527

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade 0 (omitted)
age .0359987 .0030903 11.65 0.000 .0299415 .0420558

age2 -.000723 .0000486 -14.88 0.000 -.0008183 -.0006277
ttl_exp .0334668 .0027061 12.37 0.000 .0281627 .0387708

ttl_exp2 .0002163 .0001166 1.86 0.064 -.0000122 .0004447
tenure .0357539 .0016871 21.19 0.000 .0324472 .0390606

tenure2 -.0019701 .0001141 -17.27 0.000 -.0021937 -.0017465
black 0 (omitted)

not_smsa -.0890108 .0086982 -10.23 0.000 -.1060597 -.0719619
south -.0606309 .0099761 -6.08 0.000 -.0801845 -.0410772
_cons 1.03732 .0443093 23.41 0.000 .9504716 1.124168

The coefficients reported by regress after xtdata, fe are the same as those reported by xtreg,
fe, but the standard errors are slightly smaller. This is because no adjustment has been made to the
estimated covariance matrix for the estimation of the person means. The difference is small, however,
and results are adequate for a specification search.
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Example 3

To use xtdata, re, you must specify the ratio σν/σε, which is the ratio of the standard deviations
of the random effect and pure residual. Merely to show the relationship of regress after xtdata,
re to xtreg, re, we will specify this ratio as 0.25790313/0.29069544 = 0.88719358, which is
the number xtreg reports when the model is fit from the outset; see the random-effects example in
[XT] xtreg. For specification searches, however, it is adequate to specify this number more crudely,
and, when performing the specification search for this manual entry, we used ratio(1).

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdata, clear re ratio(.88719358)

theta
min 5% median 95% max

0.2520 0.2520 0.5499 0.7016 0.7206

xtdata reports the distribution of θ based on the specified ratio. If these were balanced data, θ would
have been constant.

When running regressions with these data, you must specify the noconstant option and include
the variable constant:

. regress ln_w grade age* ttl_exp* tenure* black not_smsa south constant,
> noconstant

Source SS df MS Number of obs = 28091
F( 11, 28080) =14303.11

Model 13272.3241 11 1206.57492 Prob > F = 0.0000
Residual 2368.75918 28080 .084357521 R-squared = 0.8486

Adj R-squared = 0.8485
Total 15641.0833 28091 .556800517 Root MSE = .29044

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade .0646499 .0017811 36.30 0.000 .0611588 .068141
age .0368059 .0031195 11.80 0.000 .0306915 .0429204

age2 -.0007133 .00005 -14.27 0.000 -.0008113 -.0006153

(output omitted )
south -.0868927 .0073031 -11.90 0.000 -.1012072 -.0725781

constant .238721 .0494688 4.83 0.000 .1417598 .3356822

Results are the same coefficients and standard errors that xtreg, re previously estimated. The
summaries at the top, however, should be ignored, as they are expressed in terms of (4) of [XT] xtreg,
and, moreover, for a model without a constant.

Technical note
Using xtdata requires some caution. The following guidelines may help:

1. xtdata is intended for use only during the specification search phase of analysis. Results should
be estimated with xtreg on unconverted data.

2. After converting the data, you may use regress to obtain estimates of the coefficients and their
standard errors. For regress after xtdata, fe, the standard errors are too small, but only slightly.

3. You may loosely interpret the coefficient’s significance tests and confidence intervals. However,
for results after xtdata, fe and re, an incorrect (but close to correct) distribution is assumed.
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4. You should ignore the summary statistics reported at the top of regress’s output.

5. After converting the data, you may form linear, but not nonlinear, combinations of regressors;
that is, if your data contained age, it would not be correct to convert the data and then form age
squared. All nonlinear transformations should be done before conversion. (For xtdata, be, you
can get away with forming nonlinear combinations ex post, but the results will not be exact.)

Technical note
The xtdata command can be used to help you examine data, especially with scatter.

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdata, be

. scatter ln_wage age, title(Between data) msymbol(o) msize(tiny)
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Between data

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdata, fe

. scatter ln_wage age, title(Within data) msymbol(o) msize(tiny)
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Within data

. use http://www.stata-press.com/data/r12/xtdatasmpl, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. scatter ln_wage age, title(Overall data) msymbol(o) msize(tiny)
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Methods and formulas
xtdata is implemented as an ado-file.

(This section is a continuation of the Methods and formulas of [XT] xtreg.)

xtdata, be, fe, and re transform the data according to (2), (3), and (4), respectively, of [XT] xtreg,
except that xtdata, fe adds back in the overall mean, thus forming the transformation

xit − xi + x

xtdata, re requires the user to specify r as an estimate of σν/σε. θi is calculated from

θi = 1− 1√
Tir2 + 1
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Also see
[XT] xtsum — Summarize xt data



Title

xtdescribe — Describe pattern of xt data

Syntax
xtdescribe

[
if
] [

in
] [

, options
]

options Description

Main

patterns(#) maximum participation patterns; default is patterns(9)

width(#) display # width of participation patterns; default is width(100)

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
by is allowed; see [D] by.

Menu
Statistics > Longitudinal/panel data > Setup and utilities > Describe pattern of xt data

Description
xtdescribe describes the participation pattern of cross-sectional time-series (xt) data.

Options

� � �
Main �

patterns(#) specifies the maximum number of participation patterns to be reported; patterns(9) is
the default. Specifying patterns(50) would list up to 50 patterns. Specifying patterns(1000)
is taken to mean patterns(∞); all the patterns will be listed.

width(#) specifies the desired width of the participation patterns to be displayed; width(100) is
the default. If the number of times is greater than width(), then each column in the participation
pattern represents multiple periods as indicated in a footnote at the bottom of the table. The actual
width may differ slightly from the requested width depending on the span of the time variable and
the number of periods.

Remarks
If you have not read [XT] xt, please do so.

xtdescribe describes the cross-sectional and time-series aspects of the data in memory.
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Example 1

In [XT] xt, we introduced data based on a subsample of the NLSY data on young women aged
14–26 years in 1968. Here is a description of the data used in many of the [XT] xt examples:

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdescribe

idcode: 1, 2, ..., 5159 n = 4711
year: 68, 69, ..., 88 T = 15

Delta(year) = 1 unit
Span(year) = 21 periods
(idcode*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 3 5 9 13 15

Freq. Percent Cum. Pattern

136 2.89 2.89 1....................
114 2.42 5.31 ....................1
89 1.89 7.20 .................1.11
87 1.85 9.04 ...................11
86 1.83 10.87 111111.1.11.1.11.1.11
61 1.29 12.16 ..............11.1.11
56 1.19 13.35 11...................
54 1.15 14.50 ...............1.1.11
54 1.15 15.64 .......1.11.1.11.1.11

3974 84.36 100.00 (other patterns)

4711 100.00 XXXXXX.X.XX.X.XX.X.XX

xtdescribe tells us that we have 4,711 women in our data and that the idcode that identifies each
ranges from 1 to 5,159. We are also told that the maximum number of individual years over which
we observe any woman is 15, though the year variable spans 21 years. The delta or periodicity of
year is one unit, meaning that in principle we could observe each woman yearly. We are reassured
that idcode and year, taken together, uniquely identify each observation in our data. We are also
shown the distribution of Ti; 50% of our women are observed 5 years or less. Only 5% of our women
are observed for 13 years or more.

Finally, we are shown the participation pattern. A 1 in the pattern means one observation that
year; a dot means no observation. The largest fraction of our women (still only 2.89%) was observed
in the single year 1968 and not thereafter; the next largest fraction was observed in 1988 but not
before; and the next largest fraction was observed in 1985, 1987, and 1988.

At the bottom is the sum of the participation patterns, including the patterns that were not shown.
We can see that none of the women were observed in six of the years (there are six dots). (The
survey was not administered in those six years.)

We could see more of the patterns by specifying the patterns() option, or we could see all the
patterns by specifying patterns(1000).

Example 2

The strange participation patterns shown above have to do with our subsampling of the data, not
with the administrators of the survey. Here are the data from which we drew the sample used in the
[XT] xt examples:
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. xtdescribe

idcode: 1, 2, ..., 5159 n = 5159
year: 68, 69, ..., 88 T = 15

Delta(year) = 1; (88-68)+1 = 21
(idcode*year does not uniquely identify observations)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 2 11 15 16 19 30

Freq. Percent Cum. Pattern

1034 20.04 20.04 111111.1.11.1.11.1.11
153 2.97 23.01 1....................
147 2.85 25.86 112111.1.11.1.11.1.11
130 2.52 28.38 111112.1.11.1.11.1.11
122 2.36 30.74 111211.1.11.1.11.1.11
113 2.19 32.93 11...................
84 1.63 34.56 111111.1.11.1.11.1.12
79 1.53 36.09 111111.1.12.1.11.1.11
67 1.30 37.39 111111.1.11.1.11.1.1.

3230 62.61 100.00 (other patterns)

5159 100.00 XXXXXX.X.XX.X.XX.X.XX

We have multiple observations per year. In the pattern, 2 indicates that a woman appears twice in
the year, 3 indicates 3 times, and so on—X indicates 10 or more, should that be necessary.

In fact, this is a dataset that was itself extracted from the NLSY, in which t is not time but job
number. To simplify exposition, we made a simpler dataset by selecting the last job in each year.

Example 3

When the number of periods is greater than the width of the participation pattern, each column
will represent more than one period.

. use http://www.stata-press.com/data/r12/xtdesxmpl

. xtdescribe

patient: 1, 2, ..., 30 n = 30
time: 09mar2007 16:00:00, 09mar2007 17:00:00, ..., T = 32

10mar2007 23:00:00
Delta(time) = 1 hour
Span(time) = 32 periods
(patient*time uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
30 30 31 32 32 32 32

Freq. Percent Cum. Pattern

21 70.00 70.00 11111111111111111111111111111111
3 10.00 80.00 111111111111111111111111111111..
2 6.67 86.67 ..111111111111111111111111111111
2 6.67 93.33 .1111111111111111111111111111111
2 6.67 100.00 1.111111111111111111111111111111

30 100.00 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

We have data for 30 patients who were observed hourly between 4:00 PM on March 9, 2007, and
11:00 PM on March 10, a span of 32 hours. We have complete records for 21 of the patients. The
footnote indicates that each column in the pattern represents two periods, so for four patients we
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have an observation taken at either 4:00 PM or 5:00 PM on March 9, but we do not have observations
for both times. There are three patients for whom we are missing both the 10:00 PM and 11:00 PM
observations on March 10, and there are two patients for whom we are missing the 4:00 PM and
5:00 PM observations for March 9.

Methods and formulas
xtdescribe is implemented as an ado-file.

Reference
Cox, N. J. 2007. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571–581.

Also see
[XT] xtsum — Summarize xt data

[XT] xttab — Tabulate xt data

http://www.stata-journal.com/sjpdf.html?articlenum=dm0033


Title

xtdpd — Linear dynamic panel-data estimation

Syntax
xtdpd depvar

[
indepvars

] [
if
] [

in
]
, dgmmiv(varlist

[
. . .
]
)
[

options
]

options Description

Model
∗dgmmiv(varlist

[
. . .
]
) GMM-type instruments for the difference equation;

can be specified more than once
lgmmiv(varlist

[
. . .
]
) GMM-type instruments for the level equation;

can be specified more than once
iv(varlist

[
. . .
]
) standard instruments for the difference and level equations;

can be specified more than once
div(varlist

[
. . .
]
) standard instruments for the difference equation only;

can be specified more than once
liv(varlist) standard instruments for the level equation only;

can be specified more than once
noconstant suppress constant term
twostep compute the two-step estimator instead of the one-step estimator
hascons check for collinearity only among levels of independent variables;

by default checks occur among levels and differences
fodeviation use forward-orthogonal deviations instead of first differences

SE/Robust

vce(vcetype) vcetype may be gmm or robust

Reporting

level(#) set confidence level; default is level(95)

artests(#) use # as maximum order for AR tests; default is artests(2)

display options control spacing and line width

coeflegend display legend instead of statistics

∗dgmmiv() is required.
A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Linear DPD estimation
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Description
Linear dynamic panel-data models include p lags of the dependent variable as covariates and contain

unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level effects are
correlated with the lagged dependent variables, making standard estimators inconsistent. xtdpd fits a
dynamic panel-data model by using the Arellano–Bond (1991) or the Arellano–Bover/Blundell–Bond
(1995, 1998) estimator.

At the cost of a more complicated syntax, xtdpd can fit models with low-order moving-average
correlation in the idiosyncratic errors or predetermined variables with a more complicated structure
than allowed for xtabond or xtdpdsys; see [XT] xtabond and [XT] xtdpdsys.

Options

� � �
Model �

dgmmiv(varlist
[
, lagrange( flag

[
llag

]
)
]
) specifies GMM-type instruments for the differenced

equation. Levels of the variables are used to form GMM-type instruments for the difference equation.
All possible lags are used, unless lagrange(flag llag) restricts the lags to begin with flag and end
with llag. You may specify as many sets of GMM-type instruments for the differenced equation
as you need within the standard Stata limits on matrix size. Each set may have its own flag and
llag. dgmmiv() is required.

lgmmiv(varlist
[
, lag(#)

]
) specifies GMM-type instruments for the level equation. Differences of

the variables are used to form GMM-type instruments for the level equation. The first lag of the
differences is used unless lag(#) is specified, indicating that #th lag of the differences be used.
You may specify as many sets of GMM-type instruments for the level equation as you need within
the standard Stata limits on matrix size. Each set may have its own lag.

iv(varlist
[
, nodifference

]
) specifies standard instruments for both the differenced and level

equations. Differences of the variables are used as instruments for the differenced equations, unless
nodifference is specified, which requests that levels be used. Levels of the variables are used
as instruments for the level equations. You may specify as many sets of standard instruments for
both the differenced and level equations as you need within the standard Stata limits on matrix
size.

div(varlist
[
, nodifference

]
) specifies additional standard instruments for the differenced equation.

Specified variables may not be included in iv() or in liv(). Differences of the variables are
used, unless nodifference is specified, which requests that levels of the variables be used as
instruments for the differenced equation. You may specify as many additional sets of standard
instruments for the differenced equation as you need within the standard Stata limits on matrix
size.

liv(varlist) specifies additional standard instruments for the level equation. Specified variables may
not be included in iv() or in div(). Levels of the variables are used as instruments for the level
equation. You may specify as many additional sets of standard instruments for the level equation
as you need within the standard Stata limits on matrix size.

noconstant; see [R] estimation options.

twostep specifies that the two-step estimator be calculated.

hascons specifies that xtdpd check for collinearity only among levels of independent variables; by
default checks occur among levels and differences.

fodeviation specifies that forward-orthogonal deviations are to be used instead of first differences.
fodeviation is not allowed when there are gaps in the data or when lgmmiv() is specified.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano–Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

� � �
Reporting �

level(#); see [R] estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpd postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display options: vsquish and nolstretch; see [R] estimation options.

The following option is available with xtdpd but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
If you have not read [XT] xtabond and [XT] xtdpdsys, you should do so before continuing.

Consider the dynamic panel-data model

yit =
p∑
j=1

αjyi,t−j + xitβ1 + witβ2 + νi + εit i = {1, . . . , N}; t = {1, . . . , Ti} (1)

where

the α1, . . . , αp are p parameters to be estimated,

xit is a 1× k1 vector of strictly exogenous covariates,

β1 is a k1 × 1 vector of parameters to be estimated,

wit is a 1× k2 vector of predetermined covariates,

β2 is a k2 × 1 vector of parameters to be estimated,

νi are the panel-level effects (which may be correlated with xit or wit), and

and εit are i.i.d. or come from a low-order moving-average process, with variance σ2
ε .

Building on the work of Anderson and Hsiao (1981, 1982) and Holtz-Eakin, Newey, and
Rosen (1988), Arellano and Bond (1991) derived one-step and two-step GMM estimators using
moment conditions in which lagged levels of the dependent and predetermined variables were instru-
ments for the differenced equation. Blundell and Bond (1998) show that the lagged-level instruments
in the Arellano–Bond estimator become weak as the autoregressive process becomes too persistent
or the ratio of the variance of the panel-level effect νi to the variance of the idiosyncratic error εit
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becomes too large. Building on the work of Arellano and Bover (1995), Blundell and Bond (1998)
proposed a system estimator that uses moment conditions in which lagged differences are used as
instruments for the level equation in addition to the moment conditions of lagged levels as instru-
ments for the differenced equation. The additional moment conditions are valid only if the initial
condition E[νi∆yi2] = 0 holds for all i; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).

xtdpd fits dynamic panel-data models by using the Arellano–Bond or the Arellano–Bover/Blundell–
Bond system estimator. The parameters of many standard models can be more easily estimated using
the Arellano–Bond estimator implemented in xtabond or using the Arellano–Bover/Blundell–Bond
system estimator implemented in xtdpdsys; see [XT] xtabond and [XT] xtdpdsys. xtdpd can fit
more complex models at the cost of a more complicated syntax. That the idiosyncratic errors follow
a low-order MA process and that the predetermined variables have a more complicated structure than
accommodated by xtabond and xtdpdsys are two common reasons for using xtdpd instead of
xtabond or xtdpdsys.

The standard GMM robust two-step estimator of the VCE is known to be seriously biased. Windmei-
jer (2005) derived a bias-corrected robust estimator for two-step VCEs from GMM estimators known
as the WC-robust estimator, which is implemented in xtdpd.

The Arellano–Bond test of autocorrelation of order m and the Sargan test of overidentifying
restrictions derived by Arellano and Bond (1991) are computed by xtdpd but reported by estat
abond and estat sargan, respectively; see [XT] xtdpd postestimation.

Because xtdpd extends xtabond and xtdpdsys, [XT] xtabond and [XT] xtdpdsys provide useful
background.

Example 1

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986), using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm i and
time t. In this dataset, nit is the log of employment in firm i inside the United Kingdom at time t,
wit is the natural log of the real product wage, kit is the natural log of the gross capital stock, and
ysit is the natural log of industry output. The model also includes time dummies yr1980, yr1981,
yr1982, yr1983, and yr1984. To gain some insight into the syntax for xtdpd, we reproduce the
first example from [XT] xtabond using xtdpd:



xtdpd — Linear dynamic panel-data estimation 75

. use http://www.stata-press.com/data/r12/abdata

. xtdpd L(0/2).n L(0/1).w L(0/2).(k ys) yr1980-yr1984 year, noconstant
> div(L(0/1).w L(0/2).(k ys) yr1980-yr1984 year) dgmmiv(n)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 = 0.0000

One-step results

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358

w
--. -.6078208 .0657694 -9.24 0.000 -.7367265 -.4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251

k
--. .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .0562747
L2. -.0199475 .0416274 -0.48 0.632 -.1015357 .0616408

ys
--. .6085073 .1345412 4.52 0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 -.3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912

yr1980 .0029062 .0212705 0.14 0.891 -.0387832 .0445957
yr1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yr1982 -.0652767 .048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .0538664
yr1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061

year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980

D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Unlike most instrumental-variables estimation commands, the independent variables in the varlist
are not automatically used as instruments. In this example, all the independent variables are strictly
exogenous, so we include them in div(), a list of variables whose first differences will be instruments
for the differenced equation. We include the dependent variable in dgmmiv(), a list of variables whose
lagged levels will be used to create GMM-type instruments for the differenced equation. (GMM-type
instruments are discussed in a technical note below.)

The footer in the output reports the instruments used. The first line indicates that xtdpd used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991)
and Holtz-Eakin, Newey, and Rosen (1988). The second line says that the first difference of all the
variables included in the div() varlist were used as standard instruments for the differenced equation.
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Technical note
GMM-type instruments are built from lags of one variable. Ignoring the strictly exogenous variables

for simplicity, our model is

nit = α1nit−1 + α2nit−2 + νi + εit (2)

After differencing we have

∆nit = ∆α1nit−1 + ∆α2nit−2 + ∆εit (3)

Equation (3) implies that we need instruments that are not correlated with either εit or εit−1. Equation
(2) shows that L2.n is the first lag of n that is not correlated with εit or εit−1, so it is the first lag
of n that can be used to instrument the differenced equation.

Consider the following data from one of the complete panels in the previous example:

. list id year n L2.n dl2.n if id==140

id year n L2.n L2D.n

1023. 140 1976 .4324315 . .
1024. 140 1977 .3694925 . .
1025. 140 1978 .3541718 .4324315 .
1026. 140 1979 .3632532 .3694925 -.0629391
1027. 140 1980 .3371863 .3541718 -.0153207

1028. 140 1981 .285179 .3632532 .0090815
1029. 140 1982 .1756326 .3371863 -.026067
1030. 140 1983 .1275133 .285179 -.0520073
1031. 140 1984 .0889263 .1756326 -.1095464

The missing values in L2D.n show that we lose 3 observations because of lags and the difference that
removes the panel-level effects. The first nonmissing observation occurs in 1979 and observations on
n from 1976 and 1977 are available to instrument the 1979 differenced equation. The table below
gives the observations available to instrument the differenced equation for the data above.

Year of Years of Number of
difference errors instruments instruments

1979 1976–1977 2
1980 1976–1978 3
1981 1976–1979 4
1982 1976–1980 5
1983 1976–1981 6
1984 1976–1982 7

The table shows that there are a total of 27 GMM-type instruments.

The output in the example above informs us that there were a total of 41 instruments applied to the
differenced equation. Because there are 14 standard instruments, there must have been 27 GMM-type
instruments, which matches our above calculation.
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Example 2

Sometimes we cannot assume strict exogeneity. Recall that a variable xit is said to be strictly
exogenous if E[xitεis] = 0 for all t and s. If E[xitεis] 6= 0 for s < t but E[xitεis] = 0 for all s ≥ t,
the variable is said to be predetermined. Intuitively, if the error term at time t has some feedback
on the subsequent realizations of xit, xit is a predetermined variable. In the output below, we use
xtdpd to reproduce example 6 in [XT] xtabond.

. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(L.w L2.k, lag(1 .))
> twostep noconstant vce(robust)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 83 Wald chi2(15) = 958.30
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881

w
--. -.6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441

ys
--. .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. -.8773678 .2183085 -4.02 0.000 -1.305245 -.449491

k
--. .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. -.1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. -.1025833 .0710886 -1.44 0.149 -.2419143 .0367477

yr1980 -.0072451 .017163 -0.42 0.673 -.0408839 .0263938
yr1981 -.0609608 .030207 -2.02 0.044 -.1201655 -.0017561
yr1982 -.1130369 .0454826 -2.49 0.013 -.2021812 -.0238926
yr1983 -.1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yr1984 -.1623177 .0725434 -2.24 0.025 -.3045001 -.0201352

year .0264501 .0119329 2.22 0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back.
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Example 3

As discussed in [XT] xtabond and [XT] xtdpdsys, xtabond and xtdpdsys both use a strict definition
of predetermined variables with lags. In the strict definition, the most recent lag of the variable in
pre() is considered predetermined. (Here specifying pre(w, lag(1, .)) to xtabond means that
L.w is a predetermined variable and pre(k, lag(2, .)) means that L2.k is a predetermined
variable.) In a weaker definition, the current observation is considered predetermined, but subsequent
lags are included in the model. Here w and k would be predetermined instead of L.w and L2.w. The
output below implements this weaker definition for the previous example.

. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(w k, lag(1 .))
> twostep noconstant vce(robust)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 101 Wald chi2(15) = 879.53
Prob > chi2 = 0.0000

Two-step results
(Std. Err. adjusted for clustering on id)

WC-Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6343155 .1221058 5.19 0.000 .3949925 .8736384
L2. -.0871247 .0704816 -1.24 0.216 -.2252661 .0510168

w
--. -.720063 .1133359 -6.35 0.000 -.9421973 -.4979287
L1. .238069 .1223186 1.95 0.052 -.0016712 .4778091

ys
--. .5999718 .1653036 3.63 0.000 .2759827 .923961
L1. -.5674808 .1656411 -3.43 0.001 -.8921314 -.2428303

k
--. .3931997 .0986673 3.99 0.000 .1998153 .5865842
L1. -.0019641 .0772814 -0.03 0.980 -.1534329 .1495047
L2. -.0231165 .0487317 -0.47 0.635 -.1186288 .0723958

yr1980 -.006209 .0162138 -0.38 0.702 -.0379875 .0255694
yr1981 -.0398491 .0313794 -1.27 0.204 -.1013516 .0216535
yr1982 -.0525715 .0397346 -1.32 0.186 -.1304498 .0253068
yr1983 -.0451175 .051418 -0.88 0.380 -.145895 .05566
yr1984 -.0437772 .0614391 -0.71 0.476 -.1641955 .0766412

year .0173374 .0108665 1.60 0.111 -.0039605 .0386352

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).w L(1/.).k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

As expected, the output shows that the additional 18 instruments available under the weaker definition
can affect the magnitudes of the estimates. Applying the stricter definition when the true model was
generated by the weaker definition yielded consistent but inefficient results; there were some additional
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moment conditions that could have been included but were not. In contrast, applying the weaker
definition when the true model was generated by the stricter definition yields inconsistent estimates.

Example 4

Here we use xtdpd to reproduce example 2 from [XT] xtdpdsys in which we used the system
estimator to fit a model with predetermined variables.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(yr1980-yr1984 year) dgmmiv(n) dgmmiv(L2.(w k), lag(1 .))
> lgmmiv(n L1.(w k)) vce(robust) hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 5
avg = 5.364286
max = 7

Number of instruments = 95 Wald chi2(13) = 7562.80
Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .913278 .0460602 19.83 0.000 .8230017 1.003554

w
--. -.728159 .1019044 -7.15 0.000 -.9278879 -.5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438775 .2392718

k
--. .4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944 .0831902 -3.42 0.001 -.4477442 -.1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356 -.0599006

yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yr1981 -.0726116 .0346482 -2.10 0.036 -.1405207 -.0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264 .0558734 -0.71 0.478 -.1491362 .0698835
yr1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342

year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972 28.77747 -1.30 0.194 -93.75253 19.05308

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L2.w L(1/.).L2.k
Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Instruments for level equation
GMM-type: LD.n L2D.w L2D.k
Standard: _cons

The first lags of the variables included in lgmmiv() are used to create GMM-type instruments for
the level equation. Only the first lags of the variables in lgmmiv() are used because the moment
conditions using higher lags are redundant; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).
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Example 5

All the previous examples have used moment conditions that are valid only if the idiosyncratic
errors are i.i.d. This example shows how to use xtdpd to estimate the parameters of a model with
first-order moving-average [MA(1)] errors using either the Arellano–Bond estimator or the Arellano–
Bover/Blundell–Bond system estimator. For simplicity, we assume that the independent variables are
strictly exogenous.

We begin by noting that the Sargan test rejects the null hypothesis that the overidentifying restrictions
are valid in the model with i.i.d. errors.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) hascons

(output omitted )
. estat sargan
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid

chi2(24) = 49.70094
Prob > chi2 = 0.0015

Assuming that the idiosyncratic errors are MA(1) implies that only lags three or higher are valid
instruments for the differenced equation. (See the technical note below.)

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 5
avg = 5.364286
max = 7

Number of instruments = 32 Wald chi2(13) = 1195.04
Prob > chi2 = 0.0000

One-step results

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .8696303 .2014473 4.32 0.000 .4748008 1.26446

w
--. -.5802971 .0762659 -7.61 0.000 -.7297756 -.4308187
L1. .2918658 .1543883 1.89 0.059 -.0107296 .5944613
L2. -.5903459 .2995123 -1.97 0.049 -1.177379 -.0033126

k
--. .3428139 .0447916 7.65 0.000 .2550239 .4306039
L1. -.1383918 .0825823 -1.68 0.094 -.3002502 .0234665
L2. -.0260956 .1535855 -0.17 0.865 -.3271177 .2749265

yr1980 -.0036873 .0301587 -0.12 0.903 -.0627973 .0554226
yr1981 .00218 .0592014 0.04 0.971 -.1138526 .1182125
yr1982 .0782939 .0897622 0.87 0.383 -.0976367 .2542246
yr1983 .1734231 .1308914 1.32 0.185 -.0831193 .4299655
yr1984 .2400685 .1734456 1.38 0.166 -.0998787 .5800157

year -.0354681 .0309963 -1.14 0.253 -.0962198 .0252836
_cons 73.13706 62.61443 1.17 0.243 -49.58496 195.8591
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Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983

D.yr1984 D.year
Instruments for level equation

Standard: _cons

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid

chi2(18) = 20.80081
Prob > chi2 = 0.2896

Moving on to the system estimator, we note that the Sargan test rejects the null hypothesis after
fitting the model with i.i.d. errors.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) lgmmiv(n) hascons

(output omitted )
. estat sargan
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid

chi2(31) = 59.22907
Prob > chi2 = 0.0017

Now we fit the model using the additional moment conditions constructed from the second lag of
n as an instrument for the level equation.
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. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) lgmmiv(n, lag(2))
> hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 5
avg = 5.364286
max = 7

Number of instruments = 38 Wald chi2(13) = 3680.01
Prob > chi2 = 0.0000

One-step results

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .9603675 .095608 10.04 0.000 .7729794 1.147756

w
--. -.5433987 .068835 -7.89 0.000 -.6783128 -.4084845
L1. .4356183 .0881727 4.94 0.000 .262803 .6084336
L2. -.2785721 .1115061 -2.50 0.012 -.4971201 -.0600241

k
--. .3139331 .0419054 7.49 0.000 .2317999 .3960662
L1. -.160103 .0546915 -2.93 0.003 -.2672963 -.0529096
L2. -.1295766 .0507752 -2.55 0.011 -.2290943 -.030059

yr1980 -.0200704 .0248954 -0.81 0.420 -.0688644 .0287236
yr1981 -.0425838 .0422155 -1.01 0.313 -.1253246 .040157
yr1982 .0048723 .0600938 0.08 0.935 -.1129093 .122654
yr1983 .0458978 .0785687 0.58 0.559 -.1080941 .1998897
yr1984 .0633219 .1026188 0.62 0.537 -.1378074 .2644511

year -.0075599 .019059 -0.40 0.692 -.0449148 .029795
_cons 16.20856 38.00619 0.43 0.670 -58.28221 90.69932

Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983

D.yr1984 D.year
Instruments for level equation

GMM-type: L2D.n
Standard: _cons

The estimate of the coefficient on L.n is now .96. Blundell, Bond, and Windmeijer (2000, 63–65)
show that the moment conditions in the system estimator remain informative as the true coefficient
on L.n approaches unity. Holtz-Eakin, Newey, and Rosen (1988) show that because the large-sample
distribution of the estimator is derived for fixed number of periods and a growing number of individuals
there is no “unit-root” problem.

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid

chi2(24) = 27.22585
Prob > chi2 = 0.2940
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Technical note
To find the valid moment conditions for the model with MA(1) errors, we begin by writing the

model

nit = αnit−1 + βxit + νi + εit + γεit−1

where the εit are assumed to be i.i.d.

Because the composite error, εit + γεit−1, is MA(1), only lags two or higher are valid instruments
for the level equation, assuming the initial condition that E[νi∆ni2] = 0. The key to this point is that
lagging the above equation two periods shows that εit−2 and εit−3 appear in the equation for nit−2.
Because the εit are i.i.d., nit−2 is a valid instrument for the level equation with errors νi+εit+γεit−1.
(nit−2 will be correlated with nit−1 but uncorrelated with the errors νi+ εit+γεit−1.) An analogous
argument works for higher lags.

First-differencing the above equation yields

∆nit = α∆nit−1 + β∆xit + ∆εit + γ∆εit−1

Because εit−2 is the farthest lag of εit that appears in the differenced equation, lags three or higher
are valid instruments for the differenced composite errors. (Lagging the level equation three periods
shows that only εit−3 and εit−4 appear in the equation for nit−3, which implies that nit−3 is a valid
instrument for the current differenced equation. An analogous argument works for higher lags.)

Saved results
xtdpd saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(t min) minimum time in sample
e(t max) maximum time in sample
e(chi2) χ2

e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of σ2

ε

e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix
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Macros
e(cmd) xtdpd
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(system) system, if system estimator
e(hascons) hascons, if specified
e(transform) specified transform
e(datasignature) checksum from datasignature
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xtdpd is implemented as an ado-file.

Consider dynamic panel-data models of the form

yit =
p∑
j=1

αjyi,t−j + xitβ1 + witβ2 + νi + εit

where the variables are as defined as in (1).

x and w may contain lagged independent variables and time dummies.

Let XL
it = (yi,t−1, yi,t−2, . . . , yi,t−p,xit,wit) be the 1×K vector of covariates for i at time t,

where K = p+ k1 + k2, p is the number of included lags, k1 is the number of strictly exogenous
variables in xit, and k2 is the number of predetermined variables in wit. (The superscript L stands
for levels.)
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Now rewrite this relationship as a set of Ti equations for each individual,

yLi = XL
i δ+ νiιi + εi

where Ti is the number of observations available for individual i; yi, ιi, and εi are Ti × 1, whereas
Xi is Ti ×K.

The estimators use both the levels and a transform of the variables in the above equation. Denote
the transformed variables by an ∗, so that y∗i is the transformed yLi and X∗i is the transformed XL

i .
The transform may be either the first difference or the forward-orthogonal deviations (FOD) transform.
The (i, t)th observation of the FOD transform of a variable x is given by

x∗it = ct

{
xit −

1
T − t

(xit+1 + xit+2 + · · ·+ xiT )
}

where c2t = (T − t)/(T − t + 1) and T is the number of observations on x; see Arellano and
Bover (1995) and Arellano (2003).

Here we present the formulas for the Arellano–Bover/Blundell–Bond system estimator. The for-
mulas for the Arellano–Bond estimator are obtained by setting the additional level matrices in the
system estimator to null matrices.

Stacking the transformed and untransformed vectors of the dependent variable for a given i yields

yi =
(

y∗i
yLi

)

Similarly, stacking the transformed and untransformed matrices of the covariates for a given i
yields

Xi =
(

X∗i
XL
i

)
Zi is a matrix of instruments,

Zi =
(

Zdi 0 Di 0 Idi
0 ZLi 0 Li ILi

)
where Zdi is the matrix of GMM-type instruments created from the dgmmiv() options, ZLi is the
matrix of GMM-type instruments created from the lgmmiv() options, Di is the matrix of standard
instruments created from the div() options, Li is the matrix of standard instruments created from
the liv() options, Idi is the matrix of standard instruments created from the iv() options for the
differenced errors, and ILi is the matrix of standard instruments created from the iv() options for
the level errors.

div(), liv(), and iv() simply add columns to instrument matrix. The GMM-type instruments
are more involved. Begin by considering a simple balanced-panel example in which our model is

yit = α1yi,t−1 + α2yi,t−2 + νi + εit
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We do not need to consider covariates because strictly exogenous variables are handled using div(),
iv(), or liv(), and predetermined or endogenous variables are handled analogous to the dependent
variable.

Assume that the data come from a balanced panel in which there are no missing values. After
first-differencing the equation, we have

∆yit = α1∆yi,t−1 + α2∆yi,t−2 + ∆εit

The first 3 observations are lost to lags and differencing. If we assume that the εit are not autocorrelated,
for each i at t = 4, yi1 and yi2 are valid instruments for the differenced equation. Similarly, at t = 5,
yi1, yi2, and yi3 are valid instruments. We specify dgmmiv(y) to obtain an instrument matrix with
one row for each period that we are instrumenting:

Zdi =


yi1 yi2 0 0 0 . . . 0 0 0
0 0 yi1 yi2 yi3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 yi1 . . . yi,T−2


Because p = 2, Zdi has T − p− 1 rows and

∑T−2
m=pm columns.

Specifying lgmmiv(y) creates the instrument matrix

ZLi =


∆.yi2 0 0 . . . 0

0 ∆.yi3 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ∆.yi(Ti−1)


This extends to other lag structures with complete data. Unbalanced data and missing observations

are handled by dropping the rows for which there are no data and filling in zeros in columns where
missing data are required. Suppose that, for some i, the t = 1 observation was missing but was not
missing for some other panels. dgmmiv(y) would then create the instrument matrix

Zdi =


0 0 0 yi2 yi3 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 yi2 yi3 0 . . . 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 . . . 0 yi2 . . . yiT−2


Zdi has Ti − p − 1 rows and

∑τ−2
m=pm columns, where τ = maxi τi and τi is the number of

nonmissing observations in panel i.
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After defining

Qxz =
∑
i

X′iZi

Qzy =
∑
i

Z′iyi

W1 = QxzA1Q′xz

A1 =

(∑
i

Z′iH1iZi

)−1

and

H1i =
(

Hdi 0
0 HLi

)
the one-step estimates are given by

β̂1 = W−1
1 QxzA1Qzy

When using the first-difference transform Hdi, is given by

Hdi =


1 −.5 0 . . . 0 0
−.5 1 −.5 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 −.5
0 0 0 . . . −.5 1


and HLi is given by 0.5 times the identity matrix. When using the FOD transform, both Hdi and
HLi are equal to the identity matrix.

The transformed one-step residuals are given by

ε̂∗1i = y∗i − β̂1X
∗
i

which are used to compute

σ̂2
1 = (1/(N −K))

N∑
i

ε̂∗′1iε̂
∗
1i

The GMM one-step VCE is then given by

V̂GMM[β̂1] = σ̂2
1W−1

1



88 xtdpd — Linear dynamic panel-data estimation

The one-step level residuals are given by

ε̂L1i = yLi − β̂1X
L
i

Stacking the residual vectors yields

ε̂1i =
(
ε̂∗1i
ε̂L1i

)
which is used to compute H2i = ε̂′1iε̂1i, which is used in

A2 =

(∑
i

Z′iH2iZi

)−1

and the robust one-step VCE is given by

V̂robust[β̂1] = W−1
1 QxzA1A−1

2 A1Q′xzW
−1
1

V̂robust[β̂1] is robust to heteroskedasticity in the errors.

After defining

W2 = QxzA2Q′xz

the two-step estimates are given by

β̂2 = W−1
2 QxzA2Qzy

The GMM two-step VCE is then given by

V̂GMM[β̂2] = W−1
2

The GMM two-step VCE is known to be severely biased. Windmeijer (2005) derived the Windmeijer
bias-corrected (WC) estimator for the robust VCE of two-step GMM estimators. xtdpd implements this
WC-robust estimator of the VCE. The formulas for this method are involved; see Windmeijer (2005).
The WC-robust estimator of the VCE is robust to heteroskedasticity in the errors.
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Title

xtdpd postestimation — Postestimation tools for xtdpd

Description
The following postestimation commands are of special interest after xtdpd:

Command Description

estat abond test for autocorrelation
estat sargan Sargan test of overidentifying restrictions

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat abond reports the Arellano–Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, xb e stdp difference
]

90
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.

Syntax for estat abond

estat abond
[
, artests(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat abond
artests(#) specifies the highest order of serial correlation to be tested. By default, the tests computed

during estimation are reported. The model will be refit when artests(#) specifies a higher order
than that computed during the original estimation. The model can be refit only if the data have
not changed.

Syntax for estat sargan
estat sargan

Menu
Statistics > Postestimation > Reports and statistics

Remarks
Remarks are presented under the following headings:

estat abond
estat sargan
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estat abond

The moment conditions used by xtdpd are valid only if there is no serial correlation in the
idiosyncratic errors. Testing for serial correlation in dynamic panel-data models is tricky because one
needs to apply a transform to remove the panel-level effects, but the transformed errors have a more
complicated error structure than the idiosyncratic errors. The Arellano–Bond test for serial correlation
reported by estat abond tests for serial correlation in the first-differenced errors.

Because the first difference of independently and identically distributed idiosyncratic errors will be
autocorrelated, rejecting the null hypothesis of no serial correlation at order one in the first-differenced
errors does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See example 5 in [XT] xtdpd for an alternative
estimator that allows for idiosyncratic errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce(robust) has been
specified.

estat sargan

Like all GMM estimators, the estimator in xtdpd can produce consistent estimates only if the
moment conditions used are valid. Although there is no method to test if the moment conditions from
an exactly identified model are valid, one can test whether the overidentifying moment conditions are
valid. estat sargan implements the Sargan test of overidentifying conditions discussed in Arellano
and Bond (1991).

Only for a homoskedastic error term does the Sargan test have an asymptotic chi-squared distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce(robust) model, xtdpd does not compute it when vce(robust) is specified.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The notation for ε̂∗1i, ε̂1i, H1i, H2i, Xi, Zi, W1, W2, V̂∗[β̂∗], A1, A2, Qxz , and σ̂2
1 has been

defined in Methods and formulas of [XT] xtdpd.

The Arellano–Bond test for zero mth-order autocorrelation in the first-differenced errors is given
by

A(m) =
s0√

s1 + s2 + s3

where the definitions of s0, s1, s2, and s3 vary over the estimators and transforms.

We begin by defining û∗1i = Lm.̂ε∗1i, with the missing values filled in with zeros. Letting j = 1
for the one-step estimator, j = 2 for the two-step estimator, c = GMM for the GMM VCE estimator,
and c = robust for the robust VCE estimator, we can now define s0, s1, s2, and s3:
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s0 =
∑
i

û∗′jiε̂
∗
ji

s1 =
∑
i

û∗′jiHjiû∗ji

s2 = −2qjiW−1
j QxzAjQzu

s3 = qjxV̂c

[
β̂j

]
q′jx

where

qjx =

(∑
i

û∗′jiXi

)

and Qzu varies over estimator and transform.

For the Arellano–Bond estimator with the first-differenced transform,

Qzu =

(∑
i

Z′iHjiû∗ji

)

For the Arellano–Bond estimator with the FOD transform,

Qzu =

(∑
i

Z′iQfod

)

where

Qfod =


−
√

Ti+1
Ti

0 · · · 0√
Ti−1
Ti

√
Ti
Ti−1 · · · 0

0 . .
...

0 · · ·
√

1
2 −

√
2
1

 û∗ji

and ∗ implies the first-differenced transform instead of the FOD transform.

For the Arellano–Bover/Blundell–Bond system estimator with the first-differenced transform,

Qzu =

(∑
i

Z′iε̂jiε̂
∗′
jiû
∗
ji

)
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After a one-step estimator, the Sargan test is

S1 =
1
σ̂2

1

(∑
i

ε̂′1iZi

)
A1

(∑
i

Z′iε̂1i

)

The transformed two-step residuals are given by

ε̂∗2i = y∗i − β̂2X
∗
i

and the level two-step residuals are given by

ε̂L2i = yLi − β̂2X
L
i

Stacking the residual vectors yields

ε̂2i =
(
ε̂∗2i
ε̂L2i

)
After a two-step estimator, the Sargan test is

S2 =

(∑
i

ε̂′2iZi

)
A2

(∑
i

Z′iε̂2i

)

Reference
Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application

to employment equations. Review of Economic Studies 58: 277–297.

Also see
[XT] xtdpd — Linear dynamic panel-data estimation
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xtdpdsys — Arellano–Bover/Blundell–Bond linear dynamic panel-data estimation

Syntax
xtdpdsys depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
lags(#) use # lags of dependent variable as covariates; default is lags(1)

maxldep(#) maximum lags of dependent variable for use as instruments
maxlags(#) maximum lags of predetermined and endogenous variables for use

as instruments
twostep compute the two-step estimator instead of the one-step estimator

Predetermined

pre(varlist
[
. . .
]
) predetermined variables; can be specified more than once

Endogenous

endogenous(varlist
[
. . .
]
) endogenous variables; can be specified more than once

SE/Robust

vce(vcetype) vcetype may be gmm or robust

Reporting

level(#) set confidence level; default is level(95)

artests(#) use # as maximum order for AR tests; default is artests(2)

display options control spacing and line width

coeflegend display legend instead of statistics

A panel variable and a time variable must be specified; use [XT] xtset.
indepvars and all varlists, except pre(varlist[ . . . ]) and endogenous(varlist[ . . . ]), may contain time-series

operators; see [U] 11.4.4 Time-series varlists. The specification of depvar may not contain time-series operators.
by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Arellano-Bover/Blundell-Bond estimation

Description
Linear dynamic panel-data models include p lags of the dependent variable as covariates and

contain unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level
effects are correlated with the lagged dependent variables, making standard estimators inconsistent.

95
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Arellano and Bond (1991) derived a consistent generalized method of moments (GMM) estimator for
this model. The Arellano and Bond estimator can perform poorly if the autoregressive parameters are
too large or the ratio of the variance of the panel-level effect to the variance of idiosyncratic error is
too large. Building on the work of Arellano and Bover (1995), Blundell and Bond (1998) developed
a system estimator that uses additional moment conditions; xtdpdsys implements this estimator.

This estimator is designed for datasets with many panels and few periods. This method assumes
that there is no autocorrelation in the idiosyncratic errors and requires the initial condition that the
panel-level effects be uncorrelated with the first difference of the first observation of the dependent
variable.

Options� � �
Model �

noconstant; see [R] estimation options.

lags(#) sets p, the number of lags of the dependent variable to be included in the model. The
default is p = 1.

maxldep(#) sets the maximum number of lags of the dependent variable that can be used as
instruments. The default is to use all Ti − p− 2 lags.

maxlags(#) sets the maximum number of lags of the predetermined and endogenous variables that
can be used as instruments. For predetermined variables, the default is to use all Ti − p− 1 lags.
For endogenous variables, the default is to use all Ti − p− 2 lags.

twostep specifies that the two-step estimator be calculated.

� � �
Predetermined �

pre(varlist
[
, lagstruct(prelags, premaxlags)

]
) specifies that a set of predetermined variables

be included in the model. Optionally, you may specify that prelags lags of the specified variables
also be included. The default for prelags is 0. Specifying premaxlags sets the maximum number
of further lags of the predetermined variables that can be used as instruments. The default is to
include Ti − p− 1 lagged levels as instruments for predetermined variables. You may specify as
many sets of predetermined variables as you need within the standard Stata limits on matrix size.
Each set of predetermined variables may have its own number of prelags and premaxlags.

� � �
Endogenous �

endogenous(varlist
[
, lagstruct(endlags, endmaxlags)

]
) specifies that a set of endogenous

variables be included in the model. Optionally, you may specify that endlags lags of the specified
variables also be included. The default for endlags is 0. Specifying endmaxlags sets the maximum
number of further lags of the endogenous variables that can be used as instruments. The default
is to include Ti − p− 2 lagged levels as instruments for endogenous variables. You may specify
as many sets of endogenous variables as you need within the standard Stata limits on matrix size.
Each set of endogenous variables may have its own number of endlags and endmaxlags.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas in [XT] xtdpd.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.
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vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano–Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

� � �
Reporting �

level(#); see [R] estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpdsys postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
the number of periods in the longest panel. The default is artests(2).

display options: vsquish and nolstretch; see [R] estimation options.

The following option is available with xtdpdsys but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
If you have not read [XT] xtabond, you may want to do so before continuing.

Consider the dynamic panel-data model

yit =
p∑
j=1

αjyi,t−j + xitβ1 + witβ2 + νi + εit i = 1, . . . , N t = 1, . . . , Ti (1)

where
the αj are p parameters to be estimated,
xit is a 1× k1 vector of strictly exogenous covariates,
β1 is a k1 × 1 vector of parameters to be estimated,
wit is a 1× k2 vector of predetermined or endogenous covariates,
β2 is a k2 × 1 vector of parameters to be estimated,
νi are the panel-level effects (which may be correlated with the covariates), and
εit are i.i.d. over the whole sample with variance σ2

ε .

The νi and the εit are assumed to be independent for each i over all t.

By construction, the lagged dependent variables are correlated with the unobserved panel-level
effects, making standard estimators inconsistent. With many panels and few periods, the Arellano–Bond
estimator is constructed by first-differencing to remove the panel-level effects and using instruments
to form moment conditions.

Blundell and Bond (1998) show that the lagged-level instruments in the Arellano–Bond estimator
become weak as the autoregressive process becomes too persistent or the ratio of the variance of the
panel-level effects νi to the variance of the idiosyncratic error εit becomes too large. Building on
the work of Arellano and Bover (1995), Blundell and Bond (1998) proposed a system estimator that
uses moment conditions in which lagged differences are used as instruments for the level equation in
addition to the moment conditions of lagged levels as instruments for the differenced equation. The
additional moment conditions are valid only if the initial condition E[νi∆yi2] = 0 holds for all i;
see Blundell and Bond (1998) and Blundell, Bond, and Windmeijer (2000).

xtdpdsys fits dynamic panel-data estimators with the Arellano–Bover/Blundell–Bond system
estimator. Because xtdpdsys extends xtabond, [XT] xtabond provides useful background.
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Example 1

In their article, Arellano and Bond (1991) apply their estimators and test statistics to a model of
dynamic labor demand that had previously been considered by Layard and Nickell (1986), using data
from an unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm
i and time t. In this dataset, nit is the log of employment in firm i at time t, wit is the natural log
of the real product wage, kit is the natural log of the gross capital stock, and ysit is the natural log
of industry output. The model also includes time dummies yr1980, yr1981, yr1982, yr1983, and
yr1984.

For comparison, we begin by using xtabond to fit a model to these data.

. use http://www.stata-press.com/data/r12/abdata

. xtabond n L(0/2).(w k) yr1980-yr1984 year, vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 4
avg = 4.364286
max = 6

Number of instruments = 40 Wald chi2(13) = 1318.68
Prob > chi2 = 0.0000

One-step results
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6286618 .1161942 5.41 0.000 .4009254 .8563983

w
--. -.5104249 .1904292 -2.68 0.007 -.8836592 -.1371906
L1. .2891446 .140946 2.05 0.040 .0128954 .5653937
L2. -.0443653 .0768135 -0.58 0.564 -.194917 .1061865

k
--. .3556923 .0603274 5.90 0.000 .2374528 .4739318
L1. -.0457102 .0699732 -0.65 0.514 -.1828552 .0914348
L2. -.0619721 .0328589 -1.89 0.059 -.1263743 .0024301

yr1980 -.0282422 .0166363 -1.70 0.090 -.0608488 .0043643
yr1981 -.0694052 .028961 -2.40 0.017 -.1261677 -.0126426
yr1982 -.0523678 .0423433 -1.24 0.216 -.1353591 .0306235
yr1983 -.0256599 .0533747 -0.48 0.631 -.1302723 .0789525
yr1984 -.0093229 .0696241 -0.13 0.893 -.1457837 .1271379

year .0019575 .0119481 0.16 0.870 -.0214604 .0253754
_cons -2.543221 23.97919 -0.11 0.916 -49.54158 44.45514

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w L2D.w D.k LD.k L2D.k D.yr1980 D.yr1981 D.yr1982

D.yr1983 D.yr1984 D.year
Instruments for level equation

Standard: _cons
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Now we fit the same model by using xtdpdsys:

. xtdpdsys n L(0/2).(w k) yr1980-yr1984 year, vce(robust)

System dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 5
avg = 5.364286
max = 7

Number of instruments = 47 Wald chi2(13) = 2579.96
Prob > chi2 = 0.0000

One-step results

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .8221535 .093387 8.80 0.000 .6391184 1.005189

w
--. -.5427935 .1881721 -2.88 0.004 -.911604 -.1739831
L1. .3703602 .1656364 2.24 0.025 .0457189 .6950015
L2. -.0726314 .0907148 -0.80 0.423 -.2504292 .1051664

k
--. .3638069 .0657524 5.53 0.000 .2349346 .4926792
L1. -.1222996 .0701521 -1.74 0.081 -.2597951 .015196
L2. -.0901355 .0344142 -2.62 0.009 -.1575862 -.0226849

yr1980 -.0308622 .016946 -1.82 0.069 -.0640757 .0023512
yr1981 -.0718417 .0293223 -2.45 0.014 -.1293123 -.014371
yr1982 -.0384806 .0373631 -1.03 0.303 -.1117111 .0347498
yr1983 -.0121768 .0498519 -0.24 0.807 -.1098847 .0855311
yr1984 -.0050903 .0655011 -0.08 0.938 -.1334701 .1232895

year .0058631 .0119867 0.49 0.625 -.0176304 .0293566
_cons -10.59198 23.92087 -0.44 0.658 -57.47602 36.29207

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w L2D.w D.k LD.k L2D.k D.yr1980 D.yr1981 D.yr1982

D.yr1983 D.yr1984 D.year
Instruments for level equation

GMM-type: LD.n
Standard: _cons

If you are unfamiliar with the L().() notation, see [U] 13.9 Time-series operators. That the system
estimator produces a much higher estimate of the coefficient on lagged employment agrees with the
results in Blundell and Bond (1998), who show that the system estimator does not have the downward
bias that the Arellano–Bond estimator has when the true value is high.

Comparing the footers illustrates the difference between the two estimators; xtdpdsys includes
lagged differences of n as instruments for the level equation, whereas xtabond does not. Comparing
the headers shows that xtdpdsys has seven more instruments than xtabond. (As it should; there are
7 observations on LD.n available in the complete panels that run from 1976–1984, after accounting
for the first two years that are lost because the model has two lags.) Only the first lags of the
variables are used because the moment conditions using higher lags are redundant; see Blundell and
Bond (1998) and Blundell, Bond, and Windmeijer (2000).

estat abond reports the Arellano–Bond test for serial correlation in the first-differenced errors.
The moment conditions are valid only if there is no serial correlation in the idiosyncratic errors.
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Because the first difference of independently and identically distributed idiosyncratic errors will be
autocorrelated, rejecting the null hypothesis of no serial correlation at order one in the first-differenced
errors does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See [XT] xtdpd for an alternative estimator in this
case.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order z Prob > z

1 -4.6414 0.0000
2 -1.0572 0.2904

H0: no autocorrelation

The above output does not present evidence that the model is misspecified.

Example 2

Sometimes we cannot assume strict exogeneity. Recall that a variable xit is said to be strictly
exogenous if E[xitεis] = 0 for all t and s. If E[xitεis] 6= 0 for s < t but E[xitεis] = 0 for all s ≥ t,
the variable is said to be predetermined. Intuitively, if the error term at time t has some feedback
on the subsequent realizations of xit, xit is a predetermined variable. Because unforecastable errors
today might affect future changes in the real wage and in the capital stock, we might suspect that
the log of the real product wage and the log of the gross capital stock are predetermined instead of
strictly exogenous.
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. xtdpdsys n yr1980-yr1984 year, pre(w k, lag(2, .)) vce(robust)

System dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group: min = 5
avg = 5.364286
max = 7

Number of instruments = 95 Wald chi2(13) = 7562.80
Prob > chi2 = 0.0000

One-step results

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .913278 .0460602 19.83 0.000 .8230017 1.003554

w
--. -.728159 .1019044 -7.15 0.000 -.9278879 -.5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438775 .2392718

k
--. .4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944 .0831902 -3.42 0.001 -.4477442 -.1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356 -.0599006

yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yr1981 -.0726116 .0346482 -2.10 0.036 -.1405207 -.0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264 .0558734 -0.71 0.478 -.1491362 .0698835
yr1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342

year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972 28.77747 -1.30 0.194 -93.75253 19.05308

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L2.w L(1/.).L2.k
Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Instruments for level equation
GMM-type: LD.n L2D.w L2D.k
Standard: _cons

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back for the differenced errors and the second lags of the
differences of w and k as instruments for the level errors.

Technical note
The above example illustrates that xtdpdsys understands pre(w k, lag(2, .)) to mean that

L2.w and L2.k are predetermined variables. This is a stricter definition than the alternative that pre(w
k, lag(2, .)) means only that w k are predetermined but to include two lags of w and two lags of
k in the model. If you prefer the weaker definition, xtdpdsys still gives you consistent estimates,
but it is not using all possible instruments; see [XT] xtdpd for an example of how to include all
possible instruments.
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Saved results
xtdpdsys saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(t min) minimum time in sample
e(t max) maximum time in sample
e(chi2) χ2

e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of σ2

ε

e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix

Macros
e(cmd) xtdpdsys
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(system) system, if system estimator
e(hascons) hascons, if specified
e(transform) specified transform
e(datasignature) checksum from datasignature
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xtdpdsys is implemented as an ado-file.

xtdpdsys uses xtdpd to perform its computations, so the formulas are given in Methods and
formulas of [XT] xtdpd.
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Title

xtdpdsys postestimation — Postestimation tools for xtdpdsys

Description
The following postestimation commands are of special interest after xtdpdsys:

Command Description

estat abond test for autocorrelation
estat sargan Sargan test of overidentifying restrictions

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat abond reports the Arellano–Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, xb e stdp difference
]

Menu
Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.

Syntax for estat abond

estat abond
[
, artests(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat abond
artests(#) specifies the highest order of serial correlation to be tested. By default, the tests computed

during estimation are reported. The model will be refit when artests(#) specifies a higher order
than that computed during the original estimation. The model can be refit only if the data have
not changed.

Syntax for estat sargan
estat sargan

Menu
Statistics > Postestimation > Reports and statistics

Remarks
Remarks are presented under the following headings:

estat abond
estat sargan
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estat abond

The moment conditions used by xtdpdsys are valid only if there is no serial correlation in the
idiosyncratic errors. Testing for serial correlation in dynamic panel-data models is tricky because
a transform is required to remove the panel-level effects, but the transformed errors have a more
complicated error structure than that of the idiosyncratic errors. The Arellano–Bond test for serial
correlation reported by estat abond tests for serial correlation in the first-differenced errors.

Because the first difference of independently and identically distributed idiosyncratic errors will
be serially correlated, rejecting the null hypothesis of no serial correlation in the first-differenced
errors at order one does not imply that the model is misspecified. Rejecting the null hypothesis at
higher orders implies that the moment conditions are not valid. See example 5 in [XT] xtdpd for
an alternative estimator that allows for idiosyncratic errors that follow a first-order moving average
process.

After the one-step system estimator, the test can be computed only when vce(robust) has been
specified.

estat sargan

Like all GMM estimators, the estimator in xtdpdsys can produce consistent estimates only if the
moment conditions used are valid. Although there is no method to test if the moment conditions from
an exactly identified model are valid, one can test whether the overidentifying moment conditions are
valid. estat sargan implements the Sargan test of overidentifying conditions discussed in Arellano
and Bond (1991).

Only for a homoskedastic error term does the Sargan test have an asymptotic chi-squared distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce(robust) model, xtdpdsys does not compute it when vce(robust) is specified. See [XT] xtdpd
for an example in which the null hypothesis of the Sargan test is not rejected.

. use http://www.stata-press.com/data/r12/abdata

. xtdpdsys n L(0/2).(w k) yr1980-yr1984 year
(output omitted )

. estat sargan
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid
chi2(33) = 63.63911
Prob > chi2 = 0.0011

The output above presents strong evidence against the null hypothesis that the overidentifying
restrictions are valid. Rejecting this null hypothesis implies that we need to reconsider our model or
our instruments, unless we attribute the rejection to heteroskedasticity in the data-generating process.
Although performing the Sargan test after the two-step estimator is an alternative, Arellano and
Bond (1991) found a tendency for this test to underreject in the presence of heteroskedasticity.

Methods and formulas
The formulas are given in Methods and formulas of [XT] xtdpd postestimation.
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Title

xtfrontier — Stochastic frontier models for panel data

Syntax

Time-invariant model

xtfrontier depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, ti

[
ti options

]
Time-varying decay model

xtfrontier depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, tvd

[
tvd options

]
ti options Description

Model

noconstant suppress constant term
ti use time-invariant model
cost fit cost frontier model
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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tvd options Description

Model

noconstant suppress constant term
tvd use time-varying decay model
cost fit cost frontier model
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

A panel variable must be specified. For xtfrontier, tvd, a time variable must also be specified. Use xtset; see
[XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights and iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Frontier models

Description
xtfrontier fits stochastic production or cost frontier models for panel data. More precisely,

xtfrontier estimates the parameters of a linear model with a disturbance generated by specific
mixture distributions.

The disturbance term in a stochastic frontier model is assumed to have two components. One
component is assumed to have a strictly nonnegative distribution, and the other component is
assumed to have a symmetric distribution. In the econometrics literature, the nonnegative component
is often referred to as the inefficiency term, and the component with the symmetric distribution
as the idiosyncratic error. xtfrontier permits two different parameterizations of the inefficiency
term: a time-invariant model and the Battese–Coelli (1992) parameterization of time effects. In the
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time-invariant model, the inefficiency term is assumed to have a truncated-normal distribution. In
the Battese–Coelli (1992) parameterization of time effects, the inefficiency term is modeled as a
truncated-normal random variable multiplied by a specific function of time. In both models, the
idiosyncratic error term is assumed to have a normal distribution. The only panel-specific effect is
the random inefficiency term.

See Kumbhakar and Lovell (2000) for a detailed introduction to frontier analysis.

Options for time-invariant model

� � �
Model �

noconstant; see [R] estimation options.

ti specifies that the parameters of the time-invariant technical inefficiency model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production
function. By default, xtfrontier fits a production frontier model.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec) iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xtfrontier but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for time-varying decay model

� � �
Model �

noconstant; see [R] estimation options.

tvd specifies that the parameters of the time-varying decay model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production
function. By default, xtfrontier fits a production frontier model.

constraints(constraints), collinear; see [R] estimation options.
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� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xtfrontier but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Time-invariant model
Time-varying decay model

Introduction
Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and

Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular
subfield in econometrics; see Kumbhakar and Lovell (2000) for an introduction. xtfrontier fits
two stochastic frontier models with distinct specifications of the inefficiency term and can fit both
production- and cost-frontier models.

Let’s review the nature of the stochastic frontier problem. Suppose that a producer has a production
function f(zit, β). In a world without error or inefficiency, in time t, the ith firm would produce

qit = f(zit, β)

A fundamental element of stochastic frontier analysis is that each firm potentially produces less
than it might because of a degree of inefficiency. Specifically,

qit = f(zit, β)ξit

where ξit is the level of efficiency for firm i at time t; ξi must be in the interval (0, 1 ]. If ξit = 1,
the firm is achieving the optimal output with the technology embodied in the production function
f(zit, β). When ξit < 1, the firm is not making the most of the inputs zit given the technology
embodied in the production function f(zit, β). Because the output is assumed to be strictly positive
(that is, qit > 0), the degree of technical efficiency is assumed to be strictly positive (that is, ξit > 0).
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Output is also assumed to be subject to random shocks, implying that

qit = f(zit, β)ξitexp(vit)

Taking the natural log of both sides yields

ln(qit) = ln
{
f(zit, β)

}
+ ln(ξit) + vit

Assuming that there are k inputs and that the production function is linear in logs, defining
uit = − ln(ξit) yields

ln(qit) = β0 +
k∑
j=1

βj ln(zjit) + vit − uit (1)

Because uit is subtracted from ln(qit), restricting uit ≥ 0 implies that 0 < ξit ≤ 1, as specified
above.

Kumbhakar and Lovell (2000) provide a detailed version of this derivation, and they show that
performing an analogous derivation in the dual cost function problem allows us to specify the problem
as

ln(cit) = β0 + βq ln(qit) +
k∑
j=1

βj ln(pjit) + vit − suit (2)

where qit is output, the zjit are input quantities, cit is cost, the pjit are input prices, and

s =
{

1, for production functions
−1, for cost functions

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the
specification.

Technical note

The model that xtfrontier actually fits has the form

yit = β0 +
k∑
j=1

βjxjit + vit − suit

so in the context of the discussion above, yit = ln(qit) and xjit = ln(zjit) for a production function;
for a cost function, yit = ln(cit), the xjit are the ln(pjit), and ln(qit). You must perform the natural
logarithm transformation of the data before estimation to interpret the estimation results correctly for
a stochastic frontier production or cost model. xtfrontier does not perform any transformations on
the data.

Equation (2) is a variant of a panel-data model in which vit is the idiosyncratic error and uit
is a time-varying panel-level effect. Much of the literature on this model has focused on deriving
estimators for different specifications of the uit term. Kumbhakar and Lovell (2000) provide a survey
of this literature.
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xtfrontier provides estimators for two different specifications of uit. To facilitate the discussion,
let N+(µ, σ2) denote the truncated-normal distribution, which is truncated at zero with mean µ and

variance σ2, and let iid∼ stand for independently and identically distributed.

Consider the simplest specification in which uit is a time-invariant truncated-normal random

variable. In the time-invariant model, uit = ui, ui
iid∼ N+(µ, σ2

u), vit
iid∼ N(0, σ2

v), and ui and vit
are distributed independently of each other and the covariates in the model. Specifying the ti option
causes xtfrontier to estimate the parameters of this model.

In the time-varying decay specification,

uit = exp
{
−η(t− Ti)

}
ui

where Ti is the last period in the ith panel, η is the decay parameter, ui
iid∼ N+(µ, σ2

u), vit
iid∼ N(0, σ2

v),
and ui and vit are distributed independently of each other and the covariates in the model. Specifying
the tvd option causes xtfrontier to estimate the parameters of this model.

Time-invariant model

Example 1

xtfrontier, ti provides maximum likelihood estimates for the parameters of the time-invariant

decay model. In this model, the inefficiency effects are modeled as uit = ui, ui
iid∼ N+(µ, σ2

u),

vit
iid∼ N(0, σ2

v), and ui and vit are distributed independently of each other and the covariates in
the model. In this example, firms produce a product called a widget, using a constant-returns-to-
scale technology. We have 948 observations—91 firms, with 6–14 observations per firm. Our dataset
contains variables representing the quantity of widgets produced, the number of machine hours used
in production, the number of labor hours used in production, and three additional variables that are
the natural logarithm transformations of the three aforementioned variables.
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We fit a time-invariant model using the transformed variables:
. use http://www.stata-press.com/data/r12/xtfrontier1

. xtfrontier lnwidgets lnmachines lnworkers, ti

Iteration 0: log likelihood = -1473.8703
Iteration 1: log likelihood = -1473.0565
Iteration 2: log likelihood = -1472.6155
Iteration 3: log likelihood = -1472.607
Iteration 4: log likelihood = -1472.6069

Time-invariant inefficiency model Number of obs = 948
Group variable: id Number of groups = 91

Obs per group: min = 6
avg = 10.4
max = 14

Wald chi2(2) = 661.76
Log likelihood = -1472.6069 Prob > chi2 = 0.0000

lnwidgets Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnmachines .2904551 .0164219 17.69 0.000 .2582688 .3226415
lnworkers .2943333 .0154352 19.07 0.000 .2640808 .3245858

_cons 3.030983 .1441022 21.03 0.000 2.748548 3.313418

/mu 1.125667 .6479217 1.74 0.082 -.144236 2.39557
/lnsigma2 1.421979 .2672745 5.32 0.000 .898131 1.945828

/ilgtgamma 1.138685 .3562642 3.20 0.001 .4404204 1.83695

sigma2 4.145318 1.107938 2.455011 6.999424
gamma .7574382 .0654548 .6083592 .8625876

sigma_u2 3.139822 1.107235 .9696821 5.309962
sigma_v2 1.005496 .0484143 .9106055 1.100386

In addition to the coefficients, the output reports estimates for the parameters sigma v2, sigma u2,
gamma, sigma2, ilgtgamma, lnsigma2, and mu. sigma v2 is the estimate of σ2

v . sigma u2 is the
estimate of σ2

u. gamma is the estimate of γ = σ2
u/σ

2
S . sigma2 is the estimate of σ2

S = σ2
v + σ2

u.
Because γ must be between 0 and 1, the optimization is parameterized in terms of the inverse logit
of γ, and this estimate is reported as ilgtgamma. Because σ2

S must be positive, the optimization
is parameterized in terms of ln(σ2

S), and this estimate is reported as lnsigma2. Finally, mu is the
estimate of µ.

Technical note
Our simulation results indicate that this estimator requires relatively large samples to achieve any

reasonable degree of precision in the estimates of µ and σ2
u.

Time-varying decay model

xtfrontier, tvd provides maximum likelihood estimates for the parameters of the time-varying
decay model. In this model, the inefficiency effects are modeled as

uit = exp
{
−η(t− Ti)

}
ui

where ui
iid∼ N+(µ, σ2

u).
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When η > 0, the degree of inefficiency decreases over time; when η < 0, the degree of inefficiency
increases over time. Because t = Ti in the last period, the last period for firm i contains the base
level of inefficiency for that firm. If η > 0, the level of inefficiency decays toward the base level. If
η < 0, the level of inefficiency increases to the base level.

Example 2

When η = 0, the time-varying decay model reduces to the time-invariant model. The following
example illustrates this property and demonstrates how to specify constraints and starting values in
these models.

Let’s begin by fitting the time-varying decay model on the same data that were used in the previous
example for the time-invariant model.

. xtfrontier lnwidgets lnmachines lnworkers, tvd

Iteration 0: log likelihood = -1551.3798 (not concave)
Iteration 1: log likelihood = -1502.2637
Iteration 2: log likelihood = -1476.3093 (not concave)
Iteration 3: log likelihood = -1472.9845
Iteration 4: log likelihood = -1472.5365
Iteration 5: log likelihood = -1472.529
Iteration 6: log likelihood = -1472.5289

Time-varying decay inefficiency model Number of obs = 948
Group variable: id Number of groups = 91

Time variable: t Obs per group: min = 6
avg = 10.4
max = 14

Wald chi2(2) = 661.93
Log likelihood = -1472.5289 Prob > chi2 = 0.0000

lnwidgets Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnmachines .2907555 .0164376 17.69 0.000 .2585384 .3229725
lnworkers .2942412 .0154373 19.06 0.000 .2639846 .3244978

_cons 3.028939 .1436046 21.09 0.000 2.74748 3.310399

/mu 1.110831 .6452809 1.72 0.085 -.1538967 2.375558
/eta .0016764 .00425 0.39 0.693 -.0066535 .0100064

/lnsigma2 1.410723 .2679485 5.26 0.000 .885554 1.935893
/ilgtgamma 1.123982 .3584243 3.14 0.002 .4214828 1.82648

sigma2 4.098919 1.098299 2.424327 6.930228
gamma .7547265 .0663495 .603838 .8613419

sigma_u2 3.093563 1.097606 .9422943 5.244832
sigma_v2 1.005356 .0484079 .9104785 1.100234

The estimate of η is close to zero, and the other estimates are not too far from those of the
time-invariant model.

We can use constraint to constrain η = 0 and obtain the same results produced by the time-
invariant model. Although there is only one statistical equation to be estimated in this model, the
model fits five of Stata’s [R] ml equations; see [R] ml or Gould, Pitblado, and Poi (2010). The
equation names can be seen by listing the matrix of estimated coefficients.
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. matrix list e(b)

e(b)[1,7]

lnwidgets: lnwidgets: lnwidgets: lnsigma2: ilgtgamma: mu:
lnmachines lnworkers _cons _cons _cons _cons

y1 .29075546 .2942412 3.0289395 1.4107233 1.1239816 1.1108307

eta:
_cons

y1 .00167642

To constrain a parameter to a particular value in any equation, except the first equation, you must
specify both the equation name and the parameter name by using the syntax

constraint # [eqname] b[varname] = value or

constraint # [eqname]coefficient = value

where eqname is the equation name, varname is the name of the variable in a linear equation,
and coefficient refers to any parameter that has been estimated. More elaborate specifications with
expressions are possible; see the example with constant returns to scale below, and see [R] constraint
for general reference.

Suppose that we impose the constraint η = 0; we get the same results as those reported above for
the time-invariant model, except for some minute differences attributable to an alternate convergence
path in the optimization.

. constraint 1 [eta]_cons = 0

. xtfrontier lnwidgets lnmachines lnworkers, tvd constraints(1)

Iteration 0: log likelihood = -1540.7124 (not concave)
Iteration 1: log likelihood = -1515.7726
Iteration 2: log likelihood = -1473.0162
Iteration 3: log likelihood = -1472.9223
Iteration 4: log likelihood = -1472.6254
Iteration 5: log likelihood = -1472.607
Iteration 6: log likelihood = -1472.6069

Time-varying decay inefficiency model Number of obs = 948
Group variable: id Number of groups = 91

Time variable: t Obs per group: min = 6
avg = 10.4
max = 14

Wald chi2(2) = 661.76
Log likelihood = -1472.6069 Prob > chi2 = 0.0000

( 1) [eta]_cons = 0

lnwidgets Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnmachines .2904551 .0164219 17.69 0.000 .2582688 .3226414
lnworkers .2943332 .0154352 19.07 0.000 .2640807 .3245857

_cons 3.030963 .1440995 21.03 0.000 2.748534 3.313393

/mu 1.125507 .6480444 1.74 0.082 -.1446369 2.39565
/eta 0 . . . . .

/lnsigma2 1.422039 .2673128 5.32 0.000 .8981155 1.945962
/ilgtgamma 1.138764 .3563076 3.20 0.001 .4404135 1.837114

sigma2 4.145565 1.108162 2.454972 7.000366
gamma .7574526 .0654602 .6083575 .862607

sigma_u2 3.140068 1.107459 .9694878 5.310649
sigma_v2 1.005496 .0484143 .9106057 1.100386
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Saved results
xtfrontier saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(g min) minimum number of observations per group
e(g avg) average number of observations per group
e(g max) maximum number of observations per group
e(sigma2) sigma2
e(gamma) gamma
e(Tcon) 1 if panels balanced; 0 otherwise
e(sigma u) standard deviation of technical inefficiency
e(sigma v) standard deviation of random error
e(chi2) χ2

e(p) model significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtfrontier
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(function) production or cost
e(model) ti, after time-invariant model; tvd, after time-varying decay model
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
(e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
xtfrontier is implemented as an ado-file.

xtfrontier fits stochastic frontier models for panel data that can be expressed as

yit = β0 +
k∑
j=1

βjxjit + vit − suit

where yit is the natural logarithm of output, the xjit are the natural logarithm of the input quantities
for the production efficiency problem, yit is the natural logarithm of costs, the xit are the natural
logarithm of input prices for the cost efficiency problem, and

s =
{

1, for production functions
−1, for cost functions

For the time-varying decay model, the log-likelihood function is derived as

lnL = −1
2

(
N∑
i=1

Ti

)
{ ln (2π) + ln(σ2

S)} − 1
2

N∑
i=1

(Ti − 1) ln(1− γ)

− 1
2

N∑
i=1

ln

{
1 +

(
Ti∑
t=1

η2
it − 1

)
γ

}
−N ln {1− Φ (−z̃)} − 1

2
Nz̃2

+
N∑
i=1

ln {1− Φ (−z∗i )}+
1
2

N∑
i=1

z∗2i −
1
2

N∑
i=1

Ti∑
t=1

ε2it
(1− γ)σ2

S

where σS = (σ2
u+σ2

v)1/2, γ = σ2
u/σ

2
S , εit = yit−xitβ, ηit = exp{−η(t−Ti)}, z̃ = µ/

(
γσ2

S

)1/2
,

Φ() is the cumulative distribution function of the standard normal distribution, and

z∗i =
µ (1− γ)− sγ

∑Ti
t=1 ηitεit[

γ (1− γ)σ2
S

{
1 +

(∑Ti
t=1 η

2
it − 1

)
γ
}]1/2

Maximizing the above log likelihood estimates the coefficients η, µ, σv , and σu.
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Also see
[XT] xtfrontier postestimation — Postestimation tools for xtfrontier

[XT] xtset — Declare data to be panel data

[R] frontier — Stochastic frontier models

[U] 20 Estimation and postestimation commands

http://www.stata-press.com/books/ml4.html


Title

xtfrontier postestimation — Postestimation tools for xtfrontier

Description
The following postestimation commands are available after xtfrontier:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
u minus the natural log of the technical efficiency via E (uit | εit)
m minus the natural log of the technical efficiency via M (uit | εit)
te the technical efficiency via E {exp(−suit) | εit}

where

s =
{

1, for production functions
−1, for cost functions
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of minus the natural log of the technical efficiency via E (uit | εit).

m produces estimates of minus the natural log of the technical efficiency via the mode, M (uit | εit).

te produces estimates of the technical efficiency via E {exp(−suit) | εit}.

Remarks

Example 1

A production function exhibits constant returns to scale if doubling the amount of each input results
in a doubling in the quantity produced. When the production function is linear in logs, constant returns
to scale implies that the sum of the coefficients on the inputs is one. In example 2 of [XT] xtfrontier,
we fit a time-varying decay model. Here we test whether the estimated production function exhibits
constant returns:

. use http://www.stata-press.com/data/r12/xtfrontier1

. xtfrontier lnwidgets lnmachines lnworkers, tvd

(output omitted )
. test lnmachines + lnworkers = 1

( 1) [lnwidgets]lnmachines + [lnwidgets]lnworkers = 1

chi2( 1) = 331.55
Prob > chi2 = 0.0000

The test statistic is highly significant, so we reject the null hypothesis and conclude that this production
function does not exhibit constant returns to scale.

The previous Wald χ2 test indicated that the sum of the coefficients does not equal one. An
alternative is to use lincom to compute the sum explicitly:

. lincom lnmachines + lnworkers

( 1) [lnwidgets]lnmachines + [lnwidgets]lnworkers = 0

lnwidgets Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .5849967 .0227918 25.67 0.000 .5403256 .6296677

The sum of the coefficients is significantly less than one, so this production function exhibits decreasing
returns to scale. If we doubled the number of machines and workers, we would obtain less than twice
as much output.
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Continuing from the Methods and formulas section of [XT] xtfrontier, estimates for uit can be
obtained from the mean or the mode of the conditional distribution f(u|ε).

E (uit | εit) = µ̃i + σ̃i

{
φ (−µ̃i/σ̃i)

1− Φ (−µ̃i/σ̃i)

}

M (uit | εit) =
{
−µ̃i, if µ̃i >= 0
0, otherwise

where

µ̃i =
µσ2

v − s
∑Ti
t=1 ηitεitσ

2
u

σ2
v +

∑Ti
t=1 η

2
itσ

2
u

σ̃2
i =

σ2
vσ

2
u

σ2
v +

∑Ti
t=1 η

2
itσ

2
u

These estimates can be obtained from predict newvar, u and predict newvar, m, respectively,
and are calculated by plugging in the estimated parameters.

predict newvar, te produces estimates of the technical-efficiency term. These estimates are
obtained from

E {exp(−suit) | εit} =
[

1− Φ {sηitσ̃i − (µ̃i/ σ̃i)}
1− Φ (−µ̃i/ σ̃i)

]
exp
(
−sηitµ̃i +

1
2
η2
itσ̃

2
i

)
Replacing ηit = 1 and η = 0 in these formulas produces the formulas for the time-invariant models.

Also see
[XT] xtfrontier — Stochastic frontier models for panel data

[U] 20 Estimation and postestimation commands



Title

xtgee — Fit population-averaged panel-data models by using GEE

Syntax
xtgee depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

family(family) distribution of depvar; see table below
link(link) link function; see table below

Model 2

exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
noconstant suppress constant term
force estimate even if observations unequally spaced in time

Correlation

corr(correlation) within-group correlation structure; see table below

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
rgf multiply the robust variance estimate by (N − 1)/(N − P )
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

nodisplay suppress display of header and coefficients
coeflegend display legend instead of statistics

A panel variable must be specified. Correlation structures other than exchangeable and independent require
that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4 varlists.
by, fracpoly, mfp, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
nodisplay and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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family Description

gaussian Gaussian (normal); family(normal) is a synonym
igaussian inverse Gaussian
binomial

[
# | varname

]
Bernoulli/binomial

poisson Poisson
nbinomial

[
#
]

negative binomial
gamma gamma

link Link function/definition

identity identity; y = y
log log; ln(y)
logit logit; ln{y/(1− y)}, natural log of the odds
probit probit; Φ−1(y), where Φ( ) is the normal cumulative distribution
cloglog cloglog; ln{−ln(1− y)}
power

[
#
]

power; yk with k = #; # = 1 if not specified
opower

[
#
]

odds power; [{y/(1− y)}k − 1]/k with k = #; # = 1 if not specified
nbinomial negative binomial; ln{y/(y + α)}
reciprocal reciprocal; 1/y

correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

Menu
Statistics > Longitudinal/panel data > Generalized estimating equations (GEE) > Generalized estimating equations
(GEE)

Description
xtgee fits population-averaged panel-data models. In particular, xtgee fits generalized linear

models and allows you to specify the within-group correlation structure for the panels.

See [R] logistic and [R] regress for lists of related estimation commands.
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Options

� � �
Model �

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified.

� � �
Model 2 �

exposure(varname) and offset(varname) are different ways of specifying the same thing.
exposure() specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname) with coefficient constrained to be 1 is
entered into the regression equation. offset() specifies a variable that is to be entered directly
into the log-link function with its coefficient constrained to be 1; thus, exposure is assumed to
be evarname. If you were fitting a Poisson regression model, family(poisson) link(log), for
instance, you would account for exposure time by specifying offset() containing the log of
exposure time.

noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin
on the scale defined by the link function.

force; see [R] estimation options.

� � �
Correlation �

corr(correlation); see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

vce(robust) specifies that the Huber/White/sandwich estimator of variance is to be used in place
of the default conventional variance estimator (see Methods and formulas below). Use of this
option causes xtgee to produce valid standard errors even if the correlations within group are
not as hypothesized by the specified correlation structure. It does, however, require that the model
correctly specifies the mean. The resulting standard errors are thus labeled “semirobust” instead of
“robust”. Although there is no vce(cluster clustvar) option, results are as if this option were
included and you specified clustering on the panel variable.

nmp; see [XT] vce options.

rgf specifies that the robust variance estimate is multiplied by (N − 1)/(N − P ), where N is the
total number of observations and P is the number of coefficients estimated. This option can be
used only with family(gaussian) when vce(robust) is either specified or implied by the use
of pweights. Using this option implies that the robust variance estimate is not invariant to the
scale of any weights used.

scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.
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eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals as described in [R] maximize. For family(binomial) link(logit) (that is, logistic
regression), exponentiation results in odds ratios; for family(poisson) link(log) (that is,
Poisson regression), exponentiated coefficients are incidence-rate ratios.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtgee but are not shown in the dialog box:

nodisplay is for programmers. It suppresses display of the header and coefficients.

coeflegend; see [R] estimation options.

Remarks
For a thorough introduction to GEE in the estimation of GLM, see Hardin and Hilbe (2003). More

information on linear models is presented in Nelder and Wedderburn (1972). Finally, there have
been several illuminating articles on various applications of GEE in Zeger, Liang, and Albert (1988);
Zeger and Liang (1986), and Liang (1987). Pendergast et al. (1996) surveys the current methods for
analyzing clustered data in regard to binary response data. Our implementation follows that of Liang
and Zeger (1986).

xtgee fits generalized linear models of yit with covariates xit

g
{
E(yit)

}
= xitβ, y ∼ F with parameters θit

for i = 1, . . . ,m and t = 1, . . . , ni, where there are ni observations for each group identifier i. g( )
is called the link function, and F is the distributional family. Substituting various definitions for g( )
and F results in a wide array of models. For instance, if yit is distributed Gaussian (normal) and
g( ) is the identity function, we have

E(yit) = xitβ, y ∼ N( )

yielding linear regression, random-effects regression, or other regression-related models, depending
on what we assume for the correlation structure.

If g( ) is the logit function and yit is distributed Bernoulli (binomial), we have

logit
{
E(yit)

}
= xitβ, y ∼ Bernoulli
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or logistic regression. If g( ) is the natural log function and yit is distributed Poisson, we have

ln
{
E(yit)

}
= xitβ, y ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

You specify the link function with the link() option, the distributional family with family(),
and the assumed within-group correlation structure with corr().

The binomial distribution can be specified as case 1 family(binomial), case 2 family(binomial
#), or case 3 family(binomial varname). In case 2, # is the value of the binomial denominator N ,
the number of trials. Specifying family(binomial 1) is the same as specifying family(binomial);
both mean that y has the Bernoulli distribution with values 0 and 1 only. In case 3, varname is
the variable containing the binomial denominator, thus allowing the number of trials to vary across
observations.

The negative binomial distribution must be specified as family(nbinomial #), where # denotes
the value of the parameter α in the negative binomial distribution. The results will be conditional on
this value.

You do not have to specify both family() and link(); the default link() is the canonical link
for the specified family():

Family Canonical link

family(binomial) link(logit)
family(gamma) link(reciprocal)
family(gaussian) link(identity)
family(igaussian) link(power -2)
family(nbinomial) link(log)
family(poisson) link(log)

If you specify both family() and link(), not all combinations make sense. You may choose among
the following combinations:

Gaussian Inverse Binomial Poisson Negative Gamma
Gaussian Binomial

Identity x x x x x x
Log x x x x x x
Logit x
Probit x
C. log-log x
Power x x x x x x
Odds Power x
Neg. binom. x
Reciprocal x x x x

You specify the assumed within-group correlation structure with the corr() option.

For example, call R the working correlation matrix for modeling the within-group correlation, a
square max{ni} ×max{ni} matrix. corr() specifies the structure of R. Let Rt,s denote the t, s
element.

The independent structure is defined as

Rt,s =
{ 1 if t = s

0 otherwise
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The corr(exchangeable) structure (corresponding to equal-correlation models) is defined as

Rt,s =
{

1 if t = s
ρ otherwise

The corr(ar g) structure is defined as the usual correlation matrix for an AR(g) model. This is
sometimes called multiplicative correlation. For example, an AR(1) model is given by

Rt,s =
{

1 if t = s
ρ|t−s| otherwise

The corr(stationary g) structure is a stationary(g) model. For example, a stationary(1) model
is given by

Rt,s =

{ 1 if t = s
ρ if |t− s| = 1
0 otherwise

The corr(nonstationary g) structure is a nonstationary(g) model that imposes only the con-
straints that the elements of the working correlation matrix along the diagonal be 1 and the elements
outside the gth band be zero,

Rt,s =

{ 1 if t = s
ρts if 0 < |t− s| ≤ g, ρts = ρst
0 otherwise

corr(unstructured) imposes only the constraint that the diagonal elements of the working
correlation matrix be 1.

Rt,s =
{

1 if t = s
ρts otherwise, ρts = ρst

The corr(fixed matname) specification is taken from the user-supplied matrix, such that

R = matname

Here the correlations are not estimated from the data. The user-supplied matrix must be a valid
correlation matrix with 1s on the diagonal.

Full formulas for all the correlation structures are provided in the Methods and formulas below.

Technical note
Some family(), link(), and corr() combinations result in models already fit by Stata:

family() link() corr() Other Stata estimation command

gaussian identity independent regress
gaussian identity exchangeable xtreg, re
gaussian identity exchangeable xtreg, pa
binomial cloglog independent cloglog (see note 1)
binomial cloglog exchangeable xtcloglog, pa
binomial logit independent logit or logistic
binomial logit exchangeable xtlogit, pa
binomial probit independent probit (see note 2)
binomial probit exchangeable xtprobit, pa
nbinomial nbinomial independent nbreg (see note 3)
poisson log independent poisson
poisson log exchangeable xtpoisson, pa
gamma log independent streg, dist(exp) nohr (see note 4)
family link independent glm, irls (see note 5)



xtgee — Fit population-averaged panel-data models by using GEE 129

Notes:

1. For cloglog estimation, xtgee with corr(independent) and cloglog (see [R] cloglog) will
produce the same coefficients, but the standard errors will be only asymptotically equivalent because
cloglog is not the canonical link for the binomial family.

2. For probit estimation, xtgee with corr(independent) and probit will produce the same
coefficients, but the standard errors will be only asymptotically equivalent because probit is not
the canonical link for the binomial family. If the binomial denominator is not 1, the equivalent
maximum-likelihood command is bprobit; see [R] probit and [R] glogit.

3. Fitting a negative binomial model by using xtgee (or using glm) will yield results conditional on
the specified value of α. The nbreg command, however, estimates that parameter and provides
unconditional estimates; see [R] nbreg.

4. xtgee with corr(independent) can be used to fit exponential regressions, but this requires
specifying scale(1). As with probit, the xtgee-reported standard errors will be only asymptotically
equivalent to those produced by streg, dist(exp) nohr (see [ST] streg) because log is not
the canonical link for the gamma family. xtgee cannot be used to fit exponential regressions on
censored data.

Using the independent correlation structure, the xtgee command will fit the same model fit
with the glm, irls command if the family–link combination is the same.

5. If the xtgee command is equivalent to another command, using corr(independent) and the
vce(robust) option with xtgee corresponds to using the vce(cluster clustvar) option in the
equivalent command, where clustvar corresponds to the panel variable.

xtgee is a generalization of the glm, irls command and gives the same output when the same
family and link are specified together with an independent correlation structure. What makes xtgee
useful is

• the number of statistical models that it generalizes for use with panel data, many of which are not
otherwise available in Stata;

• the richer correlation structure xtgee allows, even when models are available through other xt
commands; and

• the availability of robust standard errors (see [U] 20.20 Obtaining robust variance estimates),
even when the model and correlation structure are available through other xt commands.

In the following examples, we illustrate the relationships of xtgee with other Stata estimation
commands. Remember that, although xtgee generalizes many other commands, the computational
algorithm is different; therefore, the answers you obtain will not be identical. The dataset we are
using is a subset of the nlswork data (see [XT] xt); we are looking at observations before 1980.
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Example 1

We can use xtgee to perform ordinary least squares by regress:

. use http://www.stata-press.com/data/r12/nlswork2
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. regress ln_w grade age c.age#c.age

Source SS df MS Number of obs = 16085
F( 3, 16081) = 1413.68

Model 597.54468 3 199.18156 Prob > F = 0.0000
Residual 2265.74584 16081 .14089583 R-squared = 0.2087

Adj R-squared = 0.2085
Total 2863.29052 16084 .178021047 Root MSE = .37536

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade .0724483 .0014229 50.91 0.000 .0696592 .0752374
age .1064874 .0083644 12.73 0.000 .0900922 .1228825

c.age#c.age -.0016931 .0001655 -10.23 0.000 -.0020174 -.0013688

_cons -.8681487 .1024896 -8.47 0.000 -1.06904 -.6672577

. xtgee ln_w grade age c.age#c.age, corr(indep) nmp

Iteration 1: tolerance = 8.722e-13

GEE population-averaged model Number of obs = 16085
Group variable: idcode Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: independent max = 9

Wald chi2(3) = 4241.04
Scale parameter: .1408958 Prob > chi2 = 0.0000

Pearson chi2(16081): 2265.75 Deviance = 2265.75
Dispersion (Pearson): .1408958 Dispersion = .1408958

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0724483 .0014229 50.91 0.000 .0696594 .0752372
age .1064874 .0083644 12.73 0.000 .0900935 .1228812

c.age#c.age -.0016931 .0001655 -10.23 0.000 -.0020174 -.0013688

_cons -.8681487 .1024896 -8.47 0.000 -1.069025 -.6672728

When nmp is specified, the coefficients and the standard errors produced by the estimators are the
same. Moreover, the scale parameter estimate from the xtgee command equals the MSE calculation
from regress; both are estimates of the variance of the residuals.

Example 2

The identity link and Gaussian family produce regression-type models. With the independent
correlation structure, we reproduce ordinary least squares. With the exchangeable correlation structure,
we produce an equal-correlation linear regression estimator.
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xtgee, fam(gauss) link(ident) corr(exch) is asymptotically equivalent to the weighted-GLS
estimator provided by xtreg, re and to the full maximum-likelihood estimator provided by xtreg,
mle. In balanced data, xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle produce
the same results. With unbalanced data, the results are close but differ because the two estimators
handle unbalanced data differently. For both balanced and unbalanced data, the results produced by
xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle differ from those produced by
xtreg, re. Below we demonstrate the use of the three estimators with unbalanced data. We begin
with xtgee; show the maximum likelihood estimator xtreg, mle; show the GLS estimator xtreg,
re; and finally show xtgee with the vce(robust) option.

. xtgee ln_w grade age c.age#c.age, nolog

GEE population-averaged model Number of obs = 16085
Group variable: idcode Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: exchangeable max = 9

Wald chi2(3) = 2918.26
Scale parameter: .1416586 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0717731 .00211 34.02 0.000 .0676377 .0759086
age .1077645 .006885 15.65 0.000 .0942701 .1212589

c.age#c.age -.0016381 .0001362 -12.03 0.000 -.001905 -.0013712

_cons -.9480449 .0869277 -10.91 0.000 -1.11842 -.7776698
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. xtreg ln_w grade age c.age#c.age, mle

Fitting constant-only model:
Iteration 0: log likelihood = -6035.2751
Iteration 1: log likelihood = -5870.6718
Iteration 2: log likelihood = -5858.9478
Iteration 3: log likelihood = -5858.8244
Iteration 4: log likelihood = -5858.8244

Fitting full model:
Iteration 0: log likelihood = -4591.9241
Iteration 1: log likelihood = -4562.4406
Iteration 2: log likelihood = -4562.3526
Iteration 3: log likelihood = -4562.3525

Random-effects ML regression Number of obs = 16085
Group variable: idcode Number of groups = 3913

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 4.1
max = 9

LR chi2(3) = 2592.94
Log likelihood = -4562.3525 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0717747 .002142 33.51 0.000 .0675765 .075973
age .1077899 .0068266 15.79 0.000 .0944101 .1211697

c.age#c.age -.0016364 .000135 -12.12 0.000 -.0019011 -.0013718

_cons -.9500833 .086384 -11.00 0.000 -1.119393 -.7807737

/sigma_u .2689639 .0040854 .2610748 .2770915
/sigma_e .2669944 .0017113 .2636613 .2703696

rho .5036748 .0086449 .4867329 .52061

Likelihood-ratio test of sigma_u=0: chibar2(01)= 4996.22 Prob>=chibar2 = 0.000
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. xtreg ln_w grade age c.age#c.age, re

Random-effects GLS regression Number of obs = 16085
Group variable: idcode Number of groups = 3913

R-sq: within = 0.0983 Obs per group: min = 1
between = 0.2946 avg = 4.1
overall = 0.2076 max = 9

Wald chi2(3) = 2875.02
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0717757 .0021666 33.13 0.000 .0675294 .0760221
age .1078042 .0068125 15.82 0.000 .0944519 .1211566

c.age#c.age -.0016355 .0001347 -12.14 0.000 -.0018996 -.0013714

_cons -.9512118 .0863139 -11.02 0.000 -1.120384 -.7820397

sigma_u .27383747
sigma_e .26624266

rho .51405959 (fraction of variance due to u_i)

. xtgee ln_w grade age c.age#c.age, vce(robust) nolog

GEE population-averaged model Number of obs = 16085
Group variable: idcode Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: exchangeable max = 9

Wald chi2(3) = 2031.28
Scale parameter: .1416586 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on idcode)

Semirobust
ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0717731 .0023341 30.75 0.000 .0671983 .0763479
age .1077645 .0098097 10.99 0.000 .0885379 .1269911

c.age#c.age -.0016381 .0001964 -8.34 0.000 -.002023 -.0012532

_cons -.9480449 .1195009 -7.93 0.000 -1.182262 -.7138274

In [R] regress, regress, vce(cluster clustvar) may produce inefficient coefficient estimates
with valid standard errors for random-effects models. These standard errors are robust to model
misspecification. The vce(robust) option of xtgee, on the other hand, requires that the model
correctly specify the mean.
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Saved results
xtgee saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(tol) target tolerance
e(dif) achieved tolerance
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) xtgee
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) distribution family
e(link) link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(nmp) nmp, if specified
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
xtgee is implemented as an ado-file.

xtgee fits generalized linear models for panel data with the GEE approach described in Liang
and Zeger (1986). A related method, referred to as GEE2, is described in Zhao and Prentice (1990)
and Prentice and Zhao (1991). The GEE2 method attempts to gain efficiency in the estimation of
β by specifying a parametric model for α and then assumes that the models for both the mean
and dependency parameters are correct. Thus there is a tradeoff in robustness for efficiency. The
preliminary work of Liang, Zeger, and Qaqish (1992), however, indicates that there is little efficiency
gained with this alternative approach.

In the GLM approach (see McCullagh and Nelder [1989]), we assume that

h(µi,j) = xT
i,jβ

Var(yi,j) = g(µi,j)φ

µi = E(yi) = {h−1(xT
i,1β), . . . , h−1(xT

i,niβ)}T

Ai = diag{g(µi,1), . . . , g(µi,ni)}
Cov(yi) = φAi for independent observations.

In the absence of a convenient likelihood function with which to work, we can rely on a multivariate
analog of the quasiscore function introduced by Wedderburn (1974):

Sβ(β,α) =
m∑
i=1

(
∂µi
∂β

)T

Var(yi)−1(yi − µi) = 0

We can solve for correlation parameters α by simultaneously solving

Sα(β,α) =
m∑
i=1

(
∂ηi
∂α

)T

H−1
i (Wi − ηi) = 0

In the GEE approach to GLM, we let Ri(α) be a “working” correlation matrix depending on the
parameters in α (see the Correlation structures section for the number of parameters), and we estimate
β by solving the GEE,

U(β) =
m∑
i=1

(
∂µi
∂β

)T

V−1
i (α)(yi − µi) = 0

where Vi(α) = A1/2
i Ri(α)A1/2

i
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To solve this equation, we need only a crude approximation of the variance matrix, which we can
obtain from a Taylor series expansion, where

Cov(yi) = LiZiDiZT
i Li + φAi = Ṽi

Li = diag{∂h−1(u)/∂u, u = xT
i,jβ, j = 1, . . . , ni}

which allows that

D̂i ≈ (ZT
i Zi)−1ZiL̂−1

i

{
(yi − µ̂i)(yi − µ̂i)T − φ̂Âi

}
L̂−1
i ZT

i (Z′iZi)
−1

φ̂ =
m∑
i=1

ni∑
j=1

(yi,j − µ̂i,j)2 − (L̂i,j)2ZT
i,jD̂iZi,j

g(µ̂i,j)

Calculating GEE for GLM

Using the notation from Liang and Zeger (1986), let yi = (yi,1, . . . , yi,ni)
T be the ni × 1 vector

of outcome values, and let Xi = (xi,1, . . . , xi,ni)
T be the ni × p matrix of covariate values for the

ith subject i = 1, . . . ,m. We assume that the marginal density for yi,j may be written in exponential
family notation as

f(yi,j) = exp [{yi,jθi,j − a(θi,j) + b(yi,j)}φ]

where θi,j = h(ηi,j), ηi,j = xi,jβ. Under this formulation, the first two moments are given by

E(yi,j) = a′(θi,j), Var(yi,j) = a′′(θi,j)/φ

In what follows, we let ni = n without loss of generality. We define the quantities, assuming that
we have an n× n working correlation matrix R(α),

∆i = diag(dθi,j/dηi,j) n× n matrix

Ai = diag{a′′(θi,j)} n× n matrix

Si = yi − a′(θi) n× 1 matrix

Di = Ai∆iXi n× p matrix

Vi = A1/2
i R(α)A1/2

i n× n matrix

such that the GEE becomes
m∑
i=1

DT
i V−1

i Si = 0

We then have that

β̂j+1 = β̂j −

{
m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j)

}−1{ m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Si(β̂j)

}
where the term {

m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j)

}−1
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is what we call the conventional variance estimate. It is used to calculate the standard errors if
the vce(robust) option is not specified. This command supports the clustered version of the
Huber/White/sandwich estimator of the variance with panels treated as clusters when vce(robust)
is specified. See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.
Liang and Zeger (1986) also discuss the calculation of the robust variance estimator.

Define the following:

D = (DT
1 , . . . ,D

T
m)

S = (ST
1 , . . . ,S

T
m)T

Ṽ = nm× nm block diagonal matrix with Ṽi

Z = Dβ− S

At a given iteration, the correlation parameters α and scale parameter φ can be estimated from the
current Pearson residuals, defined by

r̂i,j = {yi,j − a′(θ̂i,j)}/{a′′(θ̂i,j)}1/2

where θ̂i,j depends on the current value for β̂. We can then estimate φ by

φ̂−1 =
m∑
i=1

ni∑
j=1

r̂ 2
i,j/(N − p)

As this general derivation is complicated, let’s follow the derivation of the Gaussian family with
the identity link (regression) to illustrate the generalization. After making appropriate substitutions,
we will see a familiar updating equation. First, we rewrite the updating equation for β as

β̂j+1 = β̂j − Z−1
1 Z2

and then derive Z1 and Z2.

Z1 =
m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j) =

m∑
i=1

XT
i ∆

T
i AT

i {A
1/2
i R(α)A1/2

i }
−1Ai∆iXi

=
m∑
i=1

XT
i diag

{
∂θi,j
∂(Xβ)

}
diag {a′′(θi,j)}

[
diag {a′′(θi,j)}

1/2 R(α) diag {a′′(θi,j)}
1/2
]−1

diag {a′′(θi,j)} diag
{

∂θi,j
∂(Xβ)

}
Xi

=
m∑
i=1

XT
i II(III)−1IIXi =

m∑
i=1

XT
i Xi = XTX
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Z2 =
m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Si(β̂j) =

m∑
i=1

XT
i ∆

T
i AT

i {A
1/2
i R(α)A1/2

i }
−1
(
yi −Xiβ̂j

)
=

m∑
i=1

XT
i diag

{
∂θi,j
∂(Xβ)

}
diag {a′′(θi,j)}

[
diag {a′′(θi,j)}

1/2 R(α) diag {a′′(θi,j)}
1/2
]−1

(
yi −Xiβ̂j

)
=

m∑
i=1

XT
i II(III)−1(yi −Xiβ̂j) =

m∑
i=1

XT
i (yi −Xiβ̂j) = XTŝj

So, we may write the update formula as

β̂j+1 = β̂j − (XTX)−1XTŝj

which is the same formula for GLS in regression.

Correlation structures
The working correlation matrix R is a function of α and is more accurately written as R(α).

Depending on the assumed correlation structure, α might be

Independent no parameters to estimate
Exchangeable α is a scalar
Autoregressive α is a vector
Stationary α is a vector
Nonstationary α is a matrix
Unstructured α is a matrix

Also, throughout the estimation of a general unbalanced panel, it is more proper to discuss Ri, which
is the upper left ni × ni submatrix of the ultimately saved matrix in e(R), max{ni} ×max{ni}.

The only panels that enter into the estimation for a lag-dependent correlation structure are those
with ni > g (assuming a lag of g). xtgee drops panels with too few observations (and mentions
when it does so).

Independent

The working correlation matrix R is an identity matrix.

Exchangeable

α =

∑m
i=1

(∑ni
j=1

∑ni
k=1 r̂i,j r̂i,k −

∑ni
j=1 r̂

2
i,j

)
∑m
i=1 {ni(ni − 1)}

/∑m
i=1

(∑ni
j=1 r̂

2
i,j

)
∑m
i=1 ni

and the working correlation matrix is given by

Rs,t =
{ 1 s = t
α otherwise
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Autoregressive and stationary

These two structures require g parameters to be estimated so that α is a vector of length g + 1
(the first element of α is 1).

α =
m∑
i=1

(∑ni
j=1 r̂

2
i,j

ni
,

∑ni−1
j=1 r̂i,j r̂i,j+1

ni
, . . . ,

∑ni−g
j=1 r̂i,j r̂i,j+g

ni

)/(
m∑
i=1

∑ni
j=1 r̂

2
i,j

ni

)

The working correlation matrix for the AR model is calculated as a function of Toeplitz matrices
formed from the α vector; see Newton (1988). The working correlation matrix for the stationary
model is given by

Rs,t =
{
α1,|s−t| if |s− t| ≤ g
0 otherwise

Nonstationary and unstructured

These two correlation structures require a matrix of parameters. α is estimated (where we replace
r̂i,j = 0 whenever i > ni or j > ni) as

α =
m∑
i=1

m


N−1

1,1 r̂
2
i,1 N−1

1,2 r̂i,1r̂i,2 · · · N−1
1,nr̂i,1r̂i,n

N−1
2,1 r̂i,2r̂i,1 N−1

2,2 r̂
2
i,2 · · · N−1

2,nr̂i,2r̂i,n
...

...
. . .

...
N−1
n,1r̂i,ni r̂i,1 N−1

n,2r̂i,ni r̂i,2 · · · N−1
n,nr̂

2
i,n


/(

m∑
i=1

∑ni
j=1 r̂

2
i,j

ni

)

where Np,q =
∑m
i=1 I(i, p, q) and

I(i, p, q) =
{ 1 if panel i has valid observations at times p and q

0 otherwise

where Ni,j = min(Ni, Nj), Ni = number of panels observed at time i, and n =
max(n1, n2, . . . , nm).

The working correlation matrix for the nonstationary model is given by

Rs,t =

{ 1 if s = t
αs,t if 0 < |s− t| ≤ g
0 otherwise

The working correlation matrix for the unstructured model is given by

Rs,t =
{

1 if s = t
αs,t otherwise

such that the unstructured model is equal to the nonstationary model at lag g = n − 1, where the
panels are balanced with ni = n for all i.
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Also see
[XT] xtgee postestimation — Postestimation tools for xtgee

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[XT] xtprobit — Random-effects and population-averaged probit models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[MI] estimation — Estimation commands for use with mi estimate

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands



Title

xtgee postestimation — Postestimation tools for xtgee

Description
The following postestimation command is of special interest after xtgee:

Command Description

estat wcorrelation estimated matrix of the within-group correlations

For information about estat wcorrelation, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat wcorrelation displays the estimated matrix of the within-group correlations.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

142
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statistic Description

Main

mu predicted value of depvar; considers the offset() or exposure(); the default
rate predicted value of depvar
pr(n) probability Pr(yj = n) for family(poisson) link(log)

pr(a,b) probability Pr(a ≤ yj ≤ b) for family(poisson) link(log)

xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

mu, the default, and rate calculate the predicted value of depvar. mu takes into account the offset()
or exposure() together with the denominator if the family is binomial; rate ignores those
adjustments. mu and rate are equivalent if you did not specify offset() or exposure() when
you fit the xtgee model and you did not specify family(binomial #) or family(binomial
varname), meaning the binomial family and a denominator not equal to one.

Thus mu and rate are the same for family(gaussian) link(identity).

mu and rate are not equivalent for family(binomial pop) link(logit). Then mu would
predict the number of positive outcomes and rate would predict the probability of a positive
outcome.

mu and rate are not equivalent for family(poisson) link(log) exposure(time). Then mu
would predict the number of events given exposure time and rate would calculate the incidence
rate—the number of events given an exposure time of 1.

pr(n) calculates the probability Pr(yj = n) for family(poisson) link(log), where n is a
nonnegative integer that may be specified as a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b) for family(poisson) link(log), where a and
b are nonnegative integers that may be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname), exposure(varname), fam-
ily(binomial #), or family(binomial varname) when you fit the model. It modifies the
calculations made by predict so that they ignore the offset or exposure variable and the binomial
denominator. Thus predict . . . , mu nooffset produces the same results as predict . . . , rate.

Syntax for estat wcorrelation
estat wcorrelation

[
, compact format(% fmt)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat wcorrelation
compact specifies that only the parameters (alpha) of the estimated matrix of within-group correlations

be displayed rather than the entire matrix.

format(% fmt) overrides the display format; see [D] format.

Remarks

Example 1

xtgee can estimate rich correlation structures. In example 2 of [XT] xtgee, we fit the model

. use http://www.stata-press.com/data/r12/nlswork2
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtgee ln_w grade age c.age#c.age
(output omitted )

After estimation, estat wcorrelation reports the working correlation matrix R:

. estat wcorrelation

Estimated within-idcode correlation matrix R:

c1 c2 c3 c4 c5 c6

r1 1
r2 .4851356 1
r3 .4851356 .4851356 1
r4 .4851356 .4851356 .4851356 1
r5 .4851356 .4851356 .4851356 .4851356 1
r6 .4851356 .4851356 .4851356 .4851356 .4851356 1
r7 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
r8 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
r9 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356

c7 c8 c9

r7 1
r8 .4851356 1
r9 .4851356 .4851356 1
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The equal-correlation model corresponds to an exchangeable correlation structure, meaning that
the correlation of observations within person is a constant. The working correlation estimated by
xtgee is 0.4851. (xtreg, re, by comparison, reports 0.5140.) We constrained the model to have
this simple correlation structure. What if we relaxed the constraint? To go to the other extreme,
let’s place no constraints on the matrix (other than its being symmetric). We do this by specifying
correlation(unstructured), although we can abbreviate the option.

. xtgee ln_w grade age c.age#c.age, corr(unstr) nolog

GEE population-averaged model Number of obs = 16085
Group and time vars: idcode year Number of groups = 3913
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: unstructured max = 9

Wald chi2(3) = 2405.20
Scale parameter: .1418513 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0720684 .002151 33.50 0.000 .0678525 .0762843
age .1008095 .0081471 12.37 0.000 .0848416 .1167775

c.age#c.age -.0015104 .0001617 -9.34 0.000 -.0018272 -.0011936

_cons -.8645484 .1009488 -8.56 0.000 -1.062404 -.6666923

. estat wcorrelation

Estimated within-idcode correlation matrix R:

c1 c2 c3 c4 c5 c6

r1 1
r2 .4354838 1
r3 .4280248 .5597329 1
r4 .3772342 .5012129 .5475113 1
r5 .4031433 .5301403 .502668 .6216227 1
r6 .3663686 .4519138 .4783186 .5685009 .7306005 1
r7 .2819915 .3605743 .3918118 .4012104 .4642561 .50219
r8 .3162028 .3445668 .4285424 .4389241 .4696792 .5222537
r9 .2148737 .3078491 .3337292 .3584013 .4865802 .4613128

c7 c8 c9

r7 1
r8 .6475654 1
r9 .5791417 .7386595 1

This correlation matrix looks different from the previously constrained one and shows, in particular,
that the serial correlation of the residuals diminishes as the lag increases, although residuals separated
by small lags are more correlated than, say, AR(1) would imply.

Example 2

In example 1 of [XT] xtprobit, we showed a random-effects model of unionization using the union
data described in [XT] xt. We performed the estimation using xtprobit but said that we could have
used xtgee as well. Here we fit a population-averaged (equal correlation) model for comparison:
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. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)

Iteration 1: tolerance = .12544249
Iteration 2: tolerance = .0034686
Iteration 3: tolerance = .00017448
Iteration 4: tolerance = 8.382e-06
Iteration 5: tolerance = 3.997e-07

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 242.57
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0089699 .0053208 1.69 0.092 -.0014586 .0193985
grade .0333174 .0062352 5.34 0.000 .0210966 .0455382

1.not_smsa -.0715717 .027543 -2.60 0.009 -.1255551 -.0175884
1.south -1.017368 .207931 -4.89 0.000 -1.424905 -.6098308

year -.0062708 .0055314 -1.13 0.257 -.0171122 .0045706

south#c.year
1 .0086294 .00258 3.34 0.001 .0035727 .013686

_cons -.8670997 .294771 -2.94 0.003 -1.44484 -.2893592

Let’s look at the correlation structure and then relax it:

. estat wcorrelation, format(%8.4f)

Estimated within-idcode correlation matrix R:

c1 c2 c3 c4 c5 c6 c7

r1 1.0000
r2 0.4615 1.0000
r3 0.4615 0.4615 1.0000
r4 0.4615 0.4615 0.4615 1.0000
r5 0.4615 0.4615 0.4615 0.4615 1.0000
r6 0.4615 0.4615 0.4615 0.4615 0.4615 1.0000
r7 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 1.0000
r8 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
r9 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615

r10 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
r11 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
r12 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615

c8 c9 c10 c11 c12

r8 1.0000
r9 0.4615 1.0000

r10 0.4615 0.4615 1.0000
r11 0.4615 0.4615 0.4615 1.0000
r12 0.4615 0.4615 0.4615 0.4615 1.0000

We estimate the fixed correlation between observations within person to be 0.4615. We have many
data (an average of 5.9 observations on 4,434 women), so estimating the full correlation matrix is
feasible. Let’s do that and then examine the results:
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. xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)
> corr(unstr) nolog

GEE population-averaged model Number of obs = 26200
Group and time vars: idcode year Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: unstructured max = 12

Wald chi2(6) = 198.45
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0096612 .0053366 1.81 0.070 -.0007984 .0201208
grade .0352762 .0065621 5.38 0.000 .0224148 .0481377

1.not_smsa -.093073 .0291971 -3.19 0.001 -.1502983 -.0358478
1.south -1.028526 .278802 -3.69 0.000 -1.574968 -.4820839

year -.0088187 .005719 -1.54 0.123 -.0200278 .0023904

south#c.year
1 .0089824 .0034865 2.58 0.010 .002149 .0158158

_cons -.7306192 .316757 -2.31 0.021 -1.351451 -.109787

. estat wcorrelation, format(%8.4f)

Estimated within-idcode correlation matrix R:

c1 c2 c3 c4 c5 c6 c7

r1 1.0000
r2 0.6667 1.0000
r3 0.6151 0.6523 1.0000
r4 0.5268 0.5717 0.6101 1.0000
r5 0.3309 0.3669 0.4005 0.4783 1.0000
r6 0.3000 0.3706 0.4237 0.4562 0.6426 1.0000
r7 0.2995 0.3568 0.3851 0.4279 0.4931 0.6384 1.0000
r8 0.2759 0.3021 0.3225 0.3751 0.4682 0.5597 0.7009
r9 0.2989 0.2981 0.3021 0.3806 0.4605 0.5068 0.6090

r10 0.2285 0.2597 0.2748 0.3637 0.3981 0.4909 0.5889
r11 0.2325 0.2289 0.2696 0.3246 0.3551 0.4426 0.5103
r12 0.2359 0.2351 0.2544 0.3134 0.3474 0.3822 0.4788

c8 c9 c10 c11 c12

r8 1.0000
r9 0.6714 1.0000

r10 0.5973 0.6325 1.0000
r11 0.5625 0.5756 0.5738 1.0000
r12 0.4999 0.5412 0.5329 0.6428 1.0000

As before, we find that the correlation of residuals decreases as the lag increases, but more slowly
than an AR(1) process.

Example 3

In this example, we examine injury incidents among 20 airlines in each of 4 years. The data are
fictional, and, as a matter of fact, are really from a random-effects model.
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. use http://www.stata-press.com/data/r12/airacc

. generate lnpm = ln(pmiles)

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 80
Group variable: airline Number of groups = 20
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: exchangeable max = 4

Wald chi2(1) = 5.27
Scale parameter: 1 Prob > chi2 = 0.0217

i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .9059936 .0389528 -2.30 0.022 .8327758 .9856487
_cons .0080065 .0002912 -132.71 0.000 .0074555 .0085981
lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

c1 c2 c3 c4

r1 1
r2 .4606406 1
r3 .4606406 .4606406 1
r4 .4606406 .4606406 .4606406 1

Now there are not really enough data here to reliably estimate the correlation without any constraints
of structure, but here is what happens if we try:

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) corr(unstr) nolog

GEE population-averaged model Number of obs = 80
Group and time vars: airline time Number of groups = 20
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: unstructured max = 4

Wald chi2(1) = 0.36
Scale parameter: 1 Prob > chi2 = 0.5496

i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .9791082 .0345486 -0.60 0.550 .9136826 1.049219
_cons .0078716 .0002787 -136.82 0.000 .0073439 .0084373
lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

c1 c2 c3 c4

r1 1
r2 .5700298 1
r3 .716356 .4192126 1
r4 .2383264 .3839863 .3521287 1

There is no sensible pattern to the correlations.

We created this dataset from a random-effects Poisson model. We reran our data-creation program
and this time had it create 400 airlines rather than 20, still with 4 years of data each. Here are the
equal-correlation model and estimated correlation structure
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. use http://www.stata-press.com/data/r12/airacc2, clear

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1600
Group variable: airline Number of groups = 400
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: exchangeable max = 4

Wald chi2(1) = 111.80
Scale parameter: 1 Prob > chi2 = 0.0000

i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .8915304 .0096807 -10.57 0.000 .8727571 .9107076
_cons .0071357 .0000629 -560.57 0.000 .0070134 .0072601
lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

c1 c2 c3 c4

r1 1
r2 .5291707 1
r3 .5291707 .5291707 1
r4 .5291707 .5291707 .5291707 1

The following estimation results assume unstructured correlation:

. xtgee i_cnt inprog, family(poisson) corr(unstr) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1600
Group and time vars: airline time Number of groups = 400
Link: log Obs per group: min = 4
Family: Poisson avg = 4.0
Correlation: unstructured max = 4

Wald chi2(1) = 113.43
Scale parameter: 1 Prob > chi2 = 0.0000

i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .8914155 .0096208 -10.65 0.000 .8727572 .9104728
_cons .0071402 .0000628 -561.50 0.000 .0070181 .0072645
lnpm 1 (offset)

. estat wcorrelation

Estimated within-airline correlation matrix R:

c1 c2 c3 c4

r1 1
r2 .4733189 1
r3 .5240576 .5748868 1
r4 .5139748 .5048895 .5840707 1

The equal-correlation model estimated a fixed correlation of 0.5292, and above we have correlations
ranging between 0.4733 and 0.5841 with little pattern in their structure.
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xtgee — Fit population-averaged panel-data models by using GEE

[U] 20 Estimation and postestimation commands



Title

xtgls — Fit panel-data models by using GLS

Syntax
xtgls depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
panels(iid) use i.i.d. error structure
panels(heteroskedastic) use heteroskedastic but uncorrelated error structure
panels(correlated) use heteroskedastic and correlated error structure
corr(independent) use independent autocorrelation structure
corr(ar1) use AR1 autocorrelation structure
corr(psar1) use panel-specific AR1 autocorrelation structure
rhotype(calc) specify method to compute autocorrelation parameter;

see Options for details; seldom used
igls use iterated GLS estimator instead of two-step GLS estimator
force estimate even if observations unequally spaced in time

SE

nmk normalize standard error by N − k instead of N

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

A panel variable must be specified. For correlation structures other than independent, a time variable must be
specified. A time variable must also be specified if panels(correlated) is specified. Use xtset; see
[XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Contemporaneous correlation > GLS regression with correlated disturbances
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Description
xtgls fits panel-data linear models by using feasible generalized least squares. This command

allows estimation in the presence of AR(1) autocorrelation within panels and cross-sectional correlation
and heteroskedasticity across panels.

Options� � �
Model �

noconstant; see [R] estimation options.

panels(pdist) specifies the error structure across panels.

panels(iid) specifies a homoskedastic error structure with no cross-sectional correlation. This
is the default.

panels(heteroskedastic) specifies a heteroskedastic error structure with no cross-sectional
correlation.

panels(correlated) specifies a heteroskedastic error structure with cross-sectional correlation.
If p(c) is specified, you must also specify a time variable (use xtset). The results will be based
on a generalized inverse of a singular matrix unless T ≥ m (the number of periods is greater than
or equal to the number of panels).

corr(corr) specifies the assumed autocorrelation within panels.

corr(independent) specifies that there is no autocorrelation. This is the default.

corr(ar1) specifies that, within panels, there is AR(1) autocorrelation and that the coefficient of
the AR(1) process is common to all the panels. If c(ar1) is specified, you must also specify a
time variable (use xtset).

corr(psar1) specifies that, within panels, there is AR(1) autocorrelation and that the coefficient
of the AR(1) process is specific to each panel. psar1 stands for panel-specific AR(1). If c(psar1)
is specified, a time variable must also be specified; use xtset.

rhotype(calc) specifies the method to be used to calculate the autocorrelation parameter:
regress regression using lags; the default
dw Durbin–Watson calculation
freg regression using leads
nagar Nagar calculation
theil Theil calculation
tscorr time-series autocorrelation calculation

All the calculations are asymptotically equivalent and consistent; this is a rarely used option.

igls requests an iterated GLS estimator instead of the two-step GLS estimator for a nonautocorrelated
model or instead of the three-step GLS estimator for an autocorrelated model. The iterated GLS
estimator converges to the MLE for the corr(independent) models but does not for the other
corr() models.

force; see [R] estimation options.

� � �
SE �

nmk specifies that standard errors be normalized by N − k, where k is the number of parameters
estimated, rather than N , the number of observations. Different authors have used one or the other
normalization. Greene (2012, 280) remarks that whether a degree-of-freedom correction improves
the small-sample properties is an open question.
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� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-7) is the default.

nolog suppresses display of the iteration log.

The following option is available with xtgls but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Heteroskedasticity across panels
Correlation across panels (cross-sectional correlation)
Autocorrelation within panels

Introduction

Information on GLS can be found in Greene (2012), Maddala and Lahiri (2006), Davidson and
MacKinnon (1993), and Judge et al. (1985).

If you have many panels relative to periods, see [XT] xtreg and [XT] xtgee. xtgee, in particular,
provides capabilities similar to those of xtgls but does not allow cross-sectional correlation. On the
other hand, xtgee allows a richer description of the correlation within panels as long as the same
correlations apply to all panels. xtgls provides two unique features:

1. Cross-sectional correlation may be modeled (panels(correlated)).

2. Within panels, the AR(1) correlation coefficient may be unique (corr(psar1)).

xtgls allows models with heteroskedasticity and no cross-sectional correlation, but, strictly
speaking, xtgee does not. xtgee with the vce(robust) option relaxes the assumption of equal
variances, at least as far as the standard error calculation is concerned.

Also, xtgls, panels(iid) corr(independent) nmk is equivalent to regress.

The nmk option uses n− k rather than n to normalize the variance calculation.

To fit a model with autocorrelated errors (corr(ar1) or corr(psar1)), the data must be equally
spaced in time. To fit a model with cross-sectional correlation (panels(correlated)), panels must
have the same number of observations (be balanced).
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The equation from which the models are developed is given by

yit = xitβ+ εit

where i = 1, . . . ,m is the number of units (or panels) and t = 1, . . . , Ti is the number of observations
for panel i. This model can equally be written as

y1

y2
...

ym

 =


X1

X2
...

Xm

β+


ε1
ε2
...
εm


The variance matrix of the disturbance terms can be written as

E[εε′] = Ω =


σ1,1Ω1,1 σ1,2Ω1,2 · · · σ1,mΩ1,m

σ2,1Ω2,1 σ2,2Ω2,2 · · · σ2,mΩ2,m

...
...

. . .
...

σm,1Ωm,1 σm,2Ωm,2 · · · σm,mΩm,m


For the Ωi,j matrices to be parameterized to model cross-sectional correlation, they must be square
(balanced panels).

In these models, we assume that the coefficient vector β is the same for all panels and consider a
variety of models by changing the assumptions on the structure of Ω.

For the classic OLS regression model, we have

E[εi,t] = 0

Var[εi,t] = σ2

Cov[εi,t, εj,s] = 0 if t 6= s or i 6= j

This amounts to assuming that Ω has the structure given by

Ω =


σ2I 0 · · · 0
0 σ2I · · · 0
...

...
. . .

...
0 0 · · · σ2I


whether or not the panels are balanced (the 0 matrices may be rectangular). The classic OLS assumptions
are the default panels(iid) and corr(independent) options for this command.

Heteroskedasticity across panels

In many cross-sectional datasets, the variance for each of the panels differs. It is common to have
data on countries, states, or other units that have variation of scale. The heteroskedastic model is
specified by including the panels(heteroskedastic) option, which assumes that
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Ω =


σ2

1I 0 · · · 0
0 σ2

2I · · · 0
...

...
. . .

...
0 0 · · · σ2

mI



Example 1

Greene (2012, 1112) reprints data in a classic study of investment demand by Grunfeld and
Griliches (1960). Below we allow the variances to differ for each of the five companies.

. use http://www.stata-press.com/data/r12/invest2

. xtgls invest market stock, panels(hetero)

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic
Correlation: no autocorrelation

Estimated covariances = 5 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 865.38
Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .0949905 .007409 12.82 0.000 .0804692 .1095118
stock .3378129 .0302254 11.18 0.000 .2785722 .3970535
_cons -36.2537 6.124363 -5.92 0.000 -48.25723 -24.25017

Correlation across panels (cross-sectional correlation)

We may wish to assume that the error terms of panels are correlated, in addition to having different
scale variances. The variance structure is specified by including the panels(correlated) option
and is given by

Ω =


σ2

1I σ1,2I · · · σ1,mI
σ2,1I σ2

2I · · · σ2,mI
...

...
. . .

...
σm,1I σm,2I · · · σ2

mI


Because we must estimate cross-sectional correlation in this model, the panels must be balanced
(and T ≥ m for valid results). A time variable must also be specified so that xtgls knows how the
observations within panels are ordered. xtset shows us that this is true.

Example 2

. xtset
panel variable: company (strongly balanced)
time variable: time, 1 to 20

delta: 1 unit
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. xtgls invest market stock, panels(correlated)

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 1285.19
Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .0961894 .0054752 17.57 0.000 .0854583 .1069206
stock .3095321 .0179851 17.21 0.000 .2742819 .3447822
_cons -38.36128 5.344871 -7.18 0.000 -48.83703 -27.88552

The estimated cross-sectional covariances are stored in e(Sigma).
. matrix list e(Sigma)

symmetric e(Sigma)[5,5]
_ee _ee2 _ee3 _ee4 _ee5

_ee 9410.9061
_ee2 -168.04631 755.85077
_ee3 -1915.9538 -4163.3434 34288.49
_ee4 -1129.2896 -80.381742 2259.3242 633.42367
_ee5 258.50132 4035.872 -27898.235 -1170.6801 33455.511

Example 3

We can obtain the MLE results by specifying the igls option, which iterates the GLS estimation
technique to convergence:

. xtgls invest market stock, panels(correlated) igls

Iteration 1: tolerance = .2127384
Iteration 2: tolerance = .22817

(output omitted )
Iteration 1046: tolerance = 1.000e-07

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 558.51
Log likelihood = -515.4222 Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .023631 .004291 5.51 0.000 .0152207 .0320413
stock .1709472 .0152526 11.21 0.000 .1410526 .2008417
_cons -2.216508 1.958845 -1.13 0.258 -6.055774 1.622759

Here the log likelihood is reported in the header of the output.
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Autocorrelation within panels

The individual identity matrices along the diagonal of Ω may be replaced with more general
structures to allow for serial correlation. xtgls allows three options so that you may assume a
structure with corr(independent) (no autocorrelation); corr(ar1) (serial correlation where the
correlation parameter is common for all panels); or corr(psar1) (serial correlation where the
correlation parameter is unique for each panel).

The restriction of a common autocorrelation parameter is reasonable when the individual correlations
are nearly equal and the time series are short.

If the restriction of a common autocorrelation parameter is reasonable, this allows us to use more
information in estimating the autocorrelation parameter to produce a more reasonable estimate of the
regression coefficients.

When you specify corr(ar1) or corr(psar1), the iterated GLS estimator does not converge to
the MLE.

Example 4

If corr(ar1) is specified, each group is assumed to have errors that follow the same AR(1)
process; that is, the autocorrelation parameter is the same for all groups.

. xtgls invest market stock, panels(hetero) corr(ar1)

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic
Correlation: common AR(1) coefficient for all panels (0.8651)

Estimated covariances = 5 Number of obs = 100
Estimated autocorrelations = 1 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 119.69
Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .0744315 .0097937 7.60 0.000 .0552362 .0936268
stock .2874294 .0475391 6.05 0.000 .1942545 .3806043
_cons -18.96238 17.64943 -1.07 0.283 -53.55464 15.62987
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Example 5

If corr(psar1) is specified, each group is assumed to have errors that follow a different AR(1)
process.

. xtgls invest market stock, panels(iid) corr(psar1)

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: homoskedastic
Correlation: panel-specific AR(1)

Estimated covariances = 1 Number of obs = 100
Estimated autocorrelations = 5 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 252.93
Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .0934343 .0097783 9.56 0.000 .0742693 .1125993
stock .3838814 .0416775 9.21 0.000 .302195 .4655677
_cons -10.1246 34.06675 -0.30 0.766 -76.8942 56.64499

Saved results
xtgls saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N t) number of periods
e(N miss) number of missing observations
e(n cf) number of estimated coefficients
e(n cv) number of estimated covariances
e(n cr) number of estimated correlations
e(df pear) degrees of freedom for Pearson χ2

e(ll) log likelihood
e(chi2) χ2

e(df) degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(rc) return code
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Macros
e(cmd) xtgls
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(coefftype) estimation scheme
e(corr) correlation structure
e(vt) panel option
e(rhotype) type of estimated correlation
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(rho) ρ

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xtgls is implemented as an ado-file.

The GLS results are given by

β̂GLS = (X′Ω̂
−1

X)−1X′Ω̂
−1

y

V̂ar(β̂GLS) = (X′Ω̂
−1

X)−1

For all our models, the Ω matrix may be written in terms of the Kronecker product:

Ω = Σm×m ⊗ ITi×Ti

The estimated variance matrix is obtained by substituting the estimator Σ̂ for Σ, where

Σ̂i,j =
ε̂i
′ ε̂j

T

The residuals used in estimating Σ are first obtained from OLS regression. If the estimation is iterated,
residuals are obtained from the last fitted model.

Maximum likelihood estimates may be obtained by iterating the FGLS estimates to convergence
for models with no autocorrelation, corr(independent).

The GLS estimates and their associated standard errors are calculated using Σ̂
−1

. As Beck and
Katz (1995) point out, the Σ matrix is of rank at most min(T,m) when you use the pan-
els(correlated) option. For the GLS results to be valid (not based on a generalized inverse), T
must be at least as large as m, as you need at least as many period observations as there are panels.
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Beck and Katz (1995) suggest using OLS parameter estimates with asymptotic standard errors that
are corrected for correlation between the panels. This estimation can be performed with the xtpcse
command; see [XT] xtpcse.
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Also see
[XT] xtgls postestimation — Postestimation tools for xtgls

[XT] xtset — Declare data to be panel data

[XT] xtpcse — Linear regression with panel-corrected standard errors

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[R] regress — Linear regression

[TS] newey — Regression with Newey–West standard errors

[TS] prais — Prais–Winsten and Cochrane–Orcutt regression
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Title

xtgls postestimation — Postestimation tools for xtgls

Description
The following postestimation commands are available after xtgls:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat1 AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest2 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 AIC and BIC are available only if igls and corr(independent) were specified at estimation.
2 Likelihood-ratio tests are available only if igls and corr(independent) were specified at estimation.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, xb stdp
]

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

161
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Also see
[XT] xtgls — Fit panel-data models by using GLS

[U] 20 Estimation and postestimation commands



Title

xthtaylor — Hausman–Taylor estimator for error-components models

Syntax
xthtaylor depvar indepvars

[
if
] [

in
] [

weight
]
, endog(varlist)

[
options

]
options Description

Main

noconstant suppress constant term
∗endog(varlist) explanatory variables in indepvars to be treated as endogenous
constant(varlistti) independent variables that are constant within panel
varying(varlisttv) independent variables that are time varying within panel
amacurdy fit model based on Amemiya and MaCurdy estimator

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

small report small-sample statistics

∗endog(varlist) is required.
A panel variable must be specified. For xthtaylor, amacurdy, a time variable must also be specified. Use xtset;

see [XT] xtset.
depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
iweights and fweights are allowed unless the amacurdy option is specified. Weights must be constant within

panel; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Endogenous covariates > Hausman-Taylor regression (RE)

Description
xthtaylor fits panel-data random-effects models in which some of the covariates are correlated

with the unobserved individual-level random effect. The estimators, originally proposed by Hausman
and Taylor (1981) and by Amemiya and MaCurdy (1986), are based on instrumental variables. By
default, xthtaylor uses the Hausman–Taylor estimator. When the amacurdy option is specified,
xthtaylor uses the Amemiya–MaCurdy estimator.

Although the estimators implemented in xthtaylor and xtivreg (see [XT] xtivreg) use the
method of instrumental variables, each command is designed for different problems. The estimators
implemented in xtivreg assume that a subset of the explanatory variables in the model are correlated
with the idiosyncratic error εit. In contrast, the Hausman–Taylor and Amemiya–MaCurdy estimators
that are implemented in xthtaylor assume that some of the explanatory variables are correlated
with the individual-level random effects, ui, but that none of the explanatory variables are correlated
with the idiosyncratic error, εit.

163
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Options

� � �
Main �

noconstant; see [R] estimation options.

endog(varlist) specifies that a subset of explanatory variables in indepvars be treated as endogenous
variables, that is, the explanatory variables that are assumed to be correlated with the unobserved
random effect. endog() is required.

constant(varlistti) specifies the subset of variables in indepvars that are time invariant, that is,
constant within panel. By using this option, you assert not only that the variables specified in
varlistti are time invariant but also that all other variables in indepvars are time varying. If this
assertion is false, xthtaylor does not perform the estimation and will issue an error message.
xthtaylor automatically detects which variables are time invariant and which are not. However,
users may want to check their understanding of the data and specify which variables are time
invariant and which are not.

varying(varlisttv) specifies the subset of variables in indepvars that are time varying. By using
this option, you assert not only that the variables specified in varlisttv are time varying but also
that all other variables in indepvars are time invariant. If this assertion is false, xthtaylor does
not perform the estimation and issues an error message. xthtaylor automatically detects which
variables are time varying and which are not. However, users may want to check their understanding
of the data and specify which variables are time varying and which are not.

amacurdy specifies that the Amemiya–MaCurdy estimator be used. This estimator uses extra instru-
ments to gain efficiency at the cost of additional assumptions on the data-generating process. This
option may be specified only for samples containing balanced panels, and weights may not be
specified. The panels must also have a common initial period.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for this
Hausman–Taylor model.

� � �
Reporting �

level(#); see [R] estimation options.

small specifies that the p-values from the Wald tests in the output and all subsequent Wald tests
obtained via test use t and F distributions instead of the large-sample normal and χ2 distributions.
By default, the p-values are obtained using the normal and χ2 distributions.

Remarks
If you have not read [XT] xt, please do so.

Consider a random-effects model of the form

yit = X1itβ1 + X2itβ2 + Z1iδ1 + Z2iδ2 + µi + εit

where

X1it is a 1 × k1 vector of observations on exogenous, time-varying variables assumed to be
uncorrelated with µi and εit;
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X2it is a 1 × k2 vector of observations on endogenous, time-varying variables assumed to be
(possibly) correlated with µi but orthogonal to εit;

Z1i is a 1 × g1 vector of observations on exogenous, time-invariant variables assumed to be
uncorrelated with µi and εit;

Z2i is a 1 × g2 vector of observations on endogenous, time-invariant variables assumed to be
(possibly) correlated µi but orthogonal to εit;

µi is the unobserved, panel-level random effect that is assumed to have zero mean and finite
variance σ2

µ and to be independently and identically distributed (i.i.d.) over the panels;

εit is the idiosyncratic error that is assumed to have zero mean and finite variance σ2
ε and to be

i.i.d. over all the observations in the data;

β1,β2, δ1, and δ2 are k1 × 1, k2 × 1, g1 × 1, and g2 × 1 coefficient vectors, respectively; and

i = 1, . . . , n, where n is the number of panels in the sample and, for each i, t = 1, . . . , Ti.

Because X2it and Z2i may be correlated with µi, the simple random-effects estimators—xtreg,
re and xtreg, mle—are generally not consistent for the parameters in this model. Because the within
estimator, xtreg, fe, removes the µi by mean-differencing the data before estimating β1 and β2, it
is consistent for these parameters. However, in the process of removing the µi, the within estimator
also eliminates the Z1i and the Z2i. Thus it cannot estimate δ1 nor δ2. The Hausman–Taylor and
Amemiya–MaCurdy estimators implemented in xthtaylor are designed to resolve this problem.

The within estimator consistently estimates β1 and β2. Using these estimates, we can obtain the
within residuals, called d̂i. Intermediate, albeit consistent, estimates of δ1 and δ2—called δ̂1IV and
δ̂2IV, respectively—are obtained by regressing the within residuals on Z1i and Z2i, using X1it and
Z1i as instruments. The order condition for identification requires that the number of variables in
X1it, k1, be at least as large as the number of elements in Z2i, g2 and that there be sufficient
correlation between the instruments and Z2i to avoid a weak-instrument problem.

The within estimates of β1 and β2 and the intermediate estimates δ̂1IV and δ̂2IV can be used to
obtain sets of within and overall residuals. These two sets of residuals can be used to estimate the
variance components (see Methods and formulas for details).

The estimated variance components can then be used to perform a GLS transform on each of the
variables. For what follows, define the general notation w̆it to represent the GLS transform of the
variable wit, wi to represent the within-panel mean of wit, and w̃it to represent the within transform
of wit. With this notational convention, the Hausman–Taylor (1981) estimator of the coefficients of
interest can be obtained by the instrumental-variables regression

y̆it = X̆1itβ1 + X̆2itβ2 + Z̆1iδ1 + Z̆2iδ2 + µ̆i + ε̆it (1)

using X̃1it, X̃2it, X1i, X2i, and Z1i as instruments.

For the instruments to be valid, this estimator requires that X1i. and Z1i be uncorrelated with the
random-effect µi. More precisely, the instruments are valid when

plimn→∞
1
n

n∑
i=1

X1i.µi = 0

and

plimn→∞
1
n

n∑
i=1

Z1iµi = 0
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Amemiya and MaCurdy (1986) place stricter requirements on the instruments that vary within panels
to obtain a more efficient estimator. Specifically, Amemiya and MaCurdy (1986) assume that X1it is
orthogonal to µi in every period; that is, plimn→∞

1
n

∑n
i=1 X1itµi = 0 for t = 1, . . . , T . With this

restriction, they derive the Amemiya–MaCurdy estimator as the instrumental-variables regression of
(1) using instruments X̃1it, X̃2it, X∗1it, and Z1i. The order condition for the Amemiya–MaCurdy
estimator is now Tk1 > g2. xthtaylor uses the Amemiya–MaCurdy estimator when the amacurdy
option is specified.

Example 1

This example replicates the results of Baltagi and Khanti-Akom (1990, table II, column HT) using
595 observations on individuals over 1976–1982 that were extracted from the Panel Study of Income
Dynamics (PSID). In the model, the log-transformed wage lwage is assumed to be a function of how
long the person has worked for a firm, wks; binary variables indicating whether a person lives in a
large metropolitan area or in the south, smsa and south; marital status is ms; years of education,
ed; a quadratic of work experience, exp and exp2; occupation, occ; a binary variable indicating
employment in a manufacture industry, ind; a binary variable indicating that wages are set by a union
contract, union; a binary variable indicating gender, fem; and a binary variable indicating whether
the individual is African American, blk.

We suspect that the time-varying variables exp, exp2, wks, ms, and union are all correlated
with the unobserved individual random effect. We can inspect these variables to see if they exhibit
sufficient within-panel variation to serve as their own instruments.

. use http://www.stata-press.com/data/r12/psidextract

. xtsum exp exp2 wks ms union

Variable Mean Std. Dev. Min Max Observations

exp overall 19.85378 10.96637 1 51 N = 4165
between 10.79018 4 48 n = 595
within 2.00024 16.85378 22.85378 T = 7

exp2 overall 514.405 496.9962 1 2601 N = 4165
between 489.0495 20 2308 n = 595
within 90.44581 231.405 807.405 T = 7

wks overall 46.81152 5.129098 5 52 N = 4165
between 3.284016 31.57143 51.57143 n = 595
within 3.941881 12.2401 63.66867 T = 7

ms overall .8144058 .3888256 0 1 N = 4165
between .3686109 0 1 n = 595
within .1245274 -.0427371 1.671549 T = 7

union overall .3639856 .4812023 0 1 N = 4165
between .4543848 0 1 n = 595
within .1593351 -.4931573 1.221128 T = 7

We are also going to assume that the exogenous variables occ, south, smsa, ind, fem, and blk are
instruments for the endogenous, time-invariant variable ed. The output below indicates that although
fem appears to be a weak instrument, the remaining instruments are probably sufficiently correlated
to identify the coefficient on ed. (See Baltagi and Khanti-Akom [1990] for more discussion.)
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. correlate fem blk occ south smsa ind ed
(obs=4165)

fem blk occ south smsa ind ed

fem 1.0000
blk 0.2086 1.0000
occ -0.0847 0.0837 1.0000

south 0.0516 0.1218 0.0413 1.0000
smsa 0.1044 0.1154 -0.2018 -0.1350 1.0000
ind -0.1778 -0.0475 0.2260 -0.0769 -0.0689 1.0000
ed -0.0012 -0.1196 -0.6194 -0.1216 0.1843 -0.2365 1.0000

We will assume that the correlations are strong enough and proceed with the estimation. The
output below gives the Hausman–Taylor estimates for this model.

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed)

Hausman-Taylor estimation Number of obs = 4165
Group variable: id Number of groups = 595

Obs per group: min = 7
avg = 7
max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6891.87
Prob > chi2 = 0.0000

lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

TVexogenous
occ -.0207047 .0137809 -1.50 0.133 -.0477149 .0063055

south .0074398 .031955 0.23 0.816 -.0551908 .0700705
smsa -.0418334 .0189581 -2.21 0.027 -.0789906 -.0046761
ind .0136039 .0152374 0.89 0.372 -.0162608 .0434686

TVendogenous
exp .1131328 .002471 45.79 0.000 .1082898 .1179758

exp2 -.0004189 .0000546 -7.67 0.000 -.0005259 -.0003119
wks .0008374 .0005997 1.40 0.163 -.0003381 .0020129
ms -.0298508 .01898 -1.57 0.116 -.0670508 .0073493

union .0327714 .0149084 2.20 0.028 .0035514 .0619914
TIexogenous

fem -.1309236 .126659 -1.03 0.301 -.3791707 .1173234
blk -.2857479 .1557019 -1.84 0.066 -.5909179 .0194221

TIendogenous
ed .137944 .0212485 6.49 0.000 .0962977 .1795902

_cons 2.912726 .2836522 10.27 0.000 2.356778 3.468674

sigma_u .94180304
sigma_e .15180273

rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

The estimated σµ and σε are 0.9418 and 0.1518, respectively, indicating that a large fraction of the
total error variance is attributed to µi. The z statistics indicate that several the coefficients may not
be significantly different from zero. Whereas the coefficients on the time-invariant variables fem and
blk have relatively large standard errors, the standard error for the coefficient on ed is relatively
small.

Baltagi and Khanti-Akom (1990) also present evidence that the efficiency gains of the Amemiya–
MaCurdy estimator over the Hausman–Taylor estimator are small for these data. This point is especially
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important given the additional restrictions that the estimator places on the data-generating process.
The output below replicates the Baltagi and Khanti-Akom (1990) results from column AM of table II.

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed) amacurdy

Amemiya-MaCurdy estimation Number of obs = 4165
Group variable: id Number of groups = 595

Time variable: t Obs per group: min = 7
avg = 7
max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6879.20
Prob > chi2 = 0.0000

lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

TVexogenous
occ -.0208498 .0137653 -1.51 0.130 -.0478292 .0061297

south .0072818 .0319365 0.23 0.820 -.0553126 .0698761
smsa -.0419507 .0189471 -2.21 0.027 -.0790864 -.0048149
ind .0136289 .015229 0.89 0.371 -.0162194 .0434771

TVendogenous
exp .1129704 .0024688 45.76 0.000 .1081316 .1178093

exp2 -.0004214 .0000546 -7.72 0.000 -.0005283 -.0003145
wks .0008381 .0005995 1.40 0.162 -.0003368 .002013
ms -.0300894 .0189674 -1.59 0.113 -.0672649 .0070861

union .0324752 .0148939 2.18 0.029 .0032837 .0616667
TIexogenous

fem -.132008 .1266039 -1.04 0.297 -.380147 .1161311
blk -.2859004 .1554857 -1.84 0.066 -.5906468 .0188459

TIendogenous
ed .1372049 .0205695 6.67 0.000 .0968894 .1775205

_cons 2.927338 .2751274 10.64 0.000 2.388098 3.466578

sigma_u .94180304
sigma_e .15180273

rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Technical note
We mentioned earlier that insufficient correlation between an endogenous variable and the instru-

ments can give rise to a weak-instrument problem. Suppose that we simulate data for a model of the
form

y = 3 + 3x1a + 3x1b + 3x2 + 3z1 + 3z2 + ui + eit

and purposely construct the instruments so that they exhibit little correlation with the endogenous
variable z2.
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. use http://www.stata-press.com/data/r12/xthtaylor1

. correlate ui z1 z2 x1a x1b x2 eit
(obs=10000)

ui z1 z2 x1a x1b x2 eit

ui 1.0000
z1 0.0268 1.0000
z2 0.8777 0.0286 1.0000

x1a -0.0145 0.0065 -0.0034 1.0000
x1b 0.0026 0.0079 0.0038 -0.0030 1.0000
x2 0.8765 0.0191 0.7671 -0.0192 0.0037 1.0000

eit 0.0060 -0.0198 0.0123 -0.0100 -0.0138 0.0092 1.0000

In the output below, weak instruments have serious consequences on the estimates produced by
xthtaylor. The estimate of the coefficient on z2 is three times larger than its true value, and its
standard error is rather large. Without sufficient correlation between the endogenous variable and
its instruments in a given sample, there is insufficient information for identifying the parameter.
Also, given the results of Stock, Wright, and Yogo (2002), weak instruments will cause serious size
distortions in any tests performed.

. xthtaylor yit x1a x1b x2 z1 z2, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 10000
Group variable: id Number of groups = 1000

Obs per group: min = 10
avg = 10
max = 10

Random effects u_i ~ i.i.d. Wald chi2(5) = 24172.91
Prob > chi2 = 0.0000

yit Coef. Std. Err. z P>|z| [95% Conf. Interval]

TVexogenous
x1a 2.959736 .0330233 89.63 0.000 2.895011 3.02446
x1b 2.953891 .0333051 88.69 0.000 2.888614 3.019168

TVendogenous
x2 3.022685 .033085 91.36 0.000 2.957839 3.08753

TIexogenous
z1 2.709179 .587031 4.62 0.000 1.55862 3.859739

TIendogenous
z2 9.525973 8.572966 1.11 0.266 -7.276732 26.32868

_cons 2.837072 .4276595 6.63 0.000 1.998875 3.675269

sigma_u 8.729479
sigma_e 3.1657492

rho .88377062 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Example 2

Now let’s consider why we might want to specify the constant(varlistti) option. For this example,
we will use simulated data. In the output below, we fit a model over the full sample. Note the placement
in the output of the coefficient on the exogenous variable x1c.
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. use http://www.stata-press.com/data/r12/xthtaylor2

. xthtaylor yit x1a x1b x1c x2 z1 z2, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 10000
Group variable: id Number of groups = 1000

Obs per group: min = 10
avg = 10
max = 10

Random effects u_i ~ i.i.d. Wald chi2(6) = 10341.63
Prob > chi2 = 0.0000

yit Coef. Std. Err. z P>|z| [95% Conf. Interval]

TVexogenous
x1a 3.023647 .0570274 53.02 0.000 2.911875 3.135418
x1b 2.966666 .0572659 51.81 0.000 2.854427 3.078905
x1c .2355318 .123502 1.91 0.057 -.0065276 .4775912

TVendogenous
x2 14.17476 3.128385 4.53 0.000 8.043234 20.30628

TIexogenous
z1 1.741709 .4280022 4.07 0.000 .9028398 2.580578

TIendogenous
z2 7.983849 .6970903 11.45 0.000 6.617577 9.350121

_cons 2.146038 .3794179 5.66 0.000 1.402393 2.889684

sigma_u 5.6787791
sigma_e 3.1806188

rho .76120931 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Now suppose that we want to fit the model using only the first eight periods. Below, x1c now
appears under the TIexogenous heading rather than the TVexogenous heading because x1c is time
invariant in the subsample defined by t<9.
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. xthtaylor yit x1a x1b x1c x2 z1 z2 if t<9, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 8000
Group variable: id Number of groups = 1000

Obs per group: min = 8
avg = 8
max = 8

Random effects u_i ~ i.i.d. Wald chi2(6) = 15354.87
Prob > chi2 = 0.0000

yit Coef. Std. Err. z P>|z| [95% Conf. Interval]

TVexogenous
x1a 3.051966 .0367026 83.15 0.000 2.98003 3.123901
x1b 2.967822 .0368144 80.62 0.000 2.895667 3.039977

TVendogenous
x2 .7361217 3.199764 0.23 0.818 -5.5353 7.007543

TIexogenous
x1c 3.215907 .5657191 5.68 0.000 2.107118 4.324696
z1 3.347644 .5819756 5.75 0.000 2.206992 4.488295

TIendogenous
z2 2.010578 1.143982 1.76 0.079 -.231586 4.252742

_cons 3.257004 .5295828 6.15 0.000 2.219041 4.294967

sigma_u 15.445594
sigma_e 3.175083

rho .95945606 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

To prevent a variable from becoming time invariant, you can use either constant(varlistti)
or varying(varlisttv). constant(varlistti) specifies the subset of variables in varlist that are
time invariant and requires the remaining variables in varlist to be time varying. If you specify
constant(varlistti) and any of the variables contained in varlistti are time varying, or if any of the
variables not contained in varlistti are time invariant, xthtaylor will not perform the estimation and
will issue an error message.

. xthtaylor yit x1a x1b x1c x2 z1 z2 if t<9, endog(x2 z2) constant(z1 z2)
x1c not included in -constant()-.
r(198);

The same thing happens when you use the varying(varlisttv) option.
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Saved results
xthtaylor saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(df r) residual degrees of freedom (small only)
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(Tcon) 1 if panels balanced; 0 otherwise
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(chi2) χ2

e(rho) ρ

e(F) model F (small only)
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xthtaylor
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups, amacurdy only
e(TVexogenous) exogenous time-varying variables
e(TIexogenous) exogenous time-invariant variables
e(TVendogenous) endogenous time-varying variables
e(TIendogenous) endogenous time-invariant variables
e(wtype) weight type
e(wexp) weight expression
e(title) Hausman-Taylor or Amemiya-MaCurdy
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xthtaylor is implemented as an ado-file.

Consider an error-components model of the form

yit = X1itβ1 + X2itβ2 + Z1iδ1 + Z2iδ2 + µi + εit (2)
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for i = 1, . . . , n and, for each i, t = 1, . . . , Ti, of which Ti periods are observed; n is the number
of panels in the sample. The covariates in X are time varying, and the covariates in Z are time
invariant. Both X and Z are decomposed into two parts. The covariates in X1 and Z1 are assumed
to be uncorrelated with µi and eit, whereas the covariates in X2 and Z2 are allowed to be correlated
with µi but not with εit. Hausman and Taylor (1981) suggest an instrumental-variable estimator for
this model.

For some variable w, the within transformation of w is defined as

w̃it = wit − wi. wi. =
1
n

Ti∑
t=1

wit

Because the within estimator removes Z, the within transformation reduces the model to

ỹit = X̃1itβ1 + X̃2itβ2 + ε̃it

The within estimators β̂1w and β̂2w are consistent for β1 and β2, but they may not be efficient. Also,
note that the within estimator cannot estimate δ1 and δ2.

From the within estimator, we can be obtain an estimate of the idiosyncratic error component, σ2
ε ,

as
σ̂2
ε =

RSS

N − n
where RSS is the residual sum of squares from the within regression and N is the total number of
observations in the sample.

Using the results of the within estimation, we can define

dit = yit −X1itβ̂1w −X2itβ̂2w

where yit, X1it, and X2it contain the panel level means of these variables in all observations.

Regressing dit on Z1 and Z2, using X1 and Z1 as instruments, provides intermediate, consistent
estimates of δ1 and δ2, which we will call δ̂1IV and δ̂2IV.

Using the within estimates, δ̂1IV, and δ̂2IV, we can obtain an estimate of the variance of the
random effect, σ2

µ. First, let

êit =
(
yit −X1itβ̂1w −X2itβ̂2w − Z1itδ̂1IV − Z2itδ̂2IV

)
Then define

s2 =
1
N

n∑
i=1

Ti∑
t=1

(
1
Ti

Ti∑
t=1

êi

)2

Hausman and Taylor (1981) showed that, for balanced panels,

plimn→∞s
2 = Tσ2

µ + σ2
ε
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For unbalanced panels,
plimn→∞s

2 = Tσ2
µ + σ2

ε

where
T =

n∑n
i=1

1
Ti

After we plug in σ̂2
ε , our consistent estimate for σ2

ε , a little algebra suggests the estimate

σ̂2
µ = (s2 − σ̂2

ε )(T )−1

Define θ̂i as

θ̂i = 1−
(

σ̂2
ε

σ̂2
ε + Tiσ̂2

µ

) 1
2

With θ̂i in hand, we can perform the standard random-effects GLS transform on each of the
variables. The transform is given by

w∗it = wit − θ̂iwi.
where wi. is the within-panel mean.

We can then obtain the Hausman–Taylor estimates of the coefficients in (2) and the conventional
VCE by fitting an instrumental-variables regression of the GLS-transformed y∗it on X∗it and Z∗it, with
instruments X̃it, X1i., and Z1i.

We can obtain Amemiya–MaCurdy estimates of the coefficients in (2) and the conventional VCE

by fitting an instrumental-variables regression of the GLS-transformed y∗it on X∗it and Z∗it, using X̃it,
X̆1it, and Z1i as instruments, where X̆1it = X1i1,X1i2, . . . ,X1iTi . The order condition for the
Amemiya–MaCurdy estimator is Tk1 > g2, and this estimator is available only for balanced panels.
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Baltagi, B. H., and S. Khanti-Akom. 1990. On efficient estimation with panel data: An empirical comparison of
instrumental variables estimators. Journal of Applied Econometrics 5: 401–406.

Hausman, J. A., and W. E. Taylor. 1981. Panel data and unobservable individual effects. Econometrica 49: 1377–1398.

Stock, J. H., J. H. Wright, and M. Yogo. 2002. A survey of weak instruments and weak identification in generalized
method of moments. Journal of Business and Economic Statistics 20: 518–529.

Also see
[XT] xthtaylor postestimation — Postestimation tools for xthtaylor

[XT] xtset — Declare data to be panel data

[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[U] 20 Estimation and postestimation commands
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Title

xthtaylor postestimation — Postestimation tools for xthtaylor

Description
The following postestimation commands are available after xthtaylor:

Command Description

estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

xb Xitβ̂+ Ziδ̂, fitted values; the default
stdp standard error of the fitted values
ue µ̂i + ε̂it, the combined residual
∗xbu Xitβ̂+ Ziδ̂+ µ̂i, prediction including effect
∗u µ̂i, the random-error component
∗e ε̂it, prediction of the idiosyncratic error component

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

Menu
Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction, that is, Xitβ̂+ Zitδ̂.

stdp calculates the standard error of the linear prediction.

ue calculates the prediction of µ̂i + ε̂it.

xbu calculates the prediction of Xitβ̂+ Zitδ̂+ ν̂i, the prediction including the random effect.

u calculates the prediction of µ̂i, the estimated random effect.

e calculates the prediction of ε̂it.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xthtaylor — Hausman–Taylor estimator for error-components models

[U] 20 Estimation and postestimation commands



Title

xtintreg — Random-effects interval-data regression models

Syntax
xtintreg depvarlower depvarupper

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform overall model test as a likelihood-ratio test
intreg perform likelihood-ratio test against pooled model
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intmethod(intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod(mvaghermite)

intpoints(#) use # quadrature points; default is intpoints(12)

Maximization

maximize options control the maximization process; see [R] maximize

coeflegend display legend instead of statistics

A panel variable must be specified; use xtset; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvarlower, depvarupper, and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Censored outcomes > Interval regression (RE)
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Description
xtintreg fits a random-effects regression model whose dependent variable may be measured

as point data, interval data, left-censored data, or right-censored data. depvarlower and depvarupper

represent how the dependent variable was measured.

The values in depvarlower and depvarupper should have the following form:

Type of data depvarlower depvarupper

point data a = [ a, a ] a a

interval data [ a, b ] a b

left-censored data (−∞, b ] . b

right-censored data [ a,+∞ ) a .

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#), noskip; see [R] estimation options.

intreg specifies that a likelihood-ratio test comparing the random-effects model with the pooled
(intreg) model be included in the output.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod), intpoints(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xtintreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Consider the linear regression model with panel-level random effects

yit = xitβ+ νi + εit

for i = 1, . . . , n panels, where t = 1, . . . , ni. The random effects, νi, are i.i.d., N(0, σ2
ν), and εit

are i.i.d., N(0, σ2
ε ) independently of νi. The observed data consist of the couples, (y1it, y2it), such

that all that is known is that y1it ≤ yit ≤ y2it, where y1it is possibly −∞ and y2it is possibly +∞.

Example 1

We begin with the nlswork dataset described in [XT] xt and create two fictional dependent
variables, where the wages are instead reported sometimes as ranges. The wages have been adjusted
to 1988 dollars and have further been recoded such that some of the observations are known exactly,
some are left-censored, some are right-censored, and some are known only in an interval.

We wish to fit a random-effects interval regression model of adjusted (log) wages:

. use http://www.stata-press.com/data/r12/nlswork5
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtintreg ln_wage1 ln_wage2 union age grade south##c.year occ_code, intreg

(output omitted )
Random-effects interval regression Number of obs = 19151
Group variable: idcode Number of groups = 4140

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 4.6
max = 12

Wald chi2(7) = 2523.84
Log likelihood = -23174.355 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

union .1441844 .0094245 15.30 0.000 .1257128 .162656
age .0104083 .0018804 5.54 0.000 .0067228 .0140939

grade .0794958 .0023469 33.87 0.000 .074896 .0840955
1.south -.3778103 .0979415 -3.86 0.000 -.5697722 -.1858485

year .0013528 .0020176 0.67 0.503 -.0026016 .0053071

south#c.year
1 .0034385 .0012105 2.84 0.005 .0010659 .005811

occ_code -.0197912 .0014094 -14.04 0.000 -.0225535 -.0170289
_cons .3791078 .1136641 3.34 0.001 .1563303 .6018853

/sigma_u .2987074 .0052697 56.68 0.000 .2883789 .309036
/sigma_e .3528109 .0030935 114.05 0.000 .3467478 .358874

rho .4175266 .0102529 .3975474 .4377211

Likelihood-ratio test of sigma_u=0: chibar2(01)= 2516.85 Prob>=chibar2 = 0.000

Observation summary: 4757 left-censored observations
4792 uncensored observations
4830 right-censored observations
4772 interval observations

The output includes the overall and panel-level variance components (labeled sigma e and sigma u,
respectively) together with ρ (labeled rho),
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ρ =
σ2
ν

σ2
ε + σ2

ν

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is
not different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of
the output. This test formally compares the pooled estimator (intreg) with the panel estimator.

Technical note
The random-effects model is calculated using quadrature, which is an approximation whose accuracy

depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtintreg likelihood function is calculated by Gauss–Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.
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Saved results
xtintreg saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(N int) number of interval observations
e(N cd) number of completely determined observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(rho) ρ

e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(n quad) number of quadrature points
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(ivar) variable denoting groups
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset1) offset
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xtintreg is implemented as an ado-file.

Assuming a normal distribution,N(0, σ2
ν), for the random effects νi, we have the joint (unconditional

of νi) density of the observed data for the ith panel

f {(y1i1, y2i1), . . . , (y1ini , y2ini)|x1i, . . . ,xini} =∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (y1it, y2it,xitβ+ νi)

}
dνi
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where

F (y1it, y2it,∆it) =



(√
2πσε

)−1
e−(y1it−∆it)

2/(2σ2
ε ) if (y1it, y2it) ∈ C

Φ
(
y2it−∆it

σε

)
if (y1it, y2it) ∈ L

1− Φ
(
y1it−∆it

σε

)
if (y1it, y2it) ∈ R

Φ
(
y2it−∆it

σε

)
− Φ

(
y1it−∆it

σε

)
if (y1it, y2it) ∈ I

where C is the set of noncensored observations (y1it = y2it and both nonmissing), L is the set
of left-censored observations (y1it missing and y2it nonmissing), R is the set of right-censored
observations (y1it nonmissing and y2it missing ), I is the set of interval observations (y1it < y2it

and both nonmissing), and Φ() is the cumulative normal distribution.

The panel-level likelihood li is given by

li =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (y1it, y2it,xitβ+ νi)

}
dνi

≡
∫ ∞
−∞

g(y1it, y2it, xit, νi)dνi

This integral can be approximated with M -point Gauss–Hermite quadrature

∫ ∞
−∞

e−x
2
h(x)dx ≈

M∑
m=1

w∗mh(a∗m)

This is equivalent to ∫ ∞
−∞

f(x)dx ≈
M∑
m=1

w∗m exp
{

(a∗m)2
}
f(a∗m)

where the w∗m denote the quadrature weights and the a∗m denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods li.

The default approximation of the log likelihood is by adaptive Gauss–Hermite quadrature, which
approximates the panel-level likelihood with

li ≈
√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}
g(y1it, y2it, xit,

√
2σ̂ia∗m + µ̂i)

where σ̂i and µ̂i are the adaptive parameters for panel i. Therefore, using the definition of
g(y1it, y2it, xit, νi), the total log likelihood is approximated by
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L ≈
n∑
i=1

wi log
[√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}exp

{
−(
√

2σ̂ia∗m + µ̂i)2/2σ2
ν

}
√

2πσν
ni∏
t=1

F (y1it, y2it, xitβ+
√

2σ̂ia∗m + µ̂i)
]

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for µ̂i and σ̂i by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with σ̂i,0 = 1 and µ̂i,0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for li we use

li,k ≈
M∑
m=1

√
2σ̂i,k−1w

∗
m exp

{
a∗m)2

}
g(y1it, y2it, xit,

√
2σ̂i,k−1a

∗
m + µ̂i,k−1)

Letting
τi,m,k−1 =

√
2σ̂i,k−1a

∗
m + µ̂i,k−1

µ̂i,k =
M∑
m=1

(τi,m,k−1)

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(y1it, y2it, xit, τi,m,k−1)

li,k

and

σ̂i,k =
M∑
m=1

(τi,m,k−1)2

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(y1it, y2it, xit, τi,m,k−1)

li,k
− (µ̂i,k)2

and this is repeated until µ̂i,k and σ̂i,k have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method(aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

g(y1it, y2it, xit, νi) =
e−ν

2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (y1it, y2it,xitβ+ νi)

}
and find αi the mode of g(y1it, y2it, xit, νi). We calculate

γi = − ∂2

∂ν2
log{g(y1it, y2it, xit, νi)}

∣∣
νi=αi

Then ∫ ∞
−∞

g(y1it, y2it, xit, νi)dνi ≈
(

2
γi

)1/2 M∑
m=1

w∗m exp
{

(a∗m)2
}

g

{
y1it, y2it, xit,

(
2
γi

)1/2

a∗m + αi

}
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This adaptation is performed on the first iteration only; that is, the αi and γi are calculated once at
the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss–Hermite quadrature, the int-
method(ghermite) option:

L =
n∑
i=1

wi log f {(y1i1, y2i1), . . . , (y1ini , y2ini)|x1i, . . . ,xini}

≈
n∑
i=1

wi log
{

1√
π

M∑
m=1

w∗m

ni∏
t=1

F
(
y1it, y2it,xitβ+

√
2σνa∗m

)}

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

ni∏
t=1

F (y1it, y2it,xitβ+ νi)

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can
become less accurate. For large ρ, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.

References
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Methods in Medical Research 1: 249–273.
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methods for analyzing clustered binary response data. International Statistical Review 64: 89–118.
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Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Also see
[XT] xtintreg postestimation — Postestimation tools for xtintreg

[XT] quadchk — Check sensitivity of quadrature approximation

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xttobit — Random-effects tobit models

[R] intreg — Interval regression

[R] tobit — Tobit regression
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Title

xtintreg postestimation — Postestimation tools for xtintreg

Description
The following postestimation commands are available after xtintreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

xb linear prediction assuming a zero random effect, the default
stdp standard error of the linear prediction
stdf standard error of the linear forecast
pr0(a,b) Pr(a < y < b) assuming a zero random effect
e0(a,b) E(y | a < y < b) assuming a zero random effect
ystar0(a,b) E(y∗), y∗ = max{a,min(yj , b)} assuming a zero random effect

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction. It can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the
prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast. This is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress.

pr0(a,b) calculates estimates of Pr(a < y < b|x = xit, νi = 0), which is the probability that y
would be observed in the interval (a, b), given the current values of the predictors, xit, and given
a zero random effect. In the discussion that follows, these two conditions are implied.

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr0(20,30) calculates Pr(20 < y < 30);
pr0(lb,ub) calculates Pr(lb < y < ub); and
pr0(20,ub) calculates Pr(20 < y < ub).

a missing (a ≥ .) means −∞; pr0(.,30) calculates Pr(−∞ < y < 30);
pr0(lb,30) calculates Pr(−∞ < y < 30) in observations for which lb ≥ .
(and calculates Pr(lb < y < 30) elsewhere).

b missing (b ≥ .) means +∞; pr0(20,.) calculates Pr(+∞ > y > 20);
pr0(20,ub) calculates Pr(+∞ > y > 20) in observations for which ub ≥ .
(and calculates Pr(20 < y < ub) elsewhere).

e0(a,b) calculates estimates of E(y | a < y < b,x = xit, νi = 0), which is the expected value of
y conditional on y being in the interval (a, b), meaning that y is truncated. a and b are specified
as they are for pr0().

ystar0(a,b) calculates estimates of E(y∗|x = xit, νi = 0), where y∗ = a if y ≤ a, y∗ = b if
y ≥ b, and y∗ = y otherwise, meaning that y∗ is the censored version of y. a and b are specified
as they are for pr0().

nooffset is relevant only if you specified offset(varname) for xtintreg. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
xitβ rather than xitβ+ offsetit.

Remarks

Example 1

In example 1 of [XT] xtintreg, we fit a random-effects model of wages. Say that we want to know
how union membership status affects the probability that a worker’s wage will be “low”, where low
means a log wage that is less than the 20th percentile of all observations in our dataset. First, we
use centile to find the 20th percentile of ln wage:
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. use http://www.stata-press.com/data/r12/nlswork5
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtintreg ln_wage1 ln_wage2 i.union age grade south##c.year, intreg

(output omitted )
. centile ln_wage, centile(20)

Binom. Interp.
Variable Obs Percentile Centile [95% Conf. Interval]

ln_wage 28534 20 1.301507 1.297063 1.308635

Now we use margins to obtain the effect of union status on the probability that the log of wages is
in the bottom 20% of women. Given the results from centile that corresponds to the log of wages
being below 1.30. We evaluate the effect for two groups: 1) women age 30 living in the south in
1988 who graduated high school, but had no more schooling, and 2) the same group of women, with
the exception that they are college graduates (grade=16).

. margins, dydx(union) predict(pr0(.,1.30))
> at(age=30 south=1 year=88 grade=12 union=0)
> at(age=30 south=1 year=88 grade=16 union=0)

Conditional marginal effects Number of obs = 19224
Model VCE : OIM

Expression : Pr(ln_wage1<1.30), predict(pr0(.,1.30))
dy/dx w.r.t. : 1.union

1._at : union = 0
age = 30
grade = 12
south = 1
year = 88

2._at : union = 0
age = 30
grade = 16
south = 1
year = 88

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.union
_at
1 -.0787117 .0060655 -12.98 0.000 -.0905999 -.0668235
2 -.0378758 .0035595 -10.64 0.000 -.0448523 -.0308993

Note: dy/dx for factor levels is the discrete change from the base level.

For the first group of women, according to our fitted model, being in a union lowers the probability
of being classified as a low-wage worker by almost 7.9 percentage points. Being a college graduate
attenuates this effect to just under 3.8 percentage points.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[XT] xtintreg — Random-effects interval-data regression models

[U] 20 Estimation and postestimation commands



Title

xtivreg — Instrumental variables and two-stage least squares for panel-data models

Syntax
GLS random-effects (RE) model

xtivreg depvar
[

varlist1
]
(varlist2 = varlistiv)

[
if
] [

in
] [

, re RE options
]

Between-effects (BE) model

xtivreg depvar
[

varlist1
]
(varlist2 = varlistiv)

[
if
] [

in
]
, be

[
BE options

]
Fixed-effects (FE) model

xtivreg depvar
[

varlist1
]
(varlist2 = varlistiv)

[
if
] [

in
]
, fe

[
FE options

]
First-differenced (FD) estimator

xtivreg depvar
[

varlist1
]
(varlist2 = varlistiv)

[
if
] [

in
]
, fd

[
FD options

]
RE options Description

Model

re use random-effects estimator; the default
ec2sls use Baltagi’s EC2SLS random-effects estimator
nosa use the Baltagi–Chang estimators of the variance components
regress treat covariates as exogenous and ignore instrumental variables

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage estimates
small report t and F statistics instead of Z and χ2 statistics
theta report θ
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

190



xtivreg — Instrumental variables and two-stage least squares for panel-data models 191

BE options Description

Model

be use between-effects estimator
regress treat covariates as exogenous and ignore instrumental variables

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage estimates
small report t and F statistics instead of Z and χ2 statistics
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

FE options Description

Model

fe use fixed-effects estimator
regress treat covariates as exogenous and ignore instrumental variables

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage estimates
small report t and F statistics instead of Z and χ2 statistics
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics
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FD options Description

Model

noconstant suppress constant term
fd first-differenced estimator
regress treat covariates as exogenous and ignore instrumental variables

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage estimates
small report t and F statistics instead of Z and χ2 statistics
display options control column formats, row spacing, line width, and display of omitted

variables

coeflegend display legend instead of statistics

A panel variable must be specified. For xtivreg, fd a time variable must also be specified. Use xtset;
see [XT] xtset.

varlist1 and varlistiv may contain factor variables, except for the fd estimator; see [U] 11.4.3 Factor variables.
depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Endogenous covariates > Instrumental-variables regression (FE, RE, BE, FD)

Description
xtivreg offers five different estimators for fitting panel-data models in which some of the right-

hand-side covariates are endogenous. These estimators are two-stage least-squares generalizations of
simple panel-data estimators for exogenous variables. xtivreg with the be option uses the two-
stage least-squares between estimator. xtivreg with the fe option uses the two-stage least-squares
within estimator. xtivreg with the re option uses a two-stage least-squares random-effects estimator.
There are two implementations: G2SLS from Balestra and Varadharajan-Krishnakumar (1987) and
EC2SLS from Baltagi. The Balestra and Varadharajan-Krishnakumar G2SLS is the default because it is
computationally less expensive. Baltagi’s EC2SLS can be obtained by specifying the ec2sls option.
xtivreg with the fd option requests the two-stage least-squares first-differenced estimator.

See Baltagi (2008) for an introduction to panel-data models with endogenous covariates. For the
derivation and application of the first-differenced estimator, see Anderson and Hsiao (1981).
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Options for RE model

� � �
Model �

re requests the G2SLS random-effects estimator. re is the default.

ec2sls requests Baltagi’s EC2SLS random-effects estimator instead of the default Balestra and
Varadharajan-Krishnakumar estimator.

nosa specifies that the Baltagi–Chang estimators of the variance components be used instead of the
default adapted Swamy–Arora estimators.

regress specifies that all the covariates be treated as exogenous and that the instrument list be
ignored. Specifying regress causes xtivreg to fit the requested panel-data regression model of
depvar on varlist1 and varlist2, ignoring varlistiv.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-stage regressions be displayed.

small specifies that t statistics be reported instead of z statistics and that F statistics be reported
instead of chi-squared statistics.

theta specifies that the output include the estimated value of θ used in combining the between and
fixed estimators. For balanced data, this is a constant, and for unbalanced data, a summary of the
values is presented in the header of the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for BE model

� � �
Model �

be requests the between regression estimator.

regress specifies that all the covariates are to be treated as exogenous and that the instrument list
is to be ignored. Specifying regress causes xtivreg to fit the requested panel-data regression
model of depvar on varlist1 and varlist2, ignoring varlistiv.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.
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vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-stage regressions be displayed.

small specifies that t statistics be reported instead of z statistics and that F statistics be reported
instead of chi-squared statistics.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for FE model

� � �
Model �

fe requests the fixed-effects (within) regression estimator.

regress specifies that all the covariates are to be treated as exogenous and that the instrument list
is to be ignored. Specifying regress causes xtivreg to fit the requested panel-data regression
model of depvar on varlist1 and varlist2, ignoring varlistiv.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-stage regressions be displayed.

small specifies that t statistics be reported instead of z statistics and that F statistics be reported
instead of chi-squared statistics.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for FD model

� � �
Model �

noconstant; see [R] estimation options.
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fd requests the first-differenced regression estimator.

regress specifies that all the covariates are to be treated as exogenous and that the instrument list
is to be ignored. Specifying regress causes xtivreg to fit the requested panel-data regression
model of depvar on varlist1 and varlist2, ignoring varlistiv.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-stage regressions be displayed.

small specifies that t statistics be reported instead of z statistics and that F statistics be reported
instead of chi-squared statistics.

display options: noomitted, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
If you have not read [XT] xt, please do so.

Consider an equation of the form

yit = Yitγ+ X1itβ+ µi + νit = Zitδ+ µi + νit (1)

where

yit is the dependent variable;

Yit is an 1 × g2 vector of observations on g2 endogenous variables included as covariates, and
these variables are allowed to be correlated with the νit;

X1it is an 1× k1 vector of observations on the exogenous variables included as covariates;

Zit = [Yit Xit];

γ is a g2 × 1 vector of coefficients;

β is a k1 × 1 vector of coefficients; and

δ is a K × 1 vector of coefficients, where K = g2 + k1.

Assume that there is a 1 × k2 vector of observations on the k2 instruments in X2it. The order
condition is satisfied if k2 ≥ g2. Let Xit = [X1it X2it]. xtivreg handles exogenously unbalanced
panel data. Thus define Ti to be the number of observations on panel i, n to be the number of panels
and N to be the total number of observations; that is, N =

∑n
i=1 Ti.
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xtivreg offers five different estimators, which may be applied to models having the form of (1). The
first-differenced estimator (FD2SLS) removes the µi by fitting the model in first differences. The within
estimator (FE2SLS) fits the model after sweeping out the µi by removing the panel-level means from
each variable. The between estimator (BE2SLS) models the panel averages. The two random-effects
estimators, G2SLS and EC2SLS, treat the µi as random variables that are independent and identically
distributed (i.i.d.) over the panels. Except for (FD2SLS), all these estimators are generalizations of
estimators in xtreg. See [XT] xtreg for a discussion of these estimators for exogenous covariates.

Although the estimators allow for different assumptions about the µi, all the estimators assume
that the idiosyncratic error term νit has zero mean and is uncorrelated with the variables in Xit. Just
as when there are no endogenous covariates, as discussed in [XT] xtreg, there are various perspectives
on what assumptions should be placed on the µi. If they are assumed to be fixed, the µi may be
correlated with the variables in Xit, and the within estimator is efficient within a class of limited
information estimators. Alternatively, if the µi are assumed to be random, they are also assumed to
be i.i.d. over the panels. If the µi are assumed to be uncorrelated with the variables in Xit, the
GLS random-effects estimators are more efficient than the within estimator. However, if the µi are
correlated with the variables in Xit, the random-effects estimators are inconsistent but the within
estimator is consistent. The price of using the within estimator is that it is not possible to estimate
coefficients on time-invariant variables, and all inference is conditional on the µi in the sample. See
Mundlak (1978) and Hsiao (2003) for discussions of this interpretation of the within estimator.

Example 1: Fixed-effects model

For the within estimator, consider another version of the wage equation discussed in [XT] xtreg.
The data for this example come from an extract of women from the National Longitudinal Survey of
Youth that was described in detail in [XT] xt. Restricting ourselves to only time-varying covariates,
we might suppose that the log of the real wage was a function of the individual’s age, age2, her
tenure in the observed place of employment, whether she belonged to union, whether she lives in
metropolitan area, and whether she lives in the south. The variables for these are, respectively, age,
c.age#c.age, tenure, union, not smsa, and south. If we treat all the variables as exogenous,
we can use the one-stage within estimator from xtreg, yielding
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. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtreg ln_w age c.age#c.age tenure not_smsa union south, fe

Fixed-effects (within) regression Number of obs = 19007
Group variable: idcode Number of groups = 4134

R-sq: within = 0.1333 Obs per group: min = 1
between = 0.2375 avg = 4.6
overall = 0.2031 max = 12

F(6,14867) = 381.19
corr(u_i, Xb) = 0.2074 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0311984 .0033902 9.20 0.000 .0245533 .0378436

c.age#c.age -.0003457 .0000543 -6.37 0.000 -.0004522 -.0002393

tenure .0176205 .0008099 21.76 0.000 .0160331 .0192079
not_smsa -.0972535 .0125377 -7.76 0.000 -.1218289 -.072678

union .0975672 .0069844 13.97 0.000 .0838769 .1112576
south -.0620932 .013327 -4.66 0.000 -.0882158 -.0359706
_cons 1.091612 .0523126 20.87 0.000 .9890729 1.194151

sigma_u .3910683
sigma_e .25545969

rho .70091004 (fraction of variance due to u_i)

F test that all u_i=0: F(4133, 14867) = 8.31 Prob > F = 0.0000

All the coefficients are statistically significant and have the expected signs.

Now suppose that we wish to model tenure as a function of union and south and that we believe that
the errors in the two equations are correlated. Because we are still interested in the within estimates,
we now need a two-stage least-squares estimator. The following output shows the command and the
results from fitting this model:
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. xtivreg ln_w age c.age#c.age not_smsa (tenure = union south), fe

Fixed-effects (within) IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134

R-sq: within = . Obs per group: min = 1
between = 0.1304 avg = 4.6
overall = 0.0897 max = 12

Wald chi2(4) = 147926.58
corr(u_i, Xb) = -0.6843 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

tenure .2403531 .0373419 6.44 0.000 .1671643 .3135419
age .0118437 .0090032 1.32 0.188 -.0058023 .0294897

c.age#c.age -.0012145 .0001968 -6.17 0.000 -.0016003 -.0008286

not_smsa -.0167178 .0339236 -0.49 0.622 -.0832069 .0497713
_cons 1.678287 .1626657 10.32 0.000 1.359468 1.997106

sigma_u .70661941
sigma_e .63029359

rho .55690561 (fraction of variance due to u_i)

F test that all u_i=0: F(4133,14869) = 1.44 Prob > F = 0.0000

Instrumented: tenure
Instruments: age c.age#c.age not_smsa union south

Although all the coefficients still have the expected signs, the coefficients on age and not smsa are
no longer statistically significant. Given that these variables have been found to be important in many
other studies, we might want to rethink our specification.

If we are willing to assume that the µi are uncorrelated with the other covariates, we can fit a
random-effects model. The model is frequently known as the variance-components or error-components
model. xtivreg has estimators for two-stage least-squares one-way error-components models. In the
one-way framework, there are two variance components to estimate, the variance of the µi and the
variance of the νit. Because the variance components are unknown, consistent estimates are required to
implement feasible GLS. xtivreg offers two choices: a Swamy–Arora method and simple consistent
estimators from Baltagi and Chang (2000).

Baltagi and Chang (1994) derived the Swamy–Arora estimators of the variance components for
unbalanced panels. By default, xtivreg uses estimators that extend these unbalanced Swamy–Arora
estimators to the case with instrumental variables. The default Swamy–Arora method contains a
degree-of-freedom correction to improve its performance in small samples. Baltagi and Chang (2000)
use variance-components estimators, which are based on the ideas of Amemiya (1971) and Swamy and
Arora (1972), but they do not attempt to make small-sample adjustments. These consistent estimators
of the variance components will be used if the nosa option is specified.

Using either estimator of the variance components, xtivreg offers two GLS estimators of the
random-effects model. These two estimators differ only in how they construct the GLS instruments
from the exogenous and instrumental variables contained in Xit = [X1it X2it]. The default method,
G2SLS, which is from Balestra and Varadharajan-Krishnakumar, uses the exogenous variables after
they have been passed through the feasible GLS transform. In math, G2SLS uses X∗it for the GLS
instruments, where X∗it is constructed by passing each variable in Xit through the GLS transform in
(3) given in Methods and formulas. If the ec2sls option is specified, xtivreg performs Baltagi’s
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EC2SLS. In EC2SLS, the instruments are X̃it and Xit, where X̃it is constructed by passing each of
the variables in Xit through the within transform, and Xit is constructed by passing each variable
through the between transform. The within and between transforms are given in the Methods and
formulas section. Baltagi and Li (1992) show that, although the G2SLS instruments are a subset of
those contained in EC2SLS, the extra instruments in EC2SLS are redundant in the sense of White (2001).
Given the extra computational cost, G2SLS is the default.

Example 2: GLS random-effects model

Here is the output from applying the G2SLS estimator to this model:

. xtivreg ln_w age c.age#c.age not_smsa 2.race (tenure = union birth south), re

G2SLS random-effects IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134

R-sq: within = 0.0664 Obs per group: min = 1
between = 0.2098 avg = 4.6
overall = 0.1463 max = 12

Wald chi2(5) = 1446.37
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

tenure .1391798 .0078756 17.67 0.000 .123744 .1546157
age .0279649 .0054182 5.16 0.000 .0173454 .0385843

c.age#c.age -.0008357 .0000871 -9.60 0.000 -.0010063 -.000665

not_smsa -.2235103 .0111371 -20.07 0.000 -.2453386 -.2016821
2.race -.2078613 .0125803 -16.52 0.000 -.2325183 -.1832044
_cons 1.337684 .0844988 15.83 0.000 1.172069 1.503299

sigma_u .36582493
sigma_e .63031479

rho .25197078 (fraction of variance due to u_i)

Instrumented: tenure
Instruments: age c.age#c.age not_smsa 2.race union birth_yr south

We have included two time-invariant covariates, birth yr and 2.race. All the coefficients are
statistically significant and are of the expected sign.

Applying the EC2SLS estimator yields similar results:
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. xtivreg ln_w age c.age#c.age not_smsa 2.race (tenure = union birth south), re
> ec2sls

EC2SLS random-effects IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134

R-sq: within = 0.0898 Obs per group: min = 1
between = 0.2608 avg = 4.6
overall = 0.1926 max = 12

Wald chi2(5) = 2721.92
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

tenure .064822 .0025647 25.27 0.000 .0597953 .0698486
age .0380048 .0039549 9.61 0.000 .0302534 .0457562

c.age#c.age -.0006676 .0000632 -10.56 0.000 -.0007915 -.0005438

not_smsa -.2298961 .0082993 -27.70 0.000 -.2461625 -.2136297
2.race -.1823627 .0092005 -19.82 0.000 -.2003954 -.16433
_cons 1.110564 .0606538 18.31 0.000 .9916849 1.229443

sigma_u .36582493
sigma_e .63031479

rho .25197078 (fraction of variance due to u_i)

Instrumented: tenure
Instruments: age c.age#c.age not_smsa 2.race union birth_yr south

Fitting the same model as above with the G2SLS estimator and the consistent variance components
estimators yields
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. xtivreg ln_w age c.age#c.age not_smsa 2.race (tenure = union birth south), re
> nosa

G2SLS random-effects IV regression Number of obs = 19007
Group variable: idcode Number of groups = 4134

R-sq: within = 0.0664 Obs per group: min = 1
between = 0.2098 avg = 4.6
overall = 0.1463 max = 12

Wald chi2(5) = 1446.93
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

tenure .1391859 .007873 17.68 0.000 .1237552 .1546166
age .0279697 .005419 5.16 0.000 .0173486 .0385909

c.age#c.age -.0008357 .0000871 -9.60 0.000 -.0010064 -.000665

not_smsa -.2235738 .0111344 -20.08 0.000 -.2453967 -.2017508
2.race -.2078733 .0125751 -16.53 0.000 -.2325201 -.1832265
_cons 1.337522 .0845083 15.83 0.000 1.171889 1.503155

sigma_u .36535633
sigma_e .63020883

rho .2515512 (fraction of variance due to u_i)

Instrumented: tenure
Instruments: age c.age#c.age not_smsa 2.race union birth_yr south

Example 3: First-differenced estimator

The two-stage least-squares first-differenced estimator (FD2SLS) has been used to fit both fixed-effect
and random-effect models. If the µi are truly fixed-effects, the FD2SLS estimator is not as efficient
as the two-stage least-squares within estimator for finite Ti. Similarly, if none of the endogenous
variables are lagged dependent variables, the exogenous variables are all strictly exogenous, and the
random effects are i.i.d. and independent of the Xit, the two-stage GLS estimators are more efficient
than the FD2SLS estimator. However, the FD2SLS estimator has been used to obtain consistent estimates
when one of these conditions fails. Anderson and Hsiao (1981) used a version of the FD2SLS estimator
to fit a panel-data model with a lagged dependent variable.

Arellano and Bond (1991) develop new one-step and two-step GMM estimators for dynamic panel
data. See [XT] xtabond for a discussion of these estimators and Stata’s implementation of them. In
their article, Arellano and Bond (1991) apply their new estimators to a model of dynamic labor demand
that had previously been considered by Layard and Nickell (1986). They also compare the results of
their estimators with those from the Anderson–Hsiao estimator using data from an unbalanced panel
of firms from the United Kingdom. As is conventional, all variables are indexed over the firm i and
time t. In this dataset, nit is the log of employment in firm i inside the United Kingdom at time t,
wit is the natural log of the real product wage, kit is the natural log of the gross capital stock, and
ysit is the natural log of industry output. The model also includes time dummies yr1980, yr1981,
yr1982, yr1983, and yr1984. In Arellano and Bond (1991, table 5, column e), the authors present
the results from applying one version of the Anderson–Hsiao estimator to these data. This example
reproduces their results for the coefficients, though standard errors are different because Arellano and
Bond are using robust standard errors.
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. use http://www.stata-press.com/data/r12/abdata

. xtivreg n l2.n l(0/1).w l(0/2).(k ys) yr1981-yr1984 (l.n = l3.n), fd

First-differenced IV regression
Group variable: id Number of obs = 471
Time variable: year Number of groups = 140

R-sq: within = 0.0141 Obs per group: min = 3
between = 0.9165 avg = 3.4
overall = 0.9892 max = 5

Wald chi2(14) = 122.53
corr(u_i, Xb) = 0.9239 Prob > chi2 = 0.0000

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
LD. 1.422765 1.583053 0.90 0.369 -1.679962 4.525493

L2D. -.1645517 .1647179 -1.00 0.318 -.4873928 .1582894

w
D1. -.7524675 .1765733 -4.26 0.000 -1.098545 -.4063902
LD. .9627611 1.086506 0.89 0.376 -1.166752 3.092275

k
D1. .3221686 .1466086 2.20 0.028 .0348211 .6095161
LD. -.3248778 .5800599 -0.56 0.575 -1.461774 .8120187

L2D. -.0953947 .1960883 -0.49 0.627 -.4797207 .2889314

ys
D1. .7660906 .369694 2.07 0.038 .0415037 1.490678
LD. -1.361881 1.156835 -1.18 0.239 -3.629237 .9054744

L2D. .3212993 .5440403 0.59 0.555 -.745 1.387599

yr1981
D1. -.0574197 .0430158 -1.33 0.182 -.1417291 .0268896

yr1982
D1. -.0882952 .0706214 -1.25 0.211 -.2267106 .0501203

yr1983
D1. -.1063153 .10861 -0.98 0.328 -.319187 .1065563

yr1984
D1. -.1172108 .15196 -0.77 0.441 -.4150468 .1806253

_cons .0161204 .0336264 0.48 0.632 -.0497861 .082027

sigma_u .29069213
sigma_e .18855982

rho .70384993 (fraction of variance due to u_i)

Instrumented: L.n
Instruments: L2.n w L.w k L.k L2.k ys L.ys L2.ys yr1981 yr1982 yr1983 yr1984

L3.n
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Saved results
xtivreg, re saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(df rz) residual degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(Tcon) 1 if panels balanced; 0 otherwise
e(sigma) ancillary parameter (gamma, lnormal)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(chi2) χ2

e(rho) ρ

e(F) model F (small only)
e(m p) p-value from model test
e(thta min) minimum θ

e(thta 5) θ, 5th percentile
e(thta 50) θ, 50th percentile
e(thta 95) θ, 95th percentile
e(thta max) maximum θ

e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(insts) instruments
e(instd) instrumented variables
e(model) g2sls or ec2sls
e(small) small, if specified
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

xtivreg, be saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(df rz) residual degrees of freedom for the between-transformed regression
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rs a) adjusted R2

e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(chi2) model Wald
e(chi2 p) p-value for model χ2 test
e(F) F statistic (small only)
e(rmse) root mean squared error
e(rank) rank of e(V)

Macros
e(cmd) xtivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(insts) instruments
e(instd) instrumented variables
e(model) be
e(small) small, if specified
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtivreg, fe saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom (small only)
e(df rz) residual degrees of freedom for the within-transformed regression
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(sigma) ancillary parameter (gamma, lnormal)
e(corr) corr(ui, Xb)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(chi2) model Wald (not small)
e(df b) degrees of freedom for χ2 statistic
e(chi2 p) p-value for model χ2 statistic
e(rho) ρ

e(F) F statistic (small only)
e(F f) F for H0: ui=0

e(F fp) p-value for F for H0:ui=0

e(df a) degrees of freedom for absorbed effect
e(rank) rank of e(V)

Macros
e(cmd) xtivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(insts) instruments
e(instd) instrumented variables
e(model) fe
e(small) small, if specified
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtivreg, fd saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(rss) residual sum of squares
e(df r) residual degrees of freedom (small only)
e(df rz) residual degrees of freedom for first-differenced regression
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(sigma) ancillary parameter (gamma, lnormal)
e(corr) corr(ui, Xb)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(chi2) model Wald (not small)
e(df b) degrees of freedom for the χ2 statistic
e(chi2 p) p-value for model χ2 statistic
e(rho) ρ

e(F) F statistic (small only)
e(rank) rank of e(V)

Macros
e(cmd) xtivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(insts) instruments
e(instd) instrumented variables
e(model) fd
e(small) small, if specified
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
xtivreg is implemented as an ado-file.

Consider an equation of the form

yit = Yitγ+ X1itβ+ µi + νit = Zitδ+ µi + νit (2)

where
yit is the dependent variable;
Yit is an 1× g2 vector of observations on g2 endogenous variables included as covariates,

and these variables are allowed to be correlated with the νit;
X1it is an 1× k1 vector of observations on the exogenous variables included as covariates;
Zit = [Yit Xit];
γ is a g2 × 1 vector of coefficients;
β is a k1 × 1 vector of coefficients; and
δ is a K × 1 vector of coefficients, where K = g2 + k1.

Assume that there is a 1 × k2 vector of observations on the k2 instruments in X2it. The order
condition is satisfied if k2 ≥ g2. Let Xit = [X1it X2it]. xtivreg handles exogenously unbalanced
panel data. Thus define Ti to be the number of observations on panel i, n to be the number of panels,
and N to be the total number of observations; that is, N =

∑n
i=1 Ti.

Methods and formulas are presented under the following headings:

xtivreg, fd
xtivreg, fe
xtivreg, be
xtivreg, re

xtivreg, fd

As the name implies, this estimator obtains its estimates and conventional VCE from an instrumental-
variables regression on the first-differenced data. Specifically, first differencing the data yields

yit − yit−1 = (Zit − Zi,t−1) δ + νit − νi,t−1

With the µi removed by differencing, we can obtain the estimated coefficients and their estimated
variance–covariance matrix from a standard two-stage least-squares regression of ∆yit on ∆Zit with
instruments ∆Xit.

R2 within is reported as
[
corr
{

(Zit − Zi)δ̂, yit − yi
}]2

.

R2 between is reported as
{

corr(Ziδ̂, yi)
}2

.

R2 overall is reported as
{

corr(Zitδ̂, yit)
}2

.

xtivreg, fe

At the heart of this model is the within transformation. The within transform of a variable w is

w̃it = wit − wi. + w
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where

wi. =
1
n

Ti∑
t=1

wit

w =
1
N

n∑
i=1

Ti∑
t=1

wit

and n is the number of groups and N is the total number of observations on the variable.

The within transform of (2) is

ỹit = Z̃it + ν̃it

The within transform has removed the µi. With the µi gone, the within 2SLS estimator can be obtained
from a two-stage least-squares regression of ỹit on Z̃it with instruments X̃it.

Suppose that there are K variables in Zit, including the mandatory constant. There are K+n− 1
parameters estimated in the model, and the conventional VCE for the within estimator is

N −K
N − n−K + 1

VIV

where VIV is the VCE from the above two-stage least-squares regression.

From the estimate of δ̂, estimates µ̂i of µi are obtained as µ̂i = yi − Ziδ̂. Reported from the
calculated µ̂i is its standard deviation and its correlation with Ziδ̂. Reported as the standard deviation
of νit is the regression’s estimated root mean squared error, s2, which is adjusted (as previously
stated) for the n− 1 estimated means.

R2 within is reported as the R2 from the mean-deviated regression.

R2 between is reported as
{

corr(Ziδ̂, yi)
}2

.

R2 overall is reported as
{

corr(Zitδ̂, yit)
}2

.

At the bottom of the output, an F statistic against the null hypothesis that all the µi are zero is
reported. This F statistic is an application of the results in Wooldridge (1990).

xtivreg, be

After passing (2) through the between transform, we are left with

yi = α+ Ziδ+ µi + νi (3)

where

wi =
1
Ti

Ti∑
t=1

wit for w ∈ {y,Z, ν}

Similarly, define Xi as the matrix of instruments Xit after they have been passed through the between
transform.
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The BE2SLS estimator of (3) obtains its coefficient estimates and its conventional VCE, a two-stage
least-squares regression of yi on Zi with instruments Xi in which each average appears Ti times.

R2 between is reported as the R2 from the fitted regression.

R2 within is reported as
[
corr
{

(Zit − Zi)δ̂, yit − yi
}]2

.

R2 overall is reported as
{

corr(Zitδ̂, yit)
}2

.

xtivreg, re

Per Baltagi and Chang (2000), let
u = µi + νit

be the N × 1 vector of combined errors. Then under the assumptions of the random-effects model,

E(uu′) = σ2
νdiag

[
ITi −

1
Ti
ιTiι

′
Ti

]
+ diag

[
wi

1
Ti
ιTiι

′
Ti

]
where

ωi = Tiσ
2
µ + σ2

ν

and ιTi is a vector of ones of dimension Ti.

Because the variance components are unknown, consistent estimates are required to implement
feasible GLS. xtivreg offers two choices. The default is a simple extension of the Swamy–Arora
method for unbalanced panels.

Let
uwit = ỹit − Z̃itδ̂w

be the combined residuals from the within estimator. Let ũit be the within-transformed uit. Then

σ̂ν =
∑n
i=1

∑Ti
t=1 ũ

2
it

N − n−K + 1

Let
ubit = yit − Zitδb

be the combined residual from the between estimator. Let ubi. be the between residuals after they
have been passed through the between transform. Then

σ̂2
µ =

∑n
i=1

∑Ti
t=1 u

2
it − (n−K)σ̂2

ν

N − r

where

r = trace
{(

Z
′

iZi
)−1

Z
′

iZµZ
′

µZi

}
where

Zµ = diag
(
ιTiι

′

Ti

)



210 xtivreg — Instrumental variables and two-stage least squares for panel-data models

If the nosa option is specified, the consistent estimators described in Baltagi and Chang (2000)
are used. These are given by

σ̂ν =
∑n
i=1

∑Ti
t=1 ũ

2
it

N − n

and

σ̂2
µ =

∑n
i=1

∑Ti
t=1 u

2
it − nσ̂2

ν

N

The default Swamy–Arora method contains a degree-of-freedom correction to improve its performance
in small samples.

Given estimates of the variance components, σ̂2
ν and σ̂2

µ, the feasible GLS transform of a variable
w is

w∗ = wit − θ̂itwi. (4)

where

wi. =
1
Ti

Ti∑
t=1

wit

θ̂it = 1−
(
σ̂2
ν

ω̂i

)− 1
2

and

ω̂i = Tiσ̂
2
µ + σ̂2

ν

Using either estimator of the variance components, xtivreg contains two GLS estimators of the
random-effects model. These two estimators differ only in how they construct the GLS instruments
from the exogenous and instrumental variables contained in Xit = [X1itX2it]. The default method,
G2SLS, which is from Balestra and Varadharajan-Krishnakumar, uses the exogenous variables after
they have been passed through the feasible GLS transform. Mathematically, G2SLS uses X∗ for the
GLS instruments, where X∗ is constructed by passing each variable in X though the GLS transform in
(4). The G2SLS estimator obtains its coefficient estimates and conventional VCE from an instrumental
variable regression of y∗it on Z∗it with instruments X∗it.

If the ec2sls option is specified, xtivreg performs Baltagi’s EC2SLS. In EC2SLS, the instruments
are X̃it and Xit, where X̃it is constructed by each of the variables in Xit throughout the GLS
transform in (4), and Xit is made of the group means of each variable in Xit. The EC2SLS estimator
obtains its coefficient estimates and its VCE from an instrumental variables regression of y∗it on Z∗it
with instruments X̃it and Xit.

Baltagi and Li (1992) show that although the G2SLS instruments are a subset of those in EC2SLS, the
extra instruments in EC2SLS are redundant in the sense of White (2001). Given the extra computational
cost, G2SLS is the default.

The standard deviation of µi + νit is calculated as
√
σ̂2
µ + σ̂2

ν .
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R2 between is reported as
{

corr(Ziδ̂, yi)
}2

.

R2 within is reported as
[
corr
{

(Zit − Zi)δ̂, yit − yi
}]2

.

R2 overall is reported as
{

corr(Zitδ̂, yit)
}2

.
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Title

xtivreg postestimation — Postestimation tools for xtivreg

Description
The following postestimation commands are available after xtivreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
For all but the first-differenced estimator

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

First-differenced estimator

predict
[

type
]

newvar
[

if
] [

in
] [

, FD statistic
]

statistic Description

Main

xb Zitδ̂, fitted values; the default
ue µ̂i + ν̂it, the combined residual
∗xbu Zitδ̂+ µ̂i, prediction including effect
∗u µ̂i, the fixed- or random-error component
∗e ν̂it, the overall error component

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.
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FD statistic Description

Main

xb xjb, fitted values for the first-differenced model; the default
e eit − eit−1, the first-differenced overall error component

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction, that is, Zitδ̂.

ue calculates the prediction of µ̂i + ν̂it. This is not available after the first-differenced model.

xbu calculates the prediction of Zitδ̂+ µ̂i, the prediction including the fixed or random component.
This is not available after the first-differenced model.

u calculates the prediction of µ̂i, the estimated fixed or random effect. This is not available after the
first-differenced model.

e calculates the prediction of ν̂it.

Also see
[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models

[U] 20 Estimation and postestimation commands



Title

xtline — Panel-data line plots

Syntax

Graph by panel

xtline varlist
[

if
] [

in
] [

, panel options
]

Overlaid panels

xtline varname
[

if
] [

in
]
, overlay

[
overlaid options

]
panel options Description

Main

i(varnamei) use varnamei as the panel ID variable
t(varnamet) use varnamet as the time variable

Plot

cline options affect rendition of the plotted points connected by lines

Add plots

addplot(plot) add other plots to the generated graph

Y axis, Time axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
byopts(byopts) affect appearance of the combined graph

overlaid options Description

Main

overlay overlay each panel on the same graph
i(varnamei) use varnamei as the panel ID variable
t(varnamet) use varnamet as the time variable

Plots

plot#opts(cline options) affect rendition of the # panel line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, Time axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

A panel variable and a time variable must be specified. Use xtset (see [XT] xtset) or specify the i() and t()

options. The t() option allows noninteger values for the time variable, whereas xtset does not.
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Menu
Statistics > Longitudinal/panel data > Line plots

Description
xtline draws line plots for panel data.

Options for graph by panel

� � �
Main �

i(varnamei) and t(varnamet) override the panel settings from xtset; see [XT] xtset. varnamei is
allowed to be a string variable. varnamet can take on noninteger values and have repeated values
within panel. That is to say, it can be any numeric variable that you would like to specify for the
x-dimension of the graph. It is an error to specify i() without t() and vice versa.

� � �
Plot �

cline options affect the rendition of the plotted points connected by lines; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, Time axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

byopts(byopts) allows all the options documented in [G-3] by option. These options affect the
appearance of the by-graph. byopts() may not be combined with overlay.

Options for overlaid panels

� � �
Main �

overlay causes the plot from each panel to be overlaid on the same graph. The default is to generate
plots by panel. This option may not be combined with byopts() or be specified when there are
multiple variables in varlist.

i(varnamei) and t(varnamet) override the panel settings from xtset; see [XT] xtset. varnamei is
allowed to be a string variable. varnamet can take on noninteger values and have repeated values
within panel. That is to say, it can be any numeric variable that you would like to specify for the
x-dimension of the graph. It is an error to specify i() without t() and vice versa.

� � �
Plots �

plot#opts(cline options) affect the rendition of the #th panel (in sorted order). The cline options
can affect whether and how the points are connected; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.
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� � �
Y axis, Time axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks

Example 1

Suppose that Tess, Sam, and Arnold kept a calorie log for an entire calendar year. At the end of
the year, if they pooled their data together, they would have a dataset (for example, xtline1.dta)
that contains the number of calories each of them consumed for 365 days. They could then use xtset
to identify the date variable and treat each person as a panel and use xtline to plot the calories
versus time for each person separately.

. use http://www.stata-press.com/data/r12/xtline1

. xtset person day
panel variable: person (strongly balanced)
time variable: day, 01jan2002 to 31dec2002

delta: 1 day

. xtline calories, tlabel(#3)
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Specify the overlay option so that the values are plotted on the same graph to provide a better
comparison among Tess, Sam, and Arnold.
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. xtline calories, overlay
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Methods and formulas
xtline is implemented as an ado-file.

Also see
[XT] xtset — Declare data to be panel data

[G-2] graph twoway — Twoway graphs

[TS] tsline — Plot time-series data
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xtlogit — Fixed-effects, random-effects, and population-averaged logit models

Syntax
Random-effects (RE) model

xtlogit depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, re RE options
]

Conditional fixed-effects (FE) model

xtlogit depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, fe

[
FE options

]
Population-averaged (PA) model

xtlogit depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, pa

[
PA options

]
RE options Description

Model

noconstant suppress constant term
re use random-effects estimator; the default
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
noskip perform overall model test as a likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intmethod(intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod(mvaghermite)

intpoints(#) use # quadrature points; default is intpoints(12)

Maximization

maximize options control the maximization process; seldom used

nodisplay suppress display of header and coefficients
coeflegend display legend instead of statistics

218
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FE options Description

Model

fe use fixed-effects estimator
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
noskip perform overall model test as a likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

nodisplay suppress display of header and coefficients
coeflegend display legend instead of statistics

PA options Description

Model

noconstant suppress constant term
pa use population-averaged estimator
offset(varname) include varname in model with coefficient constrained to 1

Correlation

corr(correlation) within-group correlation structure
force estimate even if observations unequally spaced in time

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or
jackknife

nmp use divisor N − P instead of the default N
scale(parm) overrides the default scale parameter;

parm may be x2, dev, phi, or #
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Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

nodisplay do not display the header and coefficients
coeflegend display legend instead of statistics

correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

A panel variable must be specified. For xtlogit, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are

allowed for the fixed-effects and random-effects models; see [U] 11.1.6 weight. Weights must be constant
within panel.

nodisplay and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Binary outcomes > Logistic regression (FE, RE, PA)

Description
xtlogit fits random-effects, conditional fixed-effects, and population-averaged logit models.

Whenever we refer to a fixed-effects model, we mean the conditional fixed-effects model. depvar
equal to nonzero and nonmissing (typically depvar equal to one) indicates a positive outcome, whereas
depvar equal to zero indicates a negative outcome.

By default, the population-averaged model is an equal-correlation model; xtlogit, pa assumes
corr(exchangeable). See [XT] xtgee for information on how to fit other population-averaged
models.

See [R] logistic for a list of related estimation commands.
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Options for RE model

� � �
Model �

noconstant; see [R] estimation options.

re requests the random-effects estimator, which is the default.

offset(varname) constraints(constraints), collinear; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

noskip; see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod), intpoints(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following options are available with xtlogit but are not shown in the dialog box:

nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] estimation options.

Options for FE model

� � �
Model �

fe requests the fixed-effects estimator.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.
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� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

noskip; see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following options are available with xtlogit but are not shown in the dialog box:

nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] estimation options.

Options for PA model

� � �
Model �

noconstant; see [R] estimation options.

pa requests the population-averaged estimator.

offset(varname); see [R] estimation options.

� � �
Correlation �

corr(correlation), force; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtlogit but are not shown in the dialog box:

nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] estimation options.

Remarks
xtlogit is a convenience command if you want the population-averaged model. Typing

. xtlogit . . ., pa . . .

is equivalent to typing

. xtgee . . ., . . . family(binomial) link(logit) corr(exchangeable)

It is also a convenience command if you want the fixed-effects model. Typing

. xtlogit . . ., fe . . .

is equivalent to typing

. clogit . . ., group(varname i) . . .

See also [XT] xtgee and [R] clogit for information about xtlogit.

By default or when re is specified, xtlogit fits via maximum likelihood the random-effects
model

Pr(yit 6= 0|xit) = P (xitβ+ νi)

for i = 1, . . . , n panels, where t = 1, . . . , ni, νi are i.i.d., N(0, σ2
ν), and P (z) = {1+exp(−z)}−1.

Underlying this model is the variance components model

yit 6= 0 ⇐⇒ xitβ+ νi + εit > 0

where εit are i.i.d. logistic distributed with mean zero and variance σ2
ε = π2/3, independently of νi.
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Example 1

We are studying unionization of women in the United States and are using the union dataset; see
[XT] xt. We wish to fit a random-effects model of union membership:

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtlogit union age grade not_smsa south##c.year

(output omitted )
Random-effects logistic regression Number of obs = 26200
Group variable: idcode Number of groups = 4434

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12

Wald chi2(6) = 227.46
Log likelihood = -10540.274 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0156732 .0149895 1.05 0.296 -.0137056 .045052
grade .0870851 .0176476 4.93 0.000 .0524965 .1216738

not_smsa -.2511884 .0823508 -3.05 0.002 -.4125929 -.0897839
1.south -2.839112 .6413116 -4.43 0.000 -4.096059 -1.582164

year -.0068604 .0156575 -0.44 0.661 -.0375486 .0238277

south#c.year
1 .0238506 .0079732 2.99 0.003 .0082235 .0394777

_cons -3.009365 .8414963 -3.58 0.000 -4.658667 -1.360062

/lnsig2u 1.749366 .0470017 1.657245 1.841488

sigma_u 2.398116 .0563577 2.290162 2.511158
rho .6361098 .0108797 .6145307 .6571548

Likelihood-ratio test of rho=0: chibar2(01) = 6004.43 Prob >= chibar2 = 0.000

The output includes the additional panel-level variance component. This is parameterized as the log
of the variance ln(σ2

ν) (labeled lnsig2u in the output). The standard deviation σν is also included
in the output and labeled sigma u together with ρ (labeled rho),

ρ =
σ2
ν

σ2
ν + σ2

ε

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is
no different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of the
output. This test formally compares the pooled estimator (logit) with the panel estimator.

As an alternative to the random-effects specification, we might want to fit an equal-correlation
logit model:
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. xtlogit union age grade not_smsa south##c.year, pa

Iteration 1: tolerance = .1487877
Iteration 2: tolerance = .00949342
Iteration 3: tolerance = .00040606
Iteration 4: tolerance = .00001602
Iteration 5: tolerance = 6.628e-07

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: logit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 235.08
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0165893 .0092229 1.80 0.072 -.0014873 .0346659
grade .0600669 .0108343 5.54 0.000 .0388321 .0813016

not_smsa -.1215445 .0483713 -2.51 0.012 -.2163505 -.0267384
1.south -1.857094 .372967 -4.98 0.000 -2.588096 -1.126092

year -.0121168 .0095707 -1.27 0.205 -.030875 .0066413

south#c.year
1 .0160193 .0046076 3.48 0.001 .0069886 .0250501

_cons -1.39755 .5089508 -2.75 0.006 -2.395075 -.4000247

Example 2

xtlogit with the pa option allows a vce(robust) option, so we can obtain the population-averaged
logit estimator with the robust variance calculation by typing

. xtlogit union age grade not_smsa south##c.year, pa vce(robust) nolog

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: logit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 154.88
Scale parameter: 1 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on idcode)

Semirobust
union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0165893 .008951 1.85 0.064 -.0009543 .0341329
grade .0600669 .0133193 4.51 0.000 .0339616 .0861722

not_smsa -.1215445 .0613803 -1.98 0.048 -.2418477 -.0012412
1.south -1.857094 .5389238 -3.45 0.001 -2.913366 -.8008231

year -.0121168 .0096998 -1.25 0.212 -.0311282 .0068945

south#c.year
1 .0160193 .0067217 2.38 0.017 .002845 .0291937

_cons -1.39755 .5603767 -2.49 0.013 -2.495868 -.2992317

These standard errors are somewhat larger than those obtained without the vce(robust) option.
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Finally, we can also fit a fixed-effects model to these data (see also [R] clogit for details):

. xtlogit union age grade not_smsa south##c.year, fe

note: multiple positive outcomes within groups encountered.
note: 2744 groups (14165 obs) dropped because of all positive or

all negative outcomes.

Iteration 0: log likelihood = -4516.5881
Iteration 1: log likelihood = -4510.8906
Iteration 2: log likelihood = -4510.888
Iteration 3: log likelihood = -4510.888

Conditional fixed-effects logistic regression Number of obs = 12035
Group variable: idcode Number of groups = 1690

Obs per group: min = 2
avg = 7.1
max = 12

LR chi2(6) = 78.60
Log likelihood = -4510.888 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0710973 .0960536 0.74 0.459 -.1171643 .2593589
grade .0816111 .0419074 1.95 0.051 -.0005259 .163748

not_smsa .0224809 .1131786 0.20 0.843 -.199345 .2443069
1.south -2.856488 .6765694 -4.22 0.000 -4.182539 -1.530436

year -.0636853 .0967747 -0.66 0.510 -.2533602 .1259896

south#c.year
1 .0264136 .0083216 3.17 0.002 .0101036 .0427235

Technical note
The random-effects model is calculated using quadrature, which is an approximation whose accuracy

depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtlogit likelihood function is calculated by Gauss–Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.
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Saved results
xtlogit, re saves the following in e():
Scalars

e(N) number of observations
e(N g) number of groups
e(N cd) number of completely determined observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(rho) ρ

e(sigma u) panel-level standard deviation
e(n quad) number of quadrature points
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

xtlogit, fe saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N drop) number of observations dropped because of all positive or all negative outcomes
e(N group drop) number of groups dropped because of all positive or all negative outcomes
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(chi2) χ2

e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) clogit
e(cmd2) xtlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) fe
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(group) name of group() variable
e(multiple) multiple if multiple positive outcomes within groups
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

xtlogit, pa saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code

Macros
e(cmd) xtgee
e(cmd2) xtlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) binomial
e(link) logit; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(nmp) nmp, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
xtlogit is implemented as an ado-file.

xtlogit reports the population-averaged results obtained using xtgee, family(binomial)
link(logit) to obtain estimates. The fixed-effects results are obtained using clogit. See [XT] xtgee
and [R] clogit for details on the methods and formulas.

If we assume a normal distribution, N(0, σ2
ν), for the random effects νi,

Pr(yi1, . . . , yini |xi1, . . . ,xini) =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

where

F (y, z) =


1

1 + exp(−z)
if y 6= 0

1
1 + exp(z)

otherwise

The panel-level likelihood li is given by

li =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

≡
∫ ∞
−∞

g(yit, xit, νi)dνi

This integral can be approximated with M -point Gauss–Hermite quadrature

∫ ∞
−∞

e−x
2
h(x)dx ≈

M∑
m=1

w∗mh(a∗m)

This is equivalent to ∫ ∞
−∞

f(x)dx ≈
M∑
m=1

w∗m exp
{

(a∗m)2
}
f(a∗m)

where the w∗m denote the quadrature weights and the a∗m denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods li.

The default approximation of the log likelihood is by adaptive Gauss–Hermite quadrature, which
approximates the panel-level likelihood with

li ≈
√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}
g(yit, xit,

√
2σ̂ia∗m + µ̂i)

where σ̂i and µ̂i are the adaptive parameters for panel i. Therefore, with the definition of g(yit, xit, νi),
the total log likelihood is approximated by
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L ≈
n∑
i=1

wi log
[√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}exp

{
−(
√

2σ̂ia∗m + µ̂i)2/2σ2
ν

}
√

2πσν

ni∏
t=1

F (yit, xitβ+
√

2σ̂ia∗m + µ̂i)
]

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for µ̂i and σ̂i by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with σ̂i,0 = 1 and µ̂i,0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for li, we use

li,k ≈
M∑
m=1

√
2σ̂i,k−1w

∗
m exp

{
a∗m)2

}
g(yit, xit,

√
2σ̂i,k−1a

∗
m + µ̂i,k−1)

Letting
τi,m,k−1 =

√
2σ̂i,k−1a

∗
m + µ̂i,k−1

µ̂i,k =
M∑
m=1

(τi,m,k−1)

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k

and

σ̂i,k =
M∑
m=1

(τi,m,k−1)2

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k
− (µ̂i,k)2

and this is repeated until µ̂i,k and σ̂i,k have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method(aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

g(yit, xit, νi) =
e−ν

2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}

and find αi the mode of g(yit, xit, νi). We calculate

γi = − ∂2

∂ν2
i

log{g(yit, xit, νi)}
∣∣
νi=αi
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Then∫ ∞
−∞

g(yit, xit, νi)dνi ≈
(

2
γi

)1/2 M∑
m=1

w∗m exp
{

(a∗m)2
}
g

{
yit, xit,

(
2
γi

)1/2

a∗m + αi

}

This adaptation is performed on the first iteration only; that is, the αi and γi are calculated once at
the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss–Hermite quadrature, the int-
method(ghermite) option, where ρ = σ2

ν/(σ
2
ν + 1):

L =
n∑
i=1

wi log
{

Pr(yi1, . . . , yini |xi1, . . . ,xini)
}

≈
n∑
i=1

wi log

[
1√
π

M∑
m=1

w∗m

ni∏
t=1

F

{
yit,xitβ+ a∗m

(
2ρ

1− ρ

)1/2
}]

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

ni∏
t=1

F (yit,xitβ+ νi)

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can
become less accurate. For large ρ, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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Also see
[XT] xtlogit postestimation — Postestimation tools for xtlogit

[XT] quadchk — Check sensitivity of quadrature approximation

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtprobit — Random-effects and population-averaged probit models

[MI] estimation — Estimation commands for use with mi estimate

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands



Title

xtlogit postestimation — Postestimation tools for xtlogit

Description
The following postestimation commands are available after xtlogit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat1 AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins2 marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 estat ic is not appropriate after xtlogit, pa.
2 The default prediction statistic for xtlogit, fe, pu1, cannot be correctly handled by margins; however,

margins can be used after xtlogit, fe with the predict(pu0) option or the predict(xb) option.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
Random-effects model

predict
[

type
]

newvar
[

if
] [

in
] [

, RE statistic nooffset
]

Fixed-effects model

predict
[

type
]

newvar
[

if
] [

in
] [

, FE statistic nooffset
]

Population-averaged model

predict
[

type
]

newvar
[

if
] [

in
] [

, PA statistic nooffset
]

234
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RE statistic Description

Main

xb linear prediction; the default
pu0 probability of a positive outcome assuming that the random effect is zero
stdp standard error of the linear prediction

FE statistic Description

Main

pc1 predicted probability of a positive outcome conditional on one positive
outcome within group; the default

pu0 probability of a positive outcome assuming that the fixed effect is zero
xb linear prediction
stdp standard error of the linear prediction

PA statistic Description

Main

mu predicted probability of depvar; considers the offset()

rate predicted probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

The predicted probability for the fixed-effects model is conditional on there being only one outcome per
group. See [R] clogit for details.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb calculates the linear prediction. This is the default for the random-effects model.

pc1 calculates the predicted probability of a positive outcome conditional on one positive outcome
within group. This is the default for the fixed-effects model.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset(),
and rate ignores those adjustments. mu and rate are equivalent if you did not specify offset().
mu is the default for the population-averaged model.

pu0 calculates the probability of a positive outcome, assuming that the fixed or random effect for
that observation’s panel is zero (ν = 0). This may not be similar to the proportion of observed
outcomes in the group.
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stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for xtlogit. This option modifies
the calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as xitβ rather than xitβ+ offsetit.

Remarks

Example 1

In example 1 of [XT] xtlogit, we fit a random-effects model of union status on the person’s age
and level of schooling, whether she lived in an urban area, and whether she lived in the south. In
fact, we included the full interaction between south and year to capture both the overall effect of
residing in the south and a separate time-trend for southerners. To test whether residing in the south
affects union status, we must determine whether 1.south and south#c.year are jointly significant.
First, we refit our model, save the estimation results for later use, and use test to conduct a Wald
test of the joint significance of those two variables’ parameters:

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtlogit union age grade not_smsa south##c.year

(output omitted )
. estimates store fullmodel

. test 1.south 1.south#c.year

( 1) [union]1.south = 0
( 2) [union]1.south#c.year = 0

chi2( 2) = 143.93
Prob > chi2 = 0.0000

The test statistic is clearly significant, so we reject the null hypothesis that the coefficients are jointly
zero and conclude that living in the south does significantly affect union status.

We can also test our hypothesis with a likelihood-ratio test. Here we fit the model without
south##c.year and then call lrtest to compare this restricted model to the full model:

. xtlogit union age grade not_smsa

(output omitted )
. lrtest fullmodel .

Likelihood-ratio test LR chi2(2) = 146.55
(Assumption: . nested in fullmodel) Prob > chi2 = 0.0000

These results confirm our finding that living in the south affects union status.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands



Title

xtmelogit — Multilevel mixed-effects logistic regression

Syntax
xtmelogit depvar fe equation || re equation

[
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname
[
, re options

]
levelvar is a variable identifying the group structure for the random effects at that level or all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

Integration

laplace use Laplacian approximation; equivalent to intpoints(1)

intpoints(# [ # . . . ] ) set the number of integration (quadrature) points; default is 7

238
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Reporting

level(#) set confidence level; default is level(95)

or report fixed-effects coefficients as odds ratios
variance show random-effects parameter estimates as variances and

covariances
noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform LR test comparing with logistic regression
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process during gradient-based
optimization; seldom used

retolerance(#) tolerance for random-effects estimates; default is
retolerance(1e-8); seldom used

reiterate(#) maximum number of iterations for random-effects estimation;
default is reiterate(50); seldom used

matsqrt parameterize variance components using matrix square roots;
the default

matlog parameterize variance components using matrix logarithms
refineopts(maximize options) control the maximization process during refinement of starting

values

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
zero; the default unless a factor variable is specified

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances zero; the
default if factor variables are specified

unstructured all variances–covariances distinctly estimated

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Multilevel mixed-effects models > Mixed-effects logistic regression

Description
xtmelogit fits mixed-effects models for binary/binomial responses. Mixed models contain both

fixed effects and random effects. The fixed effects are analogous to standard regression coefficients and
are estimated directly. The random effects are not directly estimated (although they may be obtained
postestimation) but are summarized according to their estimated variances and covariances. Random
effects may take the form of either random intercepts or random coefficients, and the grouping structure
of the data may consist of multiple levels of nested groups. The distribution of the random effects
is assumed to be Gaussian. The conditional distribution of the response given the random effects is
assumed to be Bernoulli, with success probability determined by the logistic cumulative distribution
function (c.d.f.). Because the log likelihood for this model has no closed form, it is approximated by
adaptive Gaussian quadrature.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype), where vartype is

independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are zero.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p+ 1)/2 unique parameters.

covariance(independent) is the default, except when the random-effects equation is a factor-
variable specification R.varname, in which case covariance(identity) is the default, and only
covariance(identity) and covariance(exchangeable) are allowed.

collinear specifies that xtmelogit not omit collinear variables from the random-effects equation.
Usually there is no reason to leave collinear variables in place, and in fact doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.
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binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

� � �
Integration �

laplace specifies that log likelihoods be calculated using the Laplacian approximation, equivalent
to adaptive Gaussian quadrature with one integration point for each level in the model; laplace
is equivalent to intpoints(1). Computation time increases as a function of the number of
quadrature points raised to a power equaling the dimension of the random-effects specification.
The computational time saved by using laplace can thus be substantial, especially when you
have many levels and/or random coefficients.

The Laplacian approximation has been known to produce biased parameter estimates, but the bias
tends to be more prominent in the estimates of the variance components rather than in estimates
of the fixed effects. If your interest lies primarily with the fixed-effects estimates, the Laplace
approximation may be a viable faster alternative to adaptive quadrature with multiple integration
points.

Specifying a factor variable, R.varname, increases the dimension of the random effects by the
number of distinct values of varname, that is, the number of factor levels. Even when this number
is small to moderate, it increases the total random-effects dimension to the point where estimation
with more than one quadrature point is prohibitively intensive.

For this reason, when you have factor variables in your random-effects equations, the laplace
option is assumed. You can override this behavior by using the intpoints() option.

intpoints(# [ # . . . ] ) sets the number of integration points for adaptive Gaussian quadrature. The
more points, the more accurate the approximation to the log likelihood. However, computation
time increases with the number of quadrature points, and in models with many levels and/or many
random coefficients, this increase can be substantial.

You may specify one number of integration points applying to all levels of random effects in
the model, or you may specify distinct numbers of points for each level. intpoints(7) is the
default; that is, by default seven quadrature points are used for each level.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the fixed-effects coefficients transformed to odds ratios, that is, exp(b) rather than b.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or when replaying
previously estimated results.

variance displays the random-effects parameter estimates as variances and covariances. The default
is to display them as standard deviations and correlations.

noretable suppresses the table of random effects.

nofetable suppresses the table of fixed effects.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level.
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noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents xtmelogit from performing a likelihood-ratio test that compares the mixed-effects
logistic model with standard (marginal) logistic regression. This option may also be specified upon
replay to suppress this test from the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for xtmelogit are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

from(init specs) is particularly useful when combined with refineopts(iterate(0)), which
bypasses the initial optimization stage; see below.

retolerance(#) specifies the convergence tolerance for the estimated random effects used by adaptive
Gaussian quadrature. Although not estimated as model parameters, random-effects estimators are
used to adapt the quadrature points. Estimating these random effects is an iterative procedure,
with convergence declared when the maximum relative change in the random effects is less than
retolerance(). The default is retolerance(1e-8). You should seldom have to use this option.

reiterate(#) specifies the maximum number of iterations used when estimating the random effects
to be used in adapting the Gaussian quadrature points; see the retolerance() option. The default
is reiterate(50). You should seldom have to use this option.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance–covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

refineopts(maximize options) controls the maximization process during the refinement of starting
values. Estimation in xtmelogit takes place in two stages. In the first stage, starting values
are refined by holding the quadrature points fixed between iterations. During the second stage,
quadrature points are adapted with each evaluation of the log likelihood. Maximization options
specified within refineopts() control the first stage of optimization; that is, they control the
refining of starting values.

maximize options specified outside refineopts() control the second stage.

The one exception to the above rule is the nolog option, which when specified outside refine-
opts() applies globally.

from(init specs) is not allowed within refineopts() and instead must be specified globally.
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Refining starting values helps make the iterations of the second stage (those that lead toward the so-
lution) more numerically stable. In this regard, of particular interest is refineopts(iterate(#)),
with two iterations being the default. Should the maximization fail because of instability in the
Hessian calculations, one possible solution may be to increase the number of iterations here.

The following option is available with xtmelogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Two-level models
Other covariance structures
Distribution theory for likelihood-ratio tests
Three-level models
Computation time and the Laplacian approximation
Crossed-effects models

Introduction

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal/panel data, random effects are useful for modeling intracluster correlation; that
is, observations in the same cluster are correlated because they share common cluster-level random
effects.

xtmelogit allows for not just one, but many levels of nested clusters of random effects. For
example, in a three-level model you can specify random effects for schools and then random effects
for classes nested within schools. In this model, the observations (presumably, the students) comprise
the first level, the schools comprise the second level, and the classes comprise the third.

However, for simplicity, for now we consider the two-level model where, for a series of M
independent clusters, and conditional on a set of random effects uj ,

Pr(yij = 1|uj) = H (xijβ+ zijuj) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The responses are
the binary-valued yij , and we follow the standard Stata convention of treating yij = 1 if depvarij 6= 0,
and yij = 0 otherwise. The 1× p row vector xij are the covariates for the fixed effects, analogous
to the covariates you would find in a standard logistic regression model, with regression coefficients
(fixed effects) β.

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is logistic regression, H(·) is the logistic cumulative distribution function
(c.d.f.). The logistic c.d.f. maps the linear predictor to the probability of a success (yij = 1), with
H(v) = exp(v)/{1 + exp(v)}.
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Model (1) may also be stated in terms of a latent linear response, where only yij = I(y∗ij > 0)
is observed for the latent

y∗ij = xijβ+ zijuj + εij

The errors εij are distributed as logistic with mean zero and variance π2/3 and are independent of
uj .

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
xtmixed. Because of the relationship between LMEs and GLMMs, there is insight to be gained through
examination of the linear mixed model. This is especially true for Stata users because the terminology,
syntax, options, and output for fitting these types of models are nearly identical. See [XT] xtmixed
and the references therein, particularly in the Introduction, for more information.

Multilevel models with binary responses have been used extensively in the health and social
sciences. As just one example, Leyland and Goldstein (2001, sec. 3.6) describe a study of equity of
health care in Great Britain. Multilevel models with binary and other limited dependent responses
also have a long history in econometrics; Rabe-Hesketh, Skrondal, and Pickles (2005) provide an
excellent survey.

Log-likelihood calculations for fitting any mixed-effects model (LME, logistic, or otherwise) require
integrating out the random effects. For LME, this integral has a closed-form solution, but this is not so
with the logistic or any other GLMM. In dealing with this difficulty, early estimation methods avoided
the integration altogether. Two such popular methods are the closely related penalized quasilikelihood
(PQL) and marginal quasilikelihood (MQL) (Breslow and Clayton 1993). Both PQL and MQL use a
combination of iterative reweighted least squares (see [R] glm) and standard estimation techniques for
fitting LMEs. Efficient computational methods for fitting LMEs have existed for some time (Bates and
Pinheiro 1998; Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However,
both these methods suffer from two key disadvantages. First, they have been shown to be biased,
and this bias can be severe when clusters are small and/or intracluster correlation is high (Rodrı́guez
and Goldman 1995; Lin and Breslow 1996). Second, because they are “quasilikelihood” methods and
not true likelihood methods, their use prohibits comparing nested models via likelihood-ratio tests,
blocking the main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss–Hermite quadrature, or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models. Also,
if done correctly, quadrature approximations can be quite accurate, thus minimizing bias.

In discussing quadrature, it is easiest to relate to the simplest form of (1)—the simplest model
you can fit using xtmelogit—the two-level model with a random intercept,

Pr(yij = 1) = H (xijβ+ uj)

This model can also be fit using xtlogit with the re option. xtlogit supports three types of Gauss–
Hermite quadrature; see [XT] xtlogit. The estimation method used by xtmelogit is a multicoefficient
and multilevel extension of one of these quadrature types, namely, adaptive Gaussian quadrature (AGQ)
based on conditional modes, with the multicoefficient extension from Pinheiro and Bates (1995) and
the multilevel extension from Pinheiro and Chao (2006); see Methods and formulas.
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Finally, using (1) and its multilevel extensions requires we state our convention of terminology.
Model (1) is what we call a two-level model, with extensions to three, four, or any number of levels.
In (1), the observation yij is for individual i within cluster j and the individuals comprise the first
level and the clusters the second level of the model. In our hypothetical three-level model with classes
nested within schools, the observations within schools (the students, presumably) would constitute the
first level, the classes would constitute the second level, and the schools would constitute the third
level. This differs from certain citations in the classical ANOVA literature and texts such as Pinheiro
and Bates (2000) but is the standard in the vast literature on hierarchical models, for example, Skrondal
and Rabe-Hesketh (2004).

Two-level models

We begin with a simple application of (1). We begin with a two-level model because a one-level
model, in our terminology, is just standard logistic regression; see [R] logistic.

Example 1

Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.

. use http://www.stata-press.com/data/r12/bangladesh
(Bangladesh Fertility Survey, 1989)

. describe

Contains data from http://www.stata-press.com/data/r12/bangladesh.dta
obs: 1,934 Bangladesh Fertility Survey, 1989

vars: 7 28 May 2011 20:27
size: 19,340 (_dta has notes)

storage display value
variable name type format label variable label

district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float %9.0g Age, mean centered
child1 byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children

Sorted by: district

The women sampled were from 60 districts, identified by variable district. Each district contained
either urban or rural areas (variable urban) or both. Variable c use is the binary response, with
a value of one indicating contraceptive use. Other covariates include mean-centered age and three
indicator variables recording number of children.

Consider a standard logistic regression model, amended to have random effects for each district.
Defining πij = Pr(c useij = 1), we have

logit(πij) = β0 + β1urbanij + β2ageij + β3child1ij + β4child2ij + β5child3ij + uj (2)

for j = 1, . . . , 60 districts, with i = 1, . . . , nj women in district j.
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. xtmelogit c_use urban age child* || district:

Refining starting values:

Iteration 0: log likelihood = -1219.2682
Iteration 1: log likelihood = -1209.3544
Iteration 2: log likelihood = -1207.1919

Performing gradient-based optimization:

Iteration 0: log likelihood = -1207.1919
Iteration 1: log likelihood = -1206.8323
Iteration 2: log likelihood = -1206.8322
Iteration 3: log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2
max = 118

Integration points = 7 Wald chi2(5) = 109.60
Log likelihood = -1206.8322 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

urban .7322764 .1194857 6.13 0.000 .4980887 .9664641
age -.0264982 .0078916 -3.36 0.001 -.0419654 -.0110309

child1 1.116002 .1580921 7.06 0.000 .8061466 1.425856
child2 1.365895 .1746691 7.82 0.000 1.02355 1.70824
child3 1.344031 .1796549 7.48 0.000 .991914 1.696148
_cons -1.68929 .1477592 -11.43 0.000 -1.978892 -1.399687

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Identity
sd(_cons) .4643477 .0789531 .3327464 .6479975

LR test vs. logistic regression: chibar2(01) = 43.39 Prob>=chibar2 = 0.0000

Those of you familiar with xtmixed, Stata’s command for fitting linear mixed models, will
recognize the syntax and output. Whether you are familiar with xtmixed, however, there are enough
nuances in xtmelogit to warrant the guided tour:

1. By typing “c use urban age child*”, we specified the binary response, c use, and the fixed
portion of the model in the same way we would if we were using logit or any other estimation
command. Our fixed effects are a constant term (intercept) and coefficients on urban, age, and
the indicator variables child1, child2, and child3.

2. When we added “|| district:”, we specified random effects at the level identified by group
variable district. Because we wanted only a random intercept, that is all we had to type.

3. The estimation log consists of two parts:

(a) A set of iterations aimed at refining starting values. These are designed to be relatively quick
iterations aimed at getting the parameter estimates within a neighborhood of the eventual
solution, making the iterations in (b) more numerically stable.

(b) A set of “gradient-based” iterations. By default, these are Newton–Raphson iterations, but other
methods are available by specifying the appropriate maximize options; see [R] maximize.

4. Within the output header you will find a series of group (district) statistics. District sizes vary
greatly, ranging the all way from nj = 2 to nj = 118.
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5. Just above the reported log likelihood, the number of “Integration Points” is displayed as 7,
the default. As stated previously in Introduction, log likelihoods are approximated using adaptive
Gaussian quadrature, and the more integration points you use, the better the approximation;
see Methods and formulas. You can specify an alternate number of integration points using the
intpoints() option.

In any case, refitting this model with more integration points would demonstrate that seven
integration points is sufficient.

6. The first estimation table reports the fixed effects, and these can be interpreted just as you would
the output from logit. You can also specify the or option at estimation or on replay to display
the fixed effects as odds ratios instead.

If you did display results as odds ratios, you would find urban women to have roughly double the
odds of using contraception as that of their rural counterparts. Having any number of children will
increase the odds from three- to fourfold, when compared with the base category of no children.
Contraceptive use also decreases with age.

7. The second estimation table shows the estimated variance components. The first section of the table
is labeled “district: Identity”, meaning that these are random effects at the district level
and that their variance–covariance matrix is a multiple of the identity matrix; that is, Σ = σ2

uI.
Because we have only one random effect at this level, xtmelogit knew that Identity is the only
possible covariance structure. In any case, σu was estimated as 0.464 with standard error 0.079.

If you prefer variance estimates, σ̂2
u, to standard deviation estimates, σ̂u, specify the variance

option either at estimation or on replay.

8. A likelihood-ratio test comparing the model to ordinary logistic regression, (2) without uj , is
provided and is highly significant for these data.

9. Finally, because (2) is a simple random-intercept model, you can also fit it with xtlogit, specifying
the re option.

We now store our estimates for later use.

. estimates store r_int

In what follows we will be extending (2), focusing on variable urban. Before we begin, to keep
things short we restate (2) as

logit(πij) = β0 + β1urbanij + Fij + uj

where Fij is merely shorthand for the portion of the fixed-effects specification having to do with age
and children.

Example 2

Extending (2) to allow for a random slope on the indicator variable urban yields the model

logit(πij) = β0 + β1urbanij + Fij + uj + vjurbanij (3)

which we can fit by typing

. xtmelogit c_use urban age child* || district: urban

(output omitted )
. estimates store r_urban
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Extending the model was as simple as adding urban to the random effects specification, so that
the model now includes a random intercept and a random coefficient on urban. We dispense with
the output because, although this is an improvement over the random-intercept model (2),

. lrtest r_int r_urban

Likelihood-ratio test LR chi2(1) = 3.66
(Assumption: r_int nested in r_urban) Prob > chi2 = 0.0558

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

we find the default covariance structure for (uj , vj), covariance(Independent),

Σ = Var
[
uj
vj

]
=
[
σ2
u 0
0 σ2

v

]
to be inadequate. We state that the random-coefficient model is an “improvement” over the random-
intercept model because the null hypothesis of the LR comparison test (H0 : σ2

v = 0) is on the boundary
of the parameter test. This makes the reported p-value, 5.6%, an upper bound on the actual p-value,
which is actually half that; see [XT] xtmixed for more details on boundary tests.

We see below that we can reject this model in favor of one that allows correlation between uj
and vj .

. xtmelogit c_use urban age child* || district: urban, covariance(unstructured)
> variance

(output omitted )
Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2
max = 118

Integration points = 7 Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

urban .8157872 .171552 4.76 0.000 .4795516 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

child1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
child3 1.353827 .1828801 7.40 0.000 .9953881 1.712265
_cons -1.71165 .1605617 -10.66 0.000 -2.026345 -1.396954

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Unstructured
var(urban) .6663222 .3224715 .258071 1.7204
var(_cons) .3897434 .1292459 .2034723 .7465388

cov(urban,_cons) -.4058846 .1755418 -.7499403 -.0618289

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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. estimates store r_urban_corr

. lrtest r_urban r_urban_corr

Likelihood-ratio test LR chi2(1) = 11.38
(Assumption: r_urban nested in r_urban_corr) Prob > chi2 = 0.0007

By specifying covariance(unstructured) above, we told xtmelogit to allow correlation between
random effects at the “district level”; that is,

Σ = Var
[
uj
vj

]
=
[
σ2
u σuv

σuv σ2
v

]
The variance option is a display option that does not affect estimation but merely displays the
variance components as variances and covariances instead of standard deviations and correlations.
This feature will prove convenient in the discussion that follows.

Example 3

The purpose of introducing a random coefficient on the binary variable urban in (3) was to allow
for separate random effects, within each district, for the urban and rural areas of that district. Hence,
if we had the binary variable rural in our data such that ruralij = 1 − urbanij , then we can
reformulate (3) as

logit(πij) = β0ruralij + (β0 + β1)urbanij + Fij + ujruralij + (uj + vj)urbanij (3a)

where we have translated both the fixed portion and random portion to be in terms of rural rather
than a random intercept. Translating the fixed portion is not necessary to make the point we make
below, but we do so anyway for uniformity.

Translating the estimated random-effects parameters from the previous output to ones appropriate
for (3a), we get Var(uj) = σ̂2

u = 0.390,

Var(uj + vj) = σ̂2
u + σ̂2

v + 2σ̂uv
= 0.390 + 0.666− 2(0.406) = 0.244

and Cov(uj , uj + vj) = σ̂2
u + σ̂uv = 0.390− 0.406 = −0.016.

An alternative that does not require remembering how to calculate variances and covariances
involving sums—and one that also gives you standard errors—is to let Stata do the work for you:
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. generate byte rural = 1 - urban

. xtmelogit c_use rural urban age child*, nocons || district: rural urban,
> nocons cov(unstr) var

(output omitted )
Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2
max = 118

Integration points = 7 Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

rural -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954
urban -.8958623 .1704961 -5.25 0.000 -1.230028 -.5616962

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902
child1 1.13252 .1603285 7.06 0.000 .818282 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
child3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Unstructured
var(rural) .3897439 .1292459 .2034726 .7465394
var(urban) .2442965 .1450673 .0762886 .7823029

cov(rural,urban) -.0161411 .1057469 -.2234011 .191119

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The above output demonstrates an equivalent fit to that we displayed for model (3) in example 2,
with the added benefit of a more direct comparison of the parameters for rural and urban areas.

Technical note
We used the binary variables, rural and urban, instead of the factor notation i.urban because,

although supported in the fixed-effects specification of the model, such notation is not supported in
random-effected specifications.

Technical note
Our model fits for (3) and (3a) are equivalent only because we allowed for correlation in the

random effects for both. Had we used the default “Independent” covariance structure, we would
be fitting different models; in (3) we would be making the restriction that Cov(uj , vj) = 0, whereas
in (3a) we would be assuming that Cov(uj , uj + vj) = 0.

The moral here is that, although xtmelogit will do this by default, one should be cautious when
imposing an independent covariance structure, because the correlation between random effects is not
invariant to model translations that would otherwise yield equivalent results in standard regression
models. In our example, we remapped an intercept and binary coefficient to two complementary
binary coefficients, something we could do in standard logistic regression without consequence, but
that here required more consideration.

Rabe-Hesketh and Skrondal (2008, 150–153) provide a nice discussion of this phenomenon in the
related case of recentering a continuous covariate.
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Other covariance structures
In the above examples, we demonstrated the Independent and Unstructured covariance struc-

tures. Also available are Identity (seen previously in output but not directly specified), which
restricts random effects to be uncorrelated and share a common variance, and Exchangeable, which
assumes a common variance and a common pairwise covariance.

You can also specify multiple random-effects equations at the same level, in which case the above
four covariance types can be combined to form more complex blocked-diagonal covariance structures.
This could be used, for example, to impose an equality constraint on a subset of variance components
or to otherwise group together a set of related random effects.

Continuing the previous example, typing

. xtmelogit c_use urban age child* || district: child*, cov(exchangeable) || district:

would fit a model with the same fixed effects as (3) but with random-effects structure

logit(πij) = β0 + · · ·+ u1jchild1ij + u2jchild2ij + u3jchild3ij + vj

That is, we have random coefficients on each indicator variable for children (the first district:
specification) and an overall district random intercept (the second district: specification). The
above syntax fits a model with overall covariance structure

Σ = Var


u1j

u2j

u3j

vj

 =


σ2
u σc σc 0
σc σ2

u σc 0
σc σc σ2

u 0
0 0 0 σ2

v


reflecting the relationship among the random coefficients for children. We did not have to specify
noconstant on the first district: specification. xtmelogit automatically avoids collinearity by
including an intercept on only the final specification among repeated-level equations.

Of course, if we fit the above model we would heed our own advice from the previous technical
note and make sure that not only our data but also our specification characterization of the random
effects permitted the above structure. That is, we would check the above against a model that had
an Unstructured covariance for all four random effects and then perhaps against a model that
assumed an Unstructured covariance among the three random coefficients on children, coupled
with independence with the random intercept. All comparisons can be made by storing estimates
(command estimates store) and then using lrtest, as demonstrated previously.

Distribution theory for likelihood-ratio tests

A keen observer of the output for fitting the equivalent models (3) and (3a) may have noticed
that, in the output for (3a), the covariance parameter does not appear at all significant. In fact, an LR
test would confirm this. In the results for (3), however, all three variance components appear to be
significant, and you would be hard pressed to prove otherwise. We thus have two entirely equivalent
model fits, yet the first fit relies on all three variance components, whereas with the second you could
presumably drop the covariance between the random coefficients. Whether generalizing from model
(2) to model (3)/(3a) requires one or two additional parameters is unclear. Asked another way: do
the models differ by 1 or 2 degrees of freedom?

Such paradoxical cases are at the core of the central issue concerning distribution theory for LR
tests, where oftentimes significance levels cannot be exactly computed when models differ by (or
appear to differ by) more than one variance component. We will not go into the details here but
instead direct you to the section in [XT] xtmixed with the same name as this one. What is stated
there applies equally to xtmelogit.
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When significance levels cannot be computed exactly, both xtmelogit and lrtest will caution
you, and you may have noticed the following message at the bottom of some of the xtmelogit
output we have produced:

Note: LR test is conservative and provided only for reference.

In Stata, part of that message is blue, meaning that you can click on it for more details. If you are
not interested in all the details, it suffices to know that by “conservative” we mean that the p-value
displayed is an upper bound on the actual p-value. If you choose to reject the null hypothesis of
a reduced model on the basis of the displayed p-value, you would also reject based on the actual
p-value, because it would be even smaller.

The output of lrtest will produce a similar note in these situations. However, because lrtest
can be used to compare all kinds of nested models, determining whether boundary conditions exist
is up to the user.

Three-level models
The methods we have discussed so far extend from two-level models to three or more level models

with nested random effects. By nested we mean that the random effects shared within lower-level
subgroups are unique to the upper-level groups. For example, assuming that classroom effects would
be nested within schools would be natural, because classrooms are unique to schools.

Example 4

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive
ability of patients with schizophrenia, compared with their relatives and control subjects. Cognitive
ability was measured as the successful completion of the “Tower of London”, a computerized task,
measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements
(one for each difficulty level), and because patients’ relatives were also tested, a family identifier,
family, was also recorded.

. use http://www.stata-press.com/data/r12/towerlondon, clear
(Tower of London data)

. describe

Contains data from http://www.stata-press.com/data/r12/towerlondon.dta
obs: 677 Tower of London data

vars: 5 31 May 2011 10:41
size: 4,739 (_dta has notes)

storage display value
variable name type format label variable label

family int %8.0g Family ID
subject int %9.0g Subject ID
dtlm byte %9.0g 1 = task completed
difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte %8.0g 1: controls; 2: relatives; 3:

schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families.
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. xtmelogit dtlm difficulty i.group || family: || subject:

(output omitted )
Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

family 118 2 5.7 27 7
subject 226 2 3.0 3 7

Wald chi2(3) = 74.89
Log likelihood = -305.12043 Prob > chi2 = 0.0000

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

difficulty -1.648506 .1932139 -8.53 0.000 -2.027198 -1.269814

group
2 -.24868 .3544065 -0.70 0.483 -.943304 .4459441
3 -1.0523 .3999896 -2.63 0.009 -1.836265 -.2683348

_cons -1.485861 .2848469 -5.22 0.000 -2.04415 -.9275709

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
sd(_cons) .7544415 .3457249 .3072983 1.852213

subject: Identity
sd(_cons) 1.066739 .3214235 .5909883 1.925472

LR test vs. logistic regression: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

But we would prefer to see odds ratios and variances for the random-effects parameters:

. xtmelogit, or variance

Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

family 118 2 5.7 27 7
subject 226 2 3.0 3 7

Wald chi2(3) = 74.89
Log likelihood = -305.12043 Prob > chi2 = 0.0000

dtlm Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

difficulty .192337 .0371622 -8.53 0.000 .131704 .2808839

group
2 .7798295 .2763767 -0.70 0.483 .3893393 1.561964
3 .3491338 .1396499 -2.63 0.009 .1594117 .7646518

_cons .2263075 .064463 -5.22 0.000 .1294902 .3955133
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
var(_cons) .569182 .5216584 .0944322 3.430694

subject: Identity
var(_cons) 1.137931 .6857498 .3492672 3.707442

LR test vs. logistic regression: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

Notes:

1. This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is important—xtmelogit
assumes that subject is nested within family.

2. The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families. Also the number of integration
points for adaptive Gaussian quadrature is displayed within this table, because you can choose to
have it vary by model level. As with two-level models, the default is seven points.

You can suppress this table with the nogroup or the noheader option, which will suppress the
rest of the header as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the random-effects structure, the odds of successful completion of the Tower of
London decrease dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects. Of course we would make similar conclusions
from a standard logistic model fit to the same data, but the odds ratios would differ somewhat.

Technical note
In the previous example, the subjects are coded with unique values between 1 and 251 (with some

gaps), but such coding is not necessary to produce nesting within families. Once we specified the
nesting structure to xtmelogit, all that was important was the relative coding of subject within
each unique value of family. We could have coded subjects as the numbers 1, 2, 3, and so on,
restarting at 1 with each new family, and xtmelogit would have produced the same results.

Group identifiers may also be coded using string variables.

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, xtmelogit can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.
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Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p2{M +M(NQ)qt}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, NQ is the number of quadrature points, and qt is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time is
(NQ)qt . However, because this is a power function, this factor can get prohibitively large. Consider
a model with one random intercept and three random coefficients, such as that discussed in Other
covariance structures. For such a model, (NQ)qt = 74 = 2,401 using the default number of quadrature
points. Even a modest reduction to five quadrature points would reduce this factor by almost fourfold
(54 = 625) which, depending on M and p, could drastically speed up estimation.

Ideally, you want to use enough quadrature points such that your estimates are stable and that
adding more quadrature points would not change the estimates much. If you want accurate estimates,
we recommend that you perform this check. We have tacitly followed this advice in all the models
we have fit thus far. In each example, increasing the number of quadrature points from the default
of seven did not make much of a difference.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of NQ = 1, otherwise known as the Laplacian approximation;
see Methods and formulas. You can obtain this estimate either by using the laplace option or by
directly setting intpoints(1). The computational benefit is evident—one raised to any power equals
one—and the Laplacian approximation has been shown to perform well in certain situations (Liu and
Pierce 1994; Tierney and Kadane 1986).

In the previous section, we fit a three-level model to the Tower of London data using seven
quadrature points. We refit the same model, this time via the Laplacian approximation:

. xtmelogit dtlm difficulty i.group || family: || subject:, laplace or variance

(output omitted )
Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

family 118 2 5.7 27 1
subject 226 2 3.0 3 1

Wald chi2(3) = 76.09
Log likelihood = -306.51035 Prob > chi2 = 0.0000

dtlm Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

difficulty .2044132 .0377578 -8.60 0.000 .1423248 .2935872

group
2 .7860452 .2625197 -0.72 0.471 .4084766 1.512613
3 .3575718 .1354592 -2.71 0.007 .1701774 .7513194

_cons .2396663 .0639645 -5.35 0.000 .1420464 .4043746
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
var(_cons) .5229424 .4704255 .0896881 3.049108

subject: Identity
var(_cons) .790933 .5699271 .1926569 3.247094

LR test vs. logistic regression: chi2(2) = 14.76 Prob > chi2 = 0.0006

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

Comparing these results to those previously obtained, we observe the following:

1. Odds ratios and their standard errors are well approximated by the Laplacian method. Therefore,
if your interest lies primarily here, then laplace may be a viable alternative.

2. Estimates of variance components exhibit bias, particularly at the lower (subject) level.

3. The model log-likelihood and comparison LR test are in fair agreement.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
more in the estimated variance components than in the estimates of the fixed effects.

Item 3 is of particular interest, because it demonstrates that laplace can produce a decent estimate
of the model log likelihood. Consequently, you can use laplace during the model building phase of
your analysis, during which you are comparing competing models by using LR tests. Once you settle
on a parsimonious model that fits well, you can then increase the number of quadrature points and
obtain more accurate parameter estimates for further study.

We discuss such a scenario in Other covariance structures, where we posit a blocked-diagonal
exchangeable/identity covariance structure and recommend comparing against more complex structures
to verify our assumptions. The comparisons ruling out the more complex structures can be performed
more quickly using laplace.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas. Asymptotic theory dictates that this approximation improves with larger clusters. Of
course, the key question, as always, is “How large is large enough?” Also, there are data situations
where the Laplacian approximation performs well even with small clusters. Therefore, it is difficult
to make a definitive call as to when you can expect laplace to yield accurate results across all
aspects of the model.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Crossed-effects models
Not all mixed-effects models contain nested random effects.
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Example 5

Rabe-Hesketh and Skrondal (2008, 481ff) perform an analysis on school data from Fife, Scotland.
The data, originally from Paterson (1991), are from a study measuring students’ attainment as an
integer score from 1 to 10, based on the Scottish school exit examination taken at age 16. The study
comprises 3,435 students who first attended any one of 148 primary schools and then any one of 19
secondary schools.

. use http://www.stata-press.com/data/r12/fifeschool
(School data from Fife, Scotland)

. describe

Contains data from http://www.stata-press.com/data/r12/fifeschool.dta
obs: 3,435 School data from Fife, Scotland

vars: 5 28 May 2011 10:08
size: 24,045 (_dta has notes)

storage display value
variable name type format label variable label

pid int %9.0g Primary school ID
sid byte %9.0g Secondary school ID
attain byte %9.0g Attainment score at age 16
vrq int %9.0g Verbal-reasoning score from final

year of primary school
sex byte %9.0g 1: female; 0: male

Sorted by:

. generate byte attain_gt_6 = attain > 6

To make the analysis relevant to our present discussion, we focus not on the attainment score itself
but instead on whether the score is greater than 6. We wish to model this indicator as a function of
the fixed effect sex and of random effects due to primary and secondary schools.

For this analysis, it would make sense to assume that the random effects are not nested, but instead
crossed, meaning that the effect due to primary school is the same regardless of the secondary school
attended. Our model is thus

logit{Pr(attainijk > 6)} = β0 + β1sexijk + uj + vk (4)

for student i, i = 1, . . . , njk, who attended primary school j, j = 1, . . . , 148, and then secondary
school k, k = 1, . . . , 19.

Because there is no evident nesting, one solution would be to consider the data as a whole and
fit a two-level, one-cluster model with random-effects structure

u =



u1
...

u148

v1
...
v19


∼ N(0,Σ); Σ =

[
σ2
uI148 0
0 σ2

vI19

]

We can fit such a model by using the group designation all:, which tells xtmelogit to treat
the whole dataset as one cluster, and the factor notation R.varname, which mimics the creation of
indicator variables identifying schools:

. xtmelogit attain_gt_6 sex || _all:R.pid || _all:R.sid, or variance
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But we do not recommend fitting this model this way, because of high total dimension (148+19 = 167)
of the random effects. This would require working with matrices of column dimension 167, which
is probably not a problem for most current hardware, but would be if this number got much larger.

An equivalent way to fit (4) that has a smaller dimension is to treat the clusters identified by
primary schools as nested within the entire data, that is, as nested within the “ all” group.

. xtmelogit attain_gt_6 sex || _all:R.sid || pid:, or variance

Note: factor variables specified; option laplace assumed

(output omitted )
Mixed-effects logistic regression Number of obs = 3435

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

_all 1 3435 3435.0 3435 1
pid 148 1 23.2 72 1

Wald chi2(1) = 14.28
Log likelihood = -2220.0035 Prob > chi2 = 0.0002

attain_gt_6 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

sex 1.32512 .0986967 3.78 0.000 1.145135 1.533395
_cons .5311498 .0622641 -5.40 0.000 .4221188 .6683427

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.sid) .1239741 .0694743 .0413354 .3718255

pid: Identity
var(_cons) .4520491 .0953864 .2989334 .6835916

LR test vs. logistic regression: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

Choosing the primary schools as those to nest was no accident; because there are far fewer secondary
schools than primary schools, the above required only 19 random coefficients for the secondary
schools, and one random intercept at the primary school level, for a total dimension of 20. Our data
also include a measurement of verbal reasoning, variable vrq. Adding a fixed effect due to vrq in
(4) would negate the effect due to secondary school, a fact we leave to you to verify as an exercise.

See [XT] xtmixed for a similar discussion of crossed effects in the context of linear mixed models.
Also see Rabe-Hesketh and Skrondal (2008, chap. 11) for more examples of crossed-effects models,
including models with random interactions, and for more techniques on how to avoid high-dimensional
estimation.

Technical note

The estimation in the previous example was performed using a Laplacian approximation, even
though we did not specify this. Whenever factor variables are used in random-effects specifications
(the R.varname notation), estimation reverts to the Laplacian method because of the high dimension
induced by having factor variables.



xtmelogit — Multilevel mixed-effects logistic regression 259

In the above example, through some creative nesting we reduced the dimension of the random
effects to 20, but this is still too large to permit estimation via adaptive Gaussian quadrature; see
Computation time and the Laplacian approximation. Even with two quadrature points, our rough
formula for computation time would contain within it a factor of 220 = 1,048,576.

The laplace option is therefore assumed when you use factor variables. If the number of distinct
levels of your factors is small enough (say, five or fewer) to permit estimation via AGQ, you can
override the imposition of laplace by specifying the intpoints() option.

Saved results
xtmelogit saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k f) number of FE parameters
e(k r) number of RE parameters
e(k rs) number of standard deviations
e(k rc) number of correlations
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for χ2

e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) p-value, comparison model
e(rank) rank of e(V)
e(reparm rc) return code, final reparameterization
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtmelogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(model) logistic
e(title) title in estimation output
e(offset) linear offset variable
e(binomial) binomial number of trials
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(n quad) number of integration points
e(laplace) laplace, if Laplace approximation
e(chi2type) Wald, type of model χ2

e(vce) bootstrap or jackknife if defined
e(vcetype) title used to label Std. Err.
e(method) ML
e(opt) type of optimization
e(ml method) type of ml method
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimator

Functions
e(sample) marks estimation sample

Methods and formulas
xtmelogit is implemented as an ado-file.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by xtmelogit (option binomial()), the methods presented below are in terms of the
more general binomial mixed-effects model.

For a two-level binomial model, consider the response yij as the number of successes from a
series of rij Bernoulli trials (replications). For cluster j, j = 1, . . . ,M , the conditional distribution
of yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is



xtmelogit — Multilevel mixed-effects logistic regression 261

f(yj |uj) =
nj∏
i=1

[(
rij
yij

)
{H (xijβ+ zijuj)}yij {1−H (xijβ+ zijuj)}rij−yij

]

= exp

(
nj∑
i=1

[
yij (xijβ+ zijuj)− rij log {1 + exp (xijβ+ zijuj)}+ log

(
rij
yij

)])

for H(v) = exp(v)/{1 + exp(v)}.
Defining rj = (rj1, . . . , rjnj )

′ and

c (yj , rj) =
nj∑
i=1

log
(
rij
yij

)

where c(yj , rj) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yj |uj) = exp
[
y′j (Xjβ+ Zjuj)− r′j log {1 + exp (Xjβ+ Zjuj)}+ c (yj , rj)

]
where Xj is formed by stacking the row vectors xij , Zj is formed by stacking the row vectors zij ,
and we extend the definitions of the functions log() and exp() to be vector functions where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the j cluster is obtained by integrating uj out the joint density
f(yj ,uj),

Li(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ

−1uj/2
)
duj

= exp {c (yj , rj)} (2π)−q/2 |Σ|−1/2
∫

exp {g (β,Σ,uj)} duj
(5)

where

g (β,Σ,uj) = y′j (Xjβ+ Zjuj)− r′j log {1 + exp (Xjβ+ Zjuj)} − u′jΣ
−1uj/2

and for convenience, in the arguments of g() we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (5) has no closed form and thus must be approximated. The Laplacian approx-
imation (Tierney and Kadane 1986; Pinheiro and Bates 1995) is based on a second-order Taylor
expansion of g (β,Σ,uj) about the value of uj that maximizes it. Taking first and second derivatives,
we obtain

g′ (β,Σ,uj) =
∂g (β,Σ,uj)

∂uj
= Z′j {yj −m(β,uj)} − Σ−1uj

g′′ (β,Σ,uj) =
∂2g (β,Σ,uj)
∂uj∂u′j

= −
{
Z′jV(β,uj)Zj + Σ−1

}
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where m(β,uj) is the vector function with ith element equal to the conditional mean of yij given
uj , that is, rijH(xijβ+ zijuj). V(β,uj) is the diagonal matrix whose diagonal entries vij are the
conditional variances of yij given uj , namely,

vij = rijH (xijβ+ zijuj) {1−H (xijβ+ zijuj)}

The maximizer of g (β,Σ,uj) is ûj such that g′ (β,Σ, ûj) = 0. The integrand in (5) is proportional
to the posterior density f(uj |yj), so ûj also represents the posterior mode, a plausible estimator of
uj in its own right.

Given the above derivatives, the second-order Taylor approximation then takes the form

g (β,Σ,uj) ≈ g (β,Σ, ûj) +
1
2

(uj − ûj)
′
g′′ (β,Σ, ûj) (uj − ûj) (6)

The first-derivative term vanishes because g′ (β,Σ, ûj) = 0. Therefore,∫
exp {g (β,Σ,uj)} duj ≈ exp {g (β,Σ, ûj)}

×
∫

exp
[
−1

2
(uj − ûj)

′ {−g′′ (β,Σ, ûj)} (uj − ûj)
]
duj

= exp {g (β,Σ, ûj)} (2π)q/2 |−g′′ (β,Σ, ûj)|
−1/2

(7)

because the latter integrand can be recognized as the “kernel” of a multivariate normal density.

Combining the above with (5) (and taking logs) gives the Laplacian log-likelihood contribution of
the jth cluster,

LLap
j (β,Σ) = −1

2
log |Σ| − log |Rj |+ g (β,Σ, ûj) + c(yj , rj)

where Rj is an upper-triangular matrix such that −g′′ (β,Σ, ûj) = RjR′j . Pinheiro and Chao (2006)
show that ûj and Rj can be efficiently computed as the iterative solution to a least-squares problem
by using matrix decomposition methods similar to those used in fitting LME models (Bates and
Pinheiro 1998; Pinheiro and Bates 2000; [XT] xtmixed).

The fidelity of the Laplacian approximation is determined wholly by the accuracy of the approxi-
mation in (6). An alternative that does not depend so heavily on this approximation is integration via
adaptive Gaussian quadrature (AGQ; Naylor and Smith 1982; Liu and Pierce 1994).

The application of AGQ to this particular problem is from Pinheiro and Bates (1995). When we
reexamine the integral in question, a transformation of integration variables yields∫

exp {g (β,Σ,uj)} duj = |Rj |−1
∫

exp
{
g
(
β,Σ, ûj + R−1

j t
)}
dt

= (2π)q/2 |Rj |−1
∫

exp
{
g
(
β,Σ, ûj + R−1

j t
)

+ t′t/2
}
φ(t)dt

(8)

where φ() is the standard multivariate normal density. Because the integrand is now expressed as
some function multiplied by a normal density, it can be estimated by applying the rules of standard
Gauss–Hermite quadrature. For a predetermined number of quadrature points NQ, define ak =

√
2a∗k

and wk = w∗k/
√
π, for k = 1, . . . , NQ, where (a∗k, w

∗
k) are a set of abscissas and weights for

Gauss–Hermite quadrature approximations of
∫

exp(−x2)f(x)dx, as obtained from Abramowitz and
Stegun (1972, 924).



xtmelogit — Multilevel mixed-effects logistic regression 263

Define ak = (ak1 , ak2 , . . . , akq )
′; that is, ak is a vector that spans the NQ abscissas over the

dimension q of the random effects. Applying quadrature rules to (8) yields the AGQ approximation,∫
exp {g (β,Σ,uj)} duj

≈ (2π)q/2 |Rj |−1
NQ∑
k1=1

· · ·
NQ∑
kq=1

[
exp

{
g
(
β,Σ, ûj + R−1

j ak

)
+ a′kak/2

} q∏
p=1

wkp

]
≡ (2π)q/2Ĝj(β,Σ)

resulting in the AGQ log-likelihood contribution of the ith cluster,

LAGQ
j (β,Σ) = −1

2
log |Σ|+ log

{
Ĝj(β,Σ)

}
+ c(yj , rj)

The “adaptive” part of adaptive Gaussian quadrature lies in the translation and rescaling of the
integration variables in (8) by using ûj and R−1

j respectively. This transformation of quadrature
abscissas (centered at zero in standard form) is chosen to better capture the features of the integrand,
which through (7) can be seen to resemble a multivariate normal distribution with mean ûj and
variance R−1

j R−Tj . AGQ is therefore not as dependent as the Laplace method upon the approximation
in (6). In AGQ, (6) serves merely to redirect the quadrature abscissas, with the AGQ approximation
improving as the number of quadrature points, NQ, increases. In fact, Pinheiro and Bates (1995)
point out that AGQ with only one quadrature point (a = 0 and w = 1) reduces to the Laplacian
approximation.

The log likelihood for the entire dataset is then simply the sum of the contributions of theM individual
clusters, namely, L(β,Σ) =

∑M
j=1 L

Lap
j (β,Σ) for Laplace and L(β,Σ) =

∑M
j=1 L

AGQ
j (β,Σ) for

adaptive Gaussian quadrature.

Maximization of L(β,Σ) is performed with respect to (β, θ), where θ is a vector comprising the
unique elements of the matrix square root of Σ. This is done to ensure that Σ is always positive
semidefinite. If the matlog option is specified, then θ instead consists of the unique elements of
the matrix logarithm of Σ. For well-conditioned problems both methods produce equivalent results,
yet our experience deems the former as more numerically stable near the boundary of the parameter
space.

Once maximization is achieved, parameter estimates are mapped from (β̂, θ̂) to (β̂, γ̂), where
γ̂ is a vector containing the unique (estimated) elements of Σ, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary to (a) obtain a parameterization under which parameter estimates
can be displayed and interpreted individually, rather than as elements of a matrix square root (or
logarithm), and (b) parameterize these elements such that their ranges each encompass the entire real
line.

Parameter estimates are stored in e(b) as (β̂, γ̂), with the corresponding variance–covariance matrix
stored in e(V). Parameter estimates can be displayed in this metric by specifying the estmetric
option. However, in xtmelogit output, variance components are most often displayed either as
variances and covariances (the variance option) or as standard deviations and correlations (the
default).

The approach outlined above can be extended from two-level models to higher-level models; see
Pinheiro and Chao (2006) for details.
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Title

xtmelogit postestimation — Postestimation tools for xtmelogit

Description
The following postestimation commands are of special interest after xtmelogit:

Command Description

estat group summarize the composition of the nested groups
estat recovariance display the estimated random-effects covariance matrix (or matrices)

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat group reports number of groups and minimum, average, and maximum group sizes for
each level of the model. Model levels are identified by the corresponding group variable in the data.
Because groups are treated as nested, the information in this summary may differ from what you
would get if you tabulated each group variable individually.

estat recovariance displays the estimated variance–covariance matrix of the random effects
for each level in the model. Random effects can be either random intercepts, in which case the
corresponding rows and columns of the matrix are labeled as cons, or random coefficients, in which
case the label is the name of the associated variable in the data.
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Syntax for predict

Syntax for obtaining estimated random effects or their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
,
{
reffects | reses

}
[
level(levelvar)

]
Syntax for obtaining other predictions

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic fixedonly nooffset
]

statistic Description

Main

mu the predicted mean; the default
xb linear prediction for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

Statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

reffects calculates posterior modal estimates of the random effects. By default, estimates for all
random effects in the model are calculated. However, if the level(levelvar) option is specified,
then estimates for only level levelvar in the model are calculated. For example, if classes are
nested within schools, then typing

. predict b*, reffects level(school)

would yield random-effects estimates at the school level. You must specify q new variables, where
q is the number of random-effects terms in the model (or level). However, it is much easier to
just specify stub* and let Stata name the variables stub1, stub2, . . . , stubq for you.

reses calculates standard errors for the random-effects estimates obtained by using the reffects
option. By default, standard errors for all random effects in the model are calculated. However, if
the level(levelvar) option is specified, then standard errors for only level levelvar in the model
are calculated. For example, if classes are nested within schools, then typing

. predict se*, reses level(school)
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would yield standard errors at the school level. You must specify q new variables, where q is the
number of random-effects terms in the model (or level). However, it is much easier to just specify
stub* and let Stata name the variables stub1, stub2, . . . , stubq for you.

The reffects and reses options often generate multiple new variables at once. When this occurs,
the random effects (or standard errors) contained in the generated variables correspond to the order
in which the variance components are listed in the output of xtmelogit. Still, examining the
variable labels of the generated variables (using the describe command, for instance) can be
useful in deciphering which variables correspond to which terms in the model.

level(levelvar) specifies the level in the model at which predictions for random effects and their
standard errors are to be obtained. levelvar is the name of the model level and is either the name
of the variable describing the grouping at that level or all, a special designation for a group
comprising all the estimation data.

mu, the default, calculates the predicted mean. By default, this is based on a linear predictor that
includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option (see below) if you want predictions
that include only the fixed portion of the model, that is, if you want random effects set to zero.

xb calculates the linear prediction xβ based on the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of zero.

stdp calculates the standard error of the fixed-effects linear predictor xβ.

pearson calculates Pearson residuals. Pearson residuals large in absolute value may indicate a lack
of fit. By default, residuals include both the fixed portion and the random portion of the model.
The fixedonly option modifies the calculation to include the fixed portion only.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correctly specified. They may be plotted against
the fitted values or against a covariate to inspect the model’s fit. By default, residuals include
both the fixed portion and the random portion of the model. The fixedonly option modifies the
calculation to include the fixed portion only.

anscombe calculates Anscombe residuals, residuals that are designed to closely follow a normal
distribution. By default, residuals include both the fixed portion and the random portion of the
model. The fixedonly option modifies the calculation to include the fixed portion only.

fixedonly modifies predictions to include only the fixed portion of the model, equivalent to setting
all random effects equal to zero; see above.

nooffset is relevant only if you specified offset(varname) for xtmelogit. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as Xβ + Zu rather than Xβ + Zu + offset.

Syntax for estat group
estat group

Menu
Statistics > Postestimation > Reports and statistics
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Syntax for estat recovariance
estat recovariance

[
, level(levelvar) correlation matlist options

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat recovariance
level(levelvar) specifies the level in the model for which the random-effects covariance matrix is

to be displayed and returned in r(cov). By default, the covariance matrices for all levels in the
model are displayed. levelvar is the name of the model level and is either the name of variable
describing the grouping at that level or all, a special designation for a group comprising all the
estimation data.

correlation displays the covariance matrix as a correlation matrix and returns the correlation matrix
in r(corr).

matlist options are style and formatting options that control how the matrix (or matrices) are displayed;
see [P] matlist for a list of what is available.

Remarks
Various predictions, statistics, and diagnostic measures are available after fitting a logistic mixed-

effects model with xtmelogit. For the most part, calculation centers around obtaining estimates of
the subject/group-specific random effects. Random effects are not provided as estimates when the
model is fit but instead need to be predicted after estimation.

Example 1

In example 3 of [XT] xtmelogit, we represented the probability of contraceptive use among
Bangladeshi women by using the model (stated with slightly different notation here)

logit(πij) = β0ruralij+β1urbanij + β2ageij+

β3child1ij + β4child2ij + β5child3ij + ajruralij + bjurbanij

where πij is the probability of contraceptive use, j = 1, . . . , 60 districts, i = 1, . . . , nj women within
each district, and aj and bj are normally distributed with mean zero and variance–covariance matrix

Σ = Var
[
aj
bj

]
=
[
σ2
a σab

σab σ2
b

]
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. use http://www.stata-press.com/data/r12/bangladesh
(Bangladesh Fertility Survey, 1989)

. generate byte rural = 1 - urban

. xtmelogit c_use rural urban age child*, nocons || district: rural urban,
> nocons cov(unstructured)

(output omitted )
Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2
max = 118

Integration points = 7 Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

rural -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954
urban -.8958623 .1704961 -5.25 0.000 -1.230028 -.5616962

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902
child1 1.13252 .1603285 7.06 0.000 .818282 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
child3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Unstructured
sd(rural) .6242947 .1035136 .4510794 .8640251
sd(urban) .4942636 .146751 .2762039 .8844789

corr(rural,urban) -.0523099 .3384599 -.6153876 .5461173

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Rather than see the estimated variance components listed as standard deviations and correlations as
above, we can instead see them as variance–covariances in matrix form; that is, we can see Σ̂

. estat recovariance

Random-effects covariance matrix for level district

rural urban

rural .3897439
urban -.0161411 .2442965

or we can see Σ̂ as a correlation matrix

. estat recovariance, correlation

Random-effects correlation matrix for level district

rural urban

rural 1
urban -.0523099 1

The purpose of using this particular model was to allow for district random effects that were
specific to the rural and urban areas of that district and that could be interpreted as such. We can
obtain predictions of these random effects

. predict re_rural re_urban, reffects
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and their corresponding standard errors

. predict se_rural se_urban, reses

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in xtmelogit output. If in doubt, a simple describe will show how
these newly generated variables are labeled just to be sure.

Having generated estimated random effects and standard errors, we can now list them for the first
10 districts:

. by district, sort: generate tolist = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tolist,
> sep(0)

district re_rural se_rural re_urban se_urban

1. 1 -.9206641 .3129662 -.5551252 .2321872
118. 2 -.0307772 .3784629 .0012746 .4938357
138. 3 -.0149148 .6242095 .2257356 .4689535
140. 4 -.2684802 .3951617 .5760575 .3970433
170. 5 .0787537 .3078451 .004534 .4675104
209. 6 -.3842217 .2741989 .2727722 .4184852
274. 7 -.1742786 .4008164 .0072177 .493866
292. 8 .0447142 .315396 .2256406 .46799
329. 9 -.3561363 .3885605 .0733451 .4555067
352. 10 -.5368572 .4743089 .0222338 .4939776

Technical note
When these data were first introduced in [XT] xtmelogit, we noted that not all districts contained

both urban and rural areas. This fact is somewhat demonstrated by the random effects that are nearly
zero in the above. A closer examination of the data would reveal that district 3 has no rural areas,
and districts 2, 7, and 10 have no urban areas.

The estimated random effects are not exactly zero in these cases is because of the correlation
between urban and rural effects. For instance, if a district has no urban areas, it can still yield a
nonzero (albeit small) random-effect estimate for a nonexistent urban area because of the correlation
with its rural counterpart.

Had we imposed an independent covariance structure in our model, the estimated random effects
in the cases in question would be exactly zero.

Technical note
The estimated standard errors produced above using the reses option are conditional on the values

of the estimated model parameters: β and the components of Σ. Their interpretation is therefore not
one of standard sample-to-sample variability but instead one that does not incorporate uncertainty in
the estimated model parameters; see Methods and formulas.

That stated, conditional standard errors can still be used as a measure of relative precision, provided
that you keep this caveat in mind.
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Example 2

Continuing with example 1, we can obtain predicted probabilities, the default prediction:

. predict p
(option mu assumed; predicted means)

These predictions are based on a linear predictor that includes both the fixed effects and random
effects due to district. Specifying the fixedonly option gives predictions that set the random effects
to their prior mean of zero. Below, we compare both over the first 20 observations:

. predict p_fixed, fixedonly
(option mu assumed; predicted means)

. list c_use p p_fixed age child* in 1/20

c_use p p_fixed age child1 child2 child3

1. no .3579543 .4927183 18.44 0 0 1
2. no .2134724 .3210403 -5.56 0 0 0
3. no .4672256 .6044016 1.44 0 1 0
4. no .4206505 .5584864 8.44 0 0 1
5. no .2510909 .3687281 -13.56 0 0 0

6. no .2412878 .3565185 -11.56 0 0 0
7. no .3579543 .4927183 18.44 0 0 1
8. no .4992191 .6345999 -3.56 0 0 1
9. no .4572049 .594723 -5.56 1 0 0

10. no .4662518 .6034657 1.44 0 0 1

11. yes .2412878 .3565185 -11.56 0 0 0
12. no .2004691 .3040173 -2.56 0 0 0
13. no .4506573 .5883407 -4.56 1 0 0
14. no .4400747 .5779263 5.44 0 0 1
15. no .4794194 .6160359 -0.56 0 0 1

16. yes .4465936 .5843561 4.44 0 0 1
17. no .2134724 .3210403 -5.56 0 0 0
18. yes .4794194 .6160359 -0.56 0 0 1
19. yes .4637673 .6010735 -6.56 1 0 0
20. no .5001973 .6355067 -3.56 0 1 0

Technical note
Out-of-sample predictions are permitted after xtmelogit, but if these predictions involve estimated

random effects, the integrity of the estimation data must be preserved. If the estimation data have
changed since the model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus, to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.



xtmelogit postestimation — Postestimation tools for xtmelogit 273

Saved results
estat recovariance saves the last-displayed random-effects covariance matrix in r(cov) or in

r(corr) if it is displayed as a correlation matrix.

Methods and formulas
Continuing the discussion in Methods and formulas of [XT] xtmelogit, and using the definitions

and formulas defined there, we begin by considering the “prediction” of the random effects uj for
the jth cluster in a two-level model.

Given a set of estimated xtmelogit parameters, (β̂, Σ̂), a profile likelihood in uj is derived from
the joint distribution f(yj ,uj) as

Lj(uj) = exp {c (yj , rj)} (2π)−q/2|Σ̂|−1/2 exp
{
g
(
β̂, Σ̂,uj

)}
(1)

The conditional MLE of uj—conditional on fixed (β̂, Σ̂)—is the maximizer of Lj(uj), or equivalently,
the value of ûj that solves

0 = g′
(
β̂, Σ̂, ûj

)
= Z′j

{
yj −m(β̂, ûj)

}
− Σ̂

−1
ûj

Because (1) is proportional to the conditional density f(uj |yj), you can also refer to ûj as the
conditional mode (or posterior mode if you lean toward Bayesian terminology). Regardless, you are
referring to the same estimator.

Conditional standard errors for the estimated random effects are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of ûj is the negative inverse
of the Hessian, which is estimated as

g′′
(
β̂, Σ̂, ûj

)
= −

{
Z′jV(β̂, ûj)Zj + Σ̂

−1
}

Similar calculations extend to models with more than one level of random effects; see Pinheiro and
Chao (2006).

For any i observation in the j cluster in a two-level model, define the linear predictor as

η̂ij = xijβ̂+ zijûj

In a three-level model, for the ith observation within the jth level-two cluster within the kth level-three
cluster,

η̂ijk = xijkβ̂+ z(3)
ijkû

(3)
k + z(2)

ijkû
(2)
jk

where the z(p) and u(p) refer to the level p design variables and random effects, respectively. For
models with more than three levels, the definition of η̂ extends in the natural way, with only the
notation becoming more complicated.

If the fixedonly option is specified, η̂ contains the linear predictor for only the fixed portion of
the model, for example, in a two-level model η̂ij = xijβ̂. In what follows, we assume a two-level
model, with the only necessary modification for multilevel models being the indexing.

The predicted mean, conditional on the random effects ûj , is

µ̂ij = rijH(η̂ij)
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Pearson residuals are calculated as

νPij =
yij − µ̂ij
{V (µ̂ij)}1/2

for V (µ̂ij) = µ̂ij(1− µ̂ij/rij).

Deviance residuals are calculated as

νDij = sign(yij − µ̂ij)
√
d̂ 2
ij

where

d̂ 2
ij =



2rij log
(

rij
rij − µ̂ij

)
if yij = 0

2yij log
(
yij
µ̂ij

)
+ 2(rij − yij) log

(
rij − yij
rij − µ̂ij

)
if 0 < yij < rij

2rij log
(
rij
µ̂ij

)
if yij = rij

Anscombe residuals are calculated as

νAij =
3
{
y

2/3
ij H(yij/rij)− µ̂2/3H(µ̂ij/rij)

}
2
(
µ̂ij − µ̂2

ij/rij
)1/6

whereH(t) is a specific univariate case of the Hypergeometric2F1 function (Wolfram 1999, 771–772).
For Anscombe residuals for binomial regression, the specific form of the Hypergeometric2F1 function
that we require is H(t) = 2F1(2/3, 1/3, 5/3, t).

For a discussion of the general properties of the above residuals, see Hardin and Hilbe (2007,
chap. 4).
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Title

xtmepoisson — Multilevel mixed-effects Poisson regression

Syntax
xtmepoisson depvar fe equation || re equation

[
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname
[
, re options

]
levelvar is a variable identifying the group structure for the random effects at that level or all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress the constant term from the random-effects equation
collinear keep collinear variables

options Description

Integration

laplace use Laplacian approximation; equivalent to intpoints(1)

intpoints(# [ # . . . ] ) set the number of integration (quadrature) points; default is 7
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Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
variance show random-effects parameter estimates as variances and

covariances
noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform LR test comparing to Poisson regression
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process during gradient-based
optimization; seldom used

retolerance(#) tolerance for random-effects estimates; default is
retolerance(1e-8); seldom used

reiterate(#) maximum number of iterations for random-effects estimation;
default is reiterate(50); seldom used

matsqrt parameterize variance components using matrix square roots;
the default

matlog parameterize variance components using matrix logarithms
refineopts(maximize options) control the maximization process during refinement of starting

values

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
zero; the default unless a factor variable is specified

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances zero; the
default if factor variables are specified

unstructured all variances–covariances distinctly estimated

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Multilevel mixed-effects models > Mixed-effects Poisson regression

Description
xtmepoisson fits mixed-effects models for count responses. Mixed models contain both fixed

effects and random effects. The fixed effects are analogous to standard regression coefficients and
are estimated directly. The random effects are not directly estimated (although they may be obtained
postestimation) but are summarized according to their estimated variances and covariances. Random
effects may take the form of either random intercepts or random coefficients, and the grouping
structure of the data may consist of multiple levels of nested groups. The distribution of the random
effects is assumed to be Gaussian. The conditional distribution of the response given the random
effects is assumed to be Poisson. Because the log likelihood for this model has no closed form, it is
approximated by adaptive Gaussian quadrature.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype), where vartype is

independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are zero.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p+ 1)/2 unique parameters.

covariance(independent) is the default, except when the random-effects equation is a factor-
variable specification R.varname, in which case covariance(identity) is the default, and only
covariance(identity) and covariance(exchangeable) are allowed.

collinear specifies that xtmepoisson not omit collinear variables from the random-effects equation.
Usually there is no reason to leave collinear variables in place, and in fact doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.
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� � �
Integration �

laplace specifies that log likelihoods be calculated using the Laplacian approximation, equivalent
to adaptive Gaussian quadrature with one integration point for each level in the model; laplace
is equivalent to intpoints(1). Computation time increases as a function of the number of
quadrature points raised to a power equaling the dimension of the random-effects specification.
The computational time saved by using laplace can thus be substantial, especially when you
have many levels and/or random coefficients.

The Laplacian approximation has been known to produce biased parameter estimates, but the bias
tends to be more prominent in the estimates of the variance components rather than in estimates
of the fixed effects. If your interest lies primarily with the fixed-effects estimates, the Laplace
approximation may be a viable faster alternative to adaptive quadrature with multiple integration
points.

Specifying a factor variable, R.varname, increases the dimension of the random effects by the
number of distinct values of varname, that is, the number of factor levels. Even when this number
is small to moderate, it increases the total random-effects dimension to the point where estimation
with more than one quadrature point is prohibitively intensive.

For this reason, when you have factor variables in your random-effects equations, the laplace
option is assumed. You can override this behavior by using the intpoints() option, but doing
so is not recommended.

intpoints(# [ # . . . ] ) sets the number of integration points for adaptive Gaussian quadrature. The
more points, the more accurate the approximation to the log likelihood. However, computation
time increases with the number of quadrature points, and in models with many levels and/or many
random coefficients, this increase can be substantial.

You may specify one number of integration points applying to all levels of random effects in
the model, or you may specify distinct numbers of points for each level. intpoints(7) is the
default; that is, by default seven quadrature points are used for each level.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports the fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(b) rather
than b. Standard errors and confidence intervals are similarly transformed. This option affects how
results are displayed, not how they are estimated. irr may be specified at estimation or when
replaying previously estimated results.

variance displays the random-effects parameter estimates as variances and covariances. The default
is to display them as standard deviations and correlations.

noretable suppresses the table of random effects.

nofetable suppresses the table of fixed effects.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.
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nolrtest prevents xtmepoisson from performing a likelihood-ratio test that compares the mixed-
effects Poisson model with standard (marginal) Poisson regression. This option may also be specified
upon replay to suppress this test from the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for xtmepoisson are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

from(init specs) is particularly useful when combined with refineopts(iterate(0)), which
bypasses the initial optimization stage; see below.

retolerance(#) specifies the convergence tolerance for the estimated random effects used by adaptive
Gaussian quadrature. Although not estimated as model parameters, random-effects estimators are
used to adapt the quadrature points. Estimating these random effects is an iterative procedure,
with convergence declared when the maximum relative change in the random effects is less than
retolerance(). The default is retolerance(1e-8). You should seldom have to use this option.

reiterate(#) specifies the maximum number of iterations used when estimating the random effects
to be used in adapting the Gaussian quadrature points; see the retolerance() option. The default
is reiterate(50). You should seldom have to use this option.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance–covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

refineopts(maximize options) controls the maximization process during the refinement of starting
values. Estimation in xtmepoisson takes place in two stages. In the first stage, starting values
are refined by holding the quadrature points fixed between iterations. During the second stage,
quadrature points are adapted with each evaluation of the log likelihood. Maximization options
specified within refineopts() control the first stage of optimization; that is, they control the
refining of starting values.

maximize options specified outside refineopts() control the second stage.

The one exception to the above rule is the nolog option, which when specified outside refine-
opts() applies globally.

from(init specs) is not allowed within refineopts() and instead must be specified globally.

Refining starting values helps make the iterations of the second stage (those that lead toward the so-
lution) more numerically stable. In this regard, of particular interest is refineopts(iterate(#)),
with two iterations being the default. Should the maximization fail because of instability in the
Hessian calculations, one possible solution may be to increase the number of iterations here.
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The following option is available with xtmepoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
A two-level model
A three-level model

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal/panel data, random effects are useful for modeling intracluster correlation; that
is, observations in the same cluster are correlated because they share common cluster-level random
effects.

xtmepoisson allows for not just one, but many levels of nested clusters. For example, in a three-
level model you can specify random effects for schools and then random effects for classes nested
within schools. The observations (students, presumably) would comprise level one of the model, the
classes would comprise level two, and the schools would comprise level three.

However, for simplicity, for now we consider the two-level model where, for a series of M
independent clusters and, conditional on a set of random effects uj ,

Pr(yij = y|uj) = exp (−µij)µyij/y! (1)

for µij = exp(xijβ+ zijuj), j = 1, . . . ,M clusters, and with cluster j consisting of i = 1, . . . , nj
observations. The responses are counts yij . The 1× p row vector xij are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) β.

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Model (1) is a member of the class of generalized linear mixed models (GLMMs), which generalize
the linear mixed-effects (LME) model to non-Gaussian responses. In particular, model (1) deals with
count responses. Stata also has the xtmelogit command for fitting another type of GLMM, the logistic
model for binary and binomial responses.

From a general prospective, there is not much to distinguish xtmepoisson from xtmelogit, and
most everything said about xtmelogit in [XT] xtmelogit applies to xtmepoisson. If you are anxious
to get started applying xtmepoisson to your count data, continue reading this entry. Examples are
provided below.



xtmepoisson — Multilevel mixed-effects Poisson regression 281

We encourage you to read [XT] xtmelogit, however. In addition to some history and guided tours
of syntax and output, substantive issues are discussed, and these apply equally to Poisson data. These
include conventions for multilevel terminology, specifying covariance structures for random effects,
constructing complex blocked-diagonal covariance structures, distribution theory for likelihood-ratio
tests, factors that affect computation time, the Laplacian approximation, advice on model building,
and fitting crossed-effects models.

A two-level model
We begin with a simple application of (1). We begin with a two-level model because, in multilevel-

model terminology, a one-level model is just standard Poisson regression; see [R] poisson.

Example 1

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.

. use http://www.stata-press.com/data/r12/epilepsy
(Epilepsy data; progabide drug treatment)

. describe

Contains data from http://localpress.stata.com/data/r12/epilepsy.dta
obs: 236 Epilepsy data; progabide drug

treatment
vars: 8 31 May 2011 14:09
size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label

subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g 1: progabide; 0: placebo
visit float %9.0g Dr. visit; coded as (-.3, -.1,

.1, .3)
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25*baseline seizures),

mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 on progabide, 28
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (lbas). Variable lbas trt represents the
interaction between lbas and treatment. lage, lbas, and lbas trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator,
v4, for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures

log(µij) = β0 + β1treatij + β2lbasij + β3lbas trtij + β4lageij + β5v4ij + uj

for j = 1, . . . , 59 subjects and i = 1, . . . , 4 visits. The random effects uj are assumed to be normally
distributed with mean zero and variance σ2

u.
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. xtmepoisson seizures treat lbas lbas_trt lage v4 || subject:

Refining starting values:

Iteration 0: log likelihood = -680.40577 (not concave)
Iteration 1: log likelihood = -668.60112
Iteration 2: log likelihood = -666.37033

Performing gradient-based optimization:

Iteration 0: log likelihood = -666.37033
Iteration 1: log likelihood = -665.45248
Iteration 2: log likelihood = -665.29074
Iteration 3: log likelihood = -665.29068

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group: min = 4
avg = 4.0
max = 4

Integration points = 7 Wald chi2(5) = 121.67
Log likelihood = -665.29068 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -.9330384 .4008345 -2.33 0.020 -1.71866 -.1474172
lbas .8844329 .1312313 6.74 0.000 .6272243 1.141642

lbas_trt .3382606 .2033384 1.66 0.096 -.0602754 .7367966
lage .4842383 .3472776 1.39 0.163 -.1964134 1.16489

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206
_cons 2.154574 .2200426 9.79 0.000 1.723299 2.58585

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Identity
sd(_cons) .5028187 .0586255 .4000983 .6319115

LR test vs. Poisson regression: chibar2(01) = 304.74 Prob>=chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant, σ̂u = 0.503 with standard error 0.059. The
above results are also in good agreement with those of Breslow and Clayton (1993, table 4), who fit
this model by the method of penalized quasilikelihood (PQL).

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.

See Two-level models in [XT] xtmelogit for a detailed description of syntax and of reading the
resulting output.

Example 2

In their study of PQL, Breslow and Clayton (1993) also fit a model where they dropped the fixed
effect on v4 and replaced it with a random subject-specific linear trend over the four doctor visits.
The model they fit is

log(µij) = β0 + β1treatij + β2lbasij+β3lbas trtij+

β4lageij + β5visitij + uj + vjvisitij
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where (uj , vj) are bivariate normal with zero mean and variance–covariance matrix:

Σ = Var
[
uj
vj

]
=
[
σ2
u σuv

σuv σ2
v

]

. xtmepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)

(output omitted )
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group: min = 4
avg = 4.0
max = 4

Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -.9286588 .4021639 -2.31 0.021 -1.716886 -.140432
lbas .8849767 .1312519 6.74 0.000 .6277277 1.142226

lbas_trt .3379757 .2044443 1.65 0.098 -.0627277 .7386791
lage .4767192 .353622 1.35 0.178 -.2163673 1.169806

visit -.2664098 .1647096 -1.62 0.106 -.5892347 .0564151
_cons 2.099555 .220371 9.53 0.000 1.667635 2.531474

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Unstructured
sd(visit) .7290273 .1573227 .477591 1.112837
sd(_cons) .5014906 .0586145 .3988172 .6305967

corr(visit,_cons) .0078543 .2426514 -.43639 .4490197

LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

In the above, we specified the cov(unstructured) option to allow correlation between uj and vj ,
although on the basis of the above output it probably was not necessary—the default Independent
structure would have sufficed. In the interest of getting more accurate estimates, we also increased
the number of quadrature points to nine, although the estimates do not change much when compared
with estimates based on the default seven quadrature points.

The essence of the above-fitted model is that, after adjusting for other covariates, the log trend
in seizures is modeled as a random subject-specific line, with intercept distributed as N(β0, σ

2
u) and

slope distributed as N(β5, σ
2
v). From the above output, β̂0 = 2.100, σ̂u = 0.501, β̂5 = −0.266, and

σ̂v = 0.729.

You can predict the random effects uj and vj by using predict after xtmepoisson; see
[XT] xtmepoisson postestimation. Better still, you can obtain a predicted number of seizures that
takes these random effects into account.

xtmepoisson also offers a myriad of display options. Among the most useful are variance for
displaying estimated variance components as variance and covariances, and irr for displaying fixed
effects as incidence-rate ratios.
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. xtmepoisson, variance irr

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group: min = 4
avg = 4.0
max = 4

Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures IRR Std. Err. z P>|z| [95% Conf. Interval]

treat .3950833 .1588884 -2.31 0.021 .1796246 .8689834
lbas 2.422928 .3180141 6.74 0.000 1.873349 3.133736

lbas_trt 1.402106 .2866529 1.65 0.098 .9391988 2.09317
lage 1.610781 .5696077 1.35 0.178 .8054394 3.221366

visit .7661251 .1261882 -1.62 0.106 .5547517 1.058037
_cons 8.162533 1.798787 9.53 0.000 5.29962 12.57203

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Unstructured
var(visit) .5314808 .2293851 .2280931 1.238406
var(_cons) .2514928 .0587892 .1590552 .3976522

cov(visit,_cons) .0028715 .0887018 -.1709808 .1767238

LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

A three-level model
xtmepoisson can also fit higher-level models with multiple levels of nested random effects.

Example 3
Rabe-Hesketh and Skrondal (2008, exercise 9.8) describe data from the Atlas of Cancer Mortality

in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males because
of malignant melanoma during 1971–1980.

. use http://www.stata-press.com/data/r12/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from melanoma.dta
obs: 354 Skin cancer (melanoma) data

vars: 6 30 May 2011 17:10
size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC

level-II/level-III areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:
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Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being
recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable county,
which identifies the observations). Counties are nested within regions, and regions are nested within
nations.

Variable deaths records the number of deaths for each county, and expected records the expected
number of deaths (the exposure) on the basis of crude rates for the combined countries. Finally, variable
uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(µijk) = log(expectedijk) + β0 + β1uvijk + uk + vjk

for nation k, region j, and county i. The model includes an exposure term for expected deaths.

. xtmepoisson deaths uv, exposure(expected) || nation: || region:

(output omitted )
Mixed-effects Poisson regression Number of obs = 354

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

nation 9 3 39.3 95 7
region 78 1 4.5 13 7

Wald chi2(1) = 6.12
Log likelihood = -1097.714 Prob > chi2 = 0.0134

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

uv -.0281991 .0114027 -2.47 0.013 -.050548 -.0058503
_cons -.0639477 .1335246 -0.48 0.632 -.3256511 .1977558

ln(expected) 1 (exposure)

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

nation: Identity
sd(_cons) .3701812 .0976276 .2207637 .6207278

region: Identity
sd(_cons) .2199668 .0248379 .1762959 .2744554

LR test vs. Poisson regression: chi2(2) = 1252.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio (SMR), the ratio of observed deaths to expected deaths
that is based on a reference population. Here the reference population is all nine nations.

We now add a random-intercept for counties nested within regions, making this a four-level
model. Because counties also identify the observations, the corresponding variance component can
be interpreted as a measure of overdispersion, variability above and beyond that allowed by standard
Poisson; see [R] nbreg.
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. xtmepoisson deaths uv, exposure(expected) || nation: || region: || county:,
> laplace

(output omitted )
Mixed-effects Poisson regression Number of obs = 354

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

nation 9 3 39.3 95 1
region 78 1 4.5 13 1
county 354 1 1.0 1 1

Wald chi2(1) = 8.63
Log likelihood = -1086.7309 Prob > chi2 = 0.0033

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

uv -.0334682 .0113919 -2.94 0.003 -.0557959 -.0111404
_cons -.086411 .1298712 -0.67 0.506 -.3409539 .1681319

ln(expected) 1 (exposure)

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

nation: Identity
sd(_cons) .3588058 .0948823 .2136822 .6024909

region: Identity
sd(_cons) .2014854 .026057 .1563732 .2596119

county: Identity
sd(_cons) .1208414 .0210052 .085952 .169893

LR test vs. Poisson regression: chi2(3) = 1274.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

In the above, we used a Laplacian approximation, which is not only faster but also produces estimates
that closely agree with those obtained with the default seven quadrature points.

See Computation time and the Laplacian approximation in [XT] xtmelogit for a discussion comparing
Laplacian approximation with adaptive quadrature.
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Saved results
xtmepoisson saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k f) number of FE parameters
e(k r) number of RE parameters
e(k rs) number of standard deviations
e(k rc) number of correlations
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for χ2

e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) p-value, comparison model
e(rank) rank of e(V)
e(reparm rc) return code, final reparameterization
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtmepoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(exposurevar) exposure variable
e(model) Poisson
e(title) title in estimation output
e(offset) linear offset variable
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(n quad) number of integration points
e(laplace) laplace, if Laplace approximation
e(chi2type) Wald, type of model χ2

e(vce) bootstrap or jackknife if defined
e(vcetype) title used to label Std. Err.
e(method) ML
e(opt) type of optimization
e(ml method) type of ml method
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimator

Functions
e(sample) marks estimation sample
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Methods and formulas
xtmepoisson is implemented as an ado-file.

In a two-level Poisson model, for cluster j, j = 1, . . . ,M , the conditional distribution of
yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is

f(yj |uj) =
nj∏
i=1

[{exp (xijβ+ zijuj)}yij exp {− exp (xijβ+ zijuj)} /yij !]

= exp

[
nj∑
i=1

{yij (xijβ+ zijuj)− exp (xijβ+ zijuj)− log(yij !)}

]

Defining c (yj) =
∑nj
i=1 log(yij !), where c(yj) does not depend on the model parameters, we

can express the above compactly in matrix notation,

f(yj |uj) = exp
{
y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− c (yj)

}
where Xj is formed by stacking the row vectors xij , Zj is formed by stacking the row vectors zij ,
and we extend the definition of exp() to be a vector function where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the j cluster is obtained by integrating uj out the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ

−1uj/2
)
duj

= exp {−c (yj)} (2π)−q/2 |Σ|−1/2
∫

exp {g (β,Σ,uj)} duj
(2)

where
g (β,Σ,uj) = y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− u′jΣ

−1uj/2

and for convenience, in the arguments of g() we suppress the dependence on the observable data
(yj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated. The Laplacian approx-
imation (Tierney and Kadane 1986; Pinheiro and Bates 1995) is based on a second-order Taylor
expansion of g (β,Σ,uj) about the value of uj that maximizes it. Taking first and second derivatives,
we obtain

g′ (β,Σ,uj) =
∂g (β,Σ,uj)

∂uj
= Z′j {yj −m(β,uj)} − Σ−1uj

g′′ (β,Σ,uj) =
∂2g (β,Σ,uj)
∂uj∂u′j

= −
{
Z′jV(β,uj)Zj + Σ−1

}
where m(β,uj) is the vector function with ith element equal to the conditional mean of yij given
uj , that is, exp(xijβ+ zijuj). V(β,uj) is the diagonal matrix whose diagonal entries vij are the
conditional variances of yij given uj , namely,

vij = exp (xijβ+ zijuj)

because equality of mean and variance is a characteristic of the Poisson distribution.
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The maximizer of g (β,Σ,uj) is ûj such that g′ (β,Σ, ûj) = 0. The integrand in (2) is proportional
to the posterior density f(uj |yj), so ûj also represents the posterior mode, a plausible estimator of
uj in its own right.

Given the above derivatives, the second-order Taylor approximation then takes the form

g (β,Σ,uj) ≈ g (β,Σ, ûj) +
1
2

(uj − ûj)
′
g′′ (β,Σ, ûj) (uj − ûj) (3)

The first-derivative term vanishes because g′ (β,Σ, ûj) = 0. Therefore,∫
exp {g (β,Σ,uj)} duj ≈ exp {g (β,Σ, ûj)}

×
∫

exp
[
−1

2
(uj − ûj)

′ {−g′′ (β,Σ, ûj)} (uj − ûj)
]
duj

= exp {g (β,Σ, ûj)} (2π)q/2 |−g′′ (β,Σ, ûj)|
−1/2

(4)

because the latter integrand can be recognized as the “kernel” of a multivariate normal density.

Combining the above with (2) (and taking logs) gives the Laplacian log-likelihood contribution of
the jth cluster,

LLap
j (β,Σ) = −1

2
log |Σ| − log |Rj |+ g (β,Σ, ûj)− c(yj)

where Rj is an upper-triangular matrix such that −g′′ (β,Σ, ûj) = RjR′j . Pinheiro and Chao (2006)
show that ûj and Rj can be efficiently computed as the iterative solution to a least-squares problem
by using matrix decomposition methods similar to those used in fitting LME models (Bates and
Pinheiro 1998; Pinheiro and Bates 2000; [XT] xtmixed).

The fidelity of the Laplacian approximation is determined wholly by the accuracy of the approxi-
mation in (3). An alternative that does not depend so heavily on this approximation is integration via
adaptive Gaussian quadrature (AGQ; Naylor and Smith 1982; Liu and Pierce 1994).

The application of AGQ to this particular problem is from Pinheiro and Bates (1995). When we
reexamine the integral in question, a transformation of integration variables yields∫

exp {g (β,Σ,uj)} duj = |Rj |−1
∫

exp
{
g
(
β,Σ, ûj + R−1

j t
)}
dt

= (2π)q/2 |Rj |−1
∫

exp
{
g
(
β,Σ, ûj + R−1

j t
)

+ t′t/2
}
φ(t)dt

(5)

where φ() is the standard multivariate normal density. Because the integrand is now expressed as
some function multiplied by a normal density, it can be estimated by applying the rules of standard
Gauss–Hermite quadrature. For a predetermined number of quadrature points NQ, define ak =

√
2a∗k

and wk = w∗k/
√
π, for k = 1, . . . , NQ, where (a∗k, w

∗
k) are a set of abscissas and weights for

Gauss–Hermite quadrature approximations of
∫

exp(−x2)f(x)dx, as obtained from Abramowitz and
Stegun (1972, 924).

Define ak = (ak1 , ak2 , . . . , akq )
′; that is, ak is a vector that spans the NQ abscissas over the

dimension q of the random effects. Applying quadrature rules to (5) yields the AGQ approximation,



290 xtmepoisson — Multilevel mixed-effects Poisson regression

∫
exp {g (β,Σ,uj)} duj

≈ (2π)q/2 |Rj |−1
NQ∑
k1=1

· · ·
NQ∑
kq=1

[
exp

{
g
(
β,Σ, ûj + R−1

j ak

)
+ a′kak/2

} q∏
p=1

wkp

]
≡ (2π)q/2Ĝj(β,Σ)

resulting in the AGQ log-likelihood contribution of the jth cluster,

LAGQ
j (β,Σ) = −1

2
log |Σ|+ log

{
Ĝj(β,Σ)

}
− c(yj)

The “adaptive” part of adaptive Gaussian quadrature lies in the translation and rescaling of the
integration variables in (5) by using ûj and R−1

j respectively. This transformation of quadrature
abscissas (centered at zero in standard form) is chosen to better capture the features of the integrand,
through which (4) can be seen to resemble a multivariate normal distribution with mean ûj and
variance R−1

j R−Tj . AGQ is therefore not as dependent as the Laplace method upon the approximation
in (3). In AGQ, (3) serves merely to redirect the quadrature abscissas, with the AGQ approximation
improving as the number of quadrature points, NQ, increases. In fact, Pinheiro and Bates (1995)
point out that AGQ with only one quadrature point (a = 0 and w = 1) reduces to the Laplacian
approximation.

The log likelihood for the entire dataset is then simply the sum of the contributions of theM individual
clusters, namely, L(β,Σ) =

∑M
j=1 L

Lap
j (β,Σ) for Laplace and L(β,Σ) =

∑M
j=1 L

AGQ
j (β,Σ) for

adaptive Gaussian quadrature.

Maximization of L(β,Σ) is performed with respect to (β, θ), where θ is a vector comprising the
unique elements of the matrix square root of Σ. This is done to ensure that Σ is always positive
semidefinite. If the matlog option is specified, then θ instead consists of the unique elements of
the matrix logarithm of Σ. For well-conditioned problems both methods produce equivalent results,
yet our experience deems the former as more numerically stable near the boundary of the parameter
space.

Once maximization is achieved, parameter estimates are mapped from (β̂, θ̂) to (β̂, γ̂), where
γ̂ is a vector containing the unique (estimated) elements of Σ, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary to (a) obtain a parameterization under which parameter estimates
can be displayed and interpreted individually, rather than as elements of a matrix square root (or
logarithm), and (b) parameterize these elements such that their ranges each encompass the entire real
line.

Parameter estimates are stored in e(b) as (β̂, γ̂), with the corresponding variance–covariance
matrix stored in e(V). Parameter estimates can be displayed in this metric by specifying the estmetric
option. However, in xtmepoisson output, variance components are most often displayed either as
variances and covariances (option variance) or as standard deviations and correlations (the default).

The approach outlined above can be extended from two-level models to three- and higher-level
models; see Pinheiro and Chao (2006) for details.
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Also see
[XT] xtmepoisson postestimation — Postestimation tools for xtmepoisson

[XT] xtmelogit — Multilevel mixed-effects logistic regression

[XT] xtmixed — Multilevel mixed-effects linear regression

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[XT] xtrc — Random-coefficients model

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands



Title

xtmepoisson postestimation — Postestimation tools for xtmepoisson

Description
The following postestimation commands are of special interest after xtmepoisson:

Command Description

estat group summarize the composition of the nested groups
estat recovariance display the estimated random-effects covariance matrix (or matrices)

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat group reports number of groups and minimum, average, and maximum group sizes for
each level of the model. Model levels are identified by the corresponding group variable in the data.
Because groups are treated as nested, the information in this summary may differ from what you
would get if you tabulated each group variable individually.

estat recovariance displays the estimated variance–covariance matrix of the random effects
for each level in the model. Random effects can be either random intercepts, in which case the
corresponding rows and columns of the matrix are labeled as cons, or random coefficients, in which
case the label is the name of the associated variable in the data.

293
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Syntax for predict

Syntax for obtaining estimated random effects or their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
,
{
reffects | reses

}
[
level(levelvar)

]
Syntax for obtaining other predictions

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic fixedonly nooffset
]

statistic Description

Main

mu the predicted mean; the default
xb linear prediction for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

Statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

reffects calculates posterior modal estimates of the random effects. By default, estimates for all
random effects in the model are calculated. However, if the level(levelvar) option is specified,
then estimates for only level levelvar in the model are calculated. For example, if classes are
nested within schools, then typing

. predict b*, reffects level(school)

would yield random-effects estimates at the school level. You must specify q new variables, where
q is the number of random-effects terms in the model (or level). However, it is much easier to
just specify stub* and let Stata name the variables stub1, stub2, . . . , stubq for you.

reses calculates standard errors for the random-effects estimates obtained by using the reffects
option. By default, standard errors for all random effects in the model are calculated. However, if
the level(levelvar) option is specified, then standard errors for only level levelvar in the model
are calculated. For example, if classes are nested within schools, then typing

. predict se*, reses level(school)
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would yield standard errors at the school level. You must specify q new variables, where q is the
number of random-effects terms in the model (or level). However, it is much easier to just specify
stub* and let Stata name the variables stub1, stub2, . . . , stubq for you.

The reffects and reses options often generate multiple new variables at once. When this occurs,
the random effects (or standard errors) contained in the generated variables correspond to the order
in which the variance components are listed in the output of xtmepoisson. Still, examining the
variable labels of the generated variables (using the describe command, for instance) can be
useful in deciphering which variables correspond to which terms in the model.

level(levelvar) specifies the level in the model at which predictions for random effects and their
standard errors are to be obtained. levelvar is the name of the model level and is either the name
of the variable describing the grouping at that level or all, a special designation for a group
comprising all the estimation data.

mu, the default, calculates the predicted mean, that is, the predicted count. By default, this is based
on a linear predictor that includes both the fixed effects and the random effects, and the predicted
mean is conditional on the values of the random effects. Use the fixedonly option (see below) if
you want predictions that include only the fixed portion of the model, that is, if you want random
effects set to zero.

xb calculates the linear prediction xβ based on the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of zero.

stdp calculates the standard error of the fixed-effects linear predictor xβ.

pearson calculates Pearson residuals. Pearson residuals large in absolute value may indicate a lack
of fit. By default, residuals include both the fixed portion and the random portion of the model.
The fixedonly option modifies the calculation to include the fixed portion only.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correctly specified. They may be plotted against
the fitted values or against a covariate to inspect the model’s fit. By default, residuals include
both the fixed portion and the random portion of the model. The fixedonly option modifies the
calculation to include the fixed portion only.

anscombe calculates Anscombe residuals, residuals that are designed to closely follow a normal
distribution. By default, residuals include both the fixed portion and the random portion of the
model. The fixedonly option modifies the calculation to include the fixed portion only.

fixedonly modifies predictions to include only the fixed portion of the model, equivalent to setting
all random effects equal to zero; see the mu option.

nooffset is relevant only if you specified offset(varnameo) or exposure(varnamee) for
xtmepoisson. It modifies the calculations made by predict so that they ignore the off-
set variable; the linear prediction is treated as Xβ + Zu rather than Xβ + Zu + offset, or
Xβ + Zu + ln(exposure), whichever is relevant.

Syntax for estat group
estat group
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Menu
Statistics > Postestimation > Reports and statistics

Syntax for estat recovariance
estat recovariance

[
, level(levelvar) correlation matlist options

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat recovariance
level(levelvar) specifies the level in the model for which the random-effects covariance matrix is

to be displayed and returned in r(cov). By default, the covariance matrices for all levels in the
model are displayed. levelvar is the name of the model level and is either the name of variable
describing the grouping at that level or all, a special designation for a group comprising all the
estimation data.

correlation displays the covariance matrix as a correlation matrix and returns the correlation matrix
in r(corr).

matlist options are style and formatting options that control how the matrix (or matrices) are displayed;
see [P] matlist for a list of what is available.

Remarks
Various predictions, statistics, and diagnostic measures are available after fitting a Poisson mixed-

effects model with xtmepoisson. For the most part, calculation centers around obtaining estimates
of the subject/group-specific random effects. Random effects are not estimated when the model is fit
but instead need to be predicted after estimation.

Example 1

In example 2 of [XT] xtmepoisson, we modeled the number of observed epileptic seizures as a
function of treatment with the drug progabide and other covariates

log(µij) = β0 + β1treatij + β2lbasij+β3lbas trtij+

β4lageij + β5visitij + uj + vjvisitij

where (uj , vj) are bivariate normal with zero mean and variance–covariance matrix

Σ = Var
[
uj
vj

]
=
[
σ2
u σuv

σuv σ2
v

]
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. use http://www.stata-press.com/data/r12/epilepsy
(Epilepsy data; progabide drug treatment)

. xtmepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)

(output omitted )
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group: min = 4
avg = 4.0
max = 4

Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -.9286588 .4021643 -2.31 0.021 -1.716886 -.1404312
lbas .8849767 .131252 6.74 0.000 .6277275 1.142226

lbas_trt .3379757 .2044445 1.65 0.098 -.0627281 .7386795
lage .4767192 .353622 1.35 0.178 -.2163673 1.169806

visit -.2664098 .1647096 -1.62 0.106 -.5892347 .0564151
_cons 2.099555 .2203712 9.53 0.000 1.667635 2.531474

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Unstructured
sd(visit) .7290273 .1573227 .4775909 1.112837
sd(_cons) .5014906 .0586145 .3988172 .6305967

corr(visit,_cons) .0078542 .2426514 -.43639 .4490197

LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The purpose of this model was to allow subject-specific linear log trends over each subject’s four
doctor visits, after adjusting for the other covariates. The intercepts of these lines are distributed
N(β0, σ

2
u), and the slopes N(β5, σ

2
v), based on the fixed effects and assumed distribution of the

random effects.

We can use predict to obtain estimates of the random effects uj and vj and combine these with
our estimates of β0 and β5 to obtain the intercepts and slopes of the linear log trends.

. predict re_visit re_cons, reffects

. generate b1 = _b[visit] + re_visit

. generate b0 = _b[_cons] + re_cons

. by subject, sort: generate tolist = _n==1
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. list subject treat b1 b0 if tolist & (subject <=5 | subject >=55)

subject treat b1 b0

1. 1 0 -.4284563 2.164691
5. 2 0 -.2727145 2.179111
9. 3 0 .0026486 2.450811

13. 4 0 -.3194157 2.268827
17. 5 0 .6063656 2.123723

217. 55 1 -.2304782 2.311493
221. 56 1 .2904741 3.211369
225. 57 1 -.4831492 1.457485
229. 58 1 -.252236 1.168154
233. 59 1 -.1266651 2.204869

We list these slopes (b1) and intercepts (b0) for five control subjects and five subjects on the
treatment.

. count if tolist & treat
31

. count if tolist & treat & b1 < 0
25

. count if tolist & !treat
28

. count if tolist & !treat & b1 < 0
20

We also find that 25 of the 31 subjects taking progabide were estimated to have a downward trend
in seizures over their four doctor visits, compared with 20 of the 28 control subjects.

We also obtain predictions for number of seizures, and unless we specify the fixedonly option,
these predictions will incorporate the estimated subject-specific random effects.

. predict n
(option mu assumed; predicted means)

. list subject treat visit seizures n if subject <= 2 | subject >= 58, sep(0)

subject treat visit seizures n

1. 1 0 -.3 5 3.887582
2. 1 0 -.1 3 3.568324
3. 1 0 .1 3 3.275285
4. 1 0 .3 3 3.00631
5. 2 0 -.3 3 3.705628
6. 2 0 -.1 5 3.508926
7. 2 0 .1 3 3.322664
8. 2 0 .3 3 3.14629

229. 58 1 -.3 0 .9972093
230. 58 1 -.1 0 .9481507
231. 58 1 .1 0 .9015056
232. 58 1 .3 0 .8571553
233. 59 1 -.3 1 2.487858
234. 59 1 -.1 4 2.425625
235. 59 1 .1 3 2.364948
236. 59 1 .3 2 2.305789
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Technical note
Out-of-sample predictions are permitted after xtmepoisson, but if these predictions involve

estimated random effects, the integrity of the estimation data must be preserved. If the estimation data
have changed since the model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus, to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.

Saved results
estat recovariance saves the last-displayed random-effects covariance matrix in r(cov) or in

r(corr) if it is displayed as a correlation matrix.

Methods and formulas
Continuing the discussion in Methods and formulas of [XT] xtmepoisson, and using the definitions

and formulas defined there, we begin by considering the “prediction” of the random effects uj for
the jth cluster in a two-level model.

Given a set of estimated xtmepoisson parameters, (β̂, Σ̂), a profile likelihood in uj is derived
from the joint distribution f(yj ,uj) as

Lj(uj) = exp {−c (yj)} (2π)−q/2|Σ̂|−1/2 exp
{
g
(
β̂, Σ̂,uj

)}
(1)

The conditional MLE of uj—conditional on fixed (β̂, Σ̂)—is the maximizer of Lj(uj), or equivalently,
the value of ûj that solves

0 = g′
(
β̂, Σ̂, ûj

)
= Z′j

{
yj −m(β̂, ûj)

}
− Σ̂

−1
ûj

Because (1) is proportional to the conditional density f(uj |yj), you can also refer to ûj as the
conditional mode (or posterior mode if you lean toward Bayesian terminology). Regardless, you are
referring to the same estimator.

Conditional standard errors for the estimated random effects are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of ûj is the negative inverse
of the Hessian, which is estimated as

g′′
(
β̂, Σ̂, ûj

)
= −

{
Z′jV(β̂, ûj)Zj + Σ̂

−1
}

Similar calculations extend to models with more than one level of random effects; see Pinheiro and
Chao (2006).

For any i observation in the jth cluster in a two-level model, define the linear predictor as

η̂ij = xijβ̂+ zijûj
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In a three-level model, for the ith observation within the jth level-two cluster within the kth level-three
cluster,

η̂ijk = xijkβ̂+ z(3)
ijkû

(3)
k + z(2)

ijkû
(2)
jk

where the z(p) and u(p) refer to the level p design variables and random effects, respectively. For
models with more than three levels, the definition of η̂ extends in the natural way, with only the
notation becoming more complicated.

If the fixedonly option is specified, η̂ contains the linear predictor for only the fixed portion of
the model, for example, in a two-level model η̂ij = xijβ̂. In what follows, we assume a two-level
model, with the only necessary modification for multilevel models being the indexing.

The predicted mean, conditional on the random effects ûj , is

µ̂ij = exp(η̂ij)

Pearson residuals are calculated as

νPij =
yij − µ̂ij
{V (µ̂ij)}1/2

for V (µ̂ij) = µ̂ij .

Deviance residuals are calculated as

νDij = sign(yij − µ̂ij)
√
d̂ 2
ij

where

d̂ 2
ij =


2µ̂ij if yij = 0

2
{
yij log

(
yij
µ̂ij

)
− (yij − µ̂ij)

}
otherwise

Anscombe residuals are calculated as

νAij =
3
(
y

2/3
ij − µ̂

2/3
ij

)
2µ̂1/6

ij

For a discussion of the general properties of the above residuals, see Hardin and Hilbe (2007,
chap. 4).
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Also see
[XT] xtmepoisson — Multilevel mixed-effects Poisson regression

[U] 20 Estimation and postestimation commands



Title

xtmixed — Multilevel mixed-effects linear regression

Syntax
xtmixed depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname
[
, re options

]
levelvar is a variable identifying the group structure for the random effects at that level or all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables
fweight(exp) frequency weights at higher levels
pweight(exp) sampling weights at higher levels

vartype Description

independent one unique variance parameter per random effect, all covariances
zero; the default unless a factor variable is specified

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances zero
unstructured all variances and covariances distinctly estimated

302
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options Description

Model

mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood
pwscale(scale method) control scaling of sampling weights in two-level models
residuals(rspec) structure of residual errors

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

variance show random-effects parameter estimates as variances and covariances
noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
noheader suppress output header
nogroup suppress table summarizing groups
nostderr do not estimate standard errors of random-effects parameters
nolrtest do not perform LR test comparing to linear regression
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

EM options

emiterate(#) number of EM iterations; default is 20

emtolerance(#) EM convergence tolerance; default is 1e-10

emonly fit model exclusively using EM
emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used
matsqrt parameterize variance components using matrix square roots; the default
matlog parameterize variance components using matrix logarithms

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Multilevel mixed-effects models > Mixed-effects linear regression

Description
xtmixed fits linear mixed models. Mixed models are characterized as containing both fixed effects

and random effects. The fixed effects are analogous to standard regression coefficients and are estimated
directly. The random effects are not directly estimated but are summarized according to their estimated
variances and covariances. Although random effects are not directly estimated, you can form best
linear unbiased predictions (BLUPs) of them (and standard errors) by using predict after xtmixed;
see [XT] xtmixed postestimation. Random effects may take the form of either random intercepts or
random coefficients, and the grouping structure of the data may consist of multiple levels of nested
groups. As such, mixed models are also known in the literature as multilevel models and hierarchical
linear models. The overall error distribution of the linear mixed model is assumed to be Gaussian,
and heteroskedasticity and correlations within lowest-level groups also may be modeled.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all the random-effects equations.

covariance(vartype), where vartype is

independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are zero.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p+ 1)/2 unique parameters.

covariance(independent) is the default, except when the random-effects equation is a factor-
variable specification R.varname, in which case covariance(identity) is the default, and only
covariance(identity) and covariance(exchangeable) are allowed.

collinear specifies that xtmixed not omit collinear variables from the random-effects equation.
Usually there is no reason to leave collinear variables in place, and in fact doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

fweight(exp) specifies frequency weights at higher levels in a multilevel model, whereas frequency
weights at the first level (the observation level) are specified in the usual manner, for example,
[fw=fwtvar1]. exp can be any valid Stata expression, and you can specify fweight() at levels
two and higher of a multilevel model. For example, in the two-level model

. xtmixed fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .
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variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

pweight(exp) specifies sampling weights at higher levels in a multilevel model, whereas sampling
weights at the first level (the observation level) are specified in the usual manner, for example,
[pw=pwtvar1]. exp can be any valid Stata expression, and you can specify pweight() at levels
two and higher of a multilevel model. For example, in the two-level model

. xtmixed fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

See Survey data in Remarks below for more information regarding the use of sampling weights
in multilevel models.

Weighted estimation, whether frequency or sampling, is not supported under restricted maximum-
likelihood estimation (REML).

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as
residual maximum likelihood.

pwscale(scale method), where scale method is

size | effective | gk

controls how sampling weights (if specified) are scaled in two-level models.

scale method size specifies that first-level (observation-level) weights be scaled so that they
sum to the sample size of their corresponding second-level cluster. Second-level sampling
weights are left unchanged.

scale method effective specifies that first-level weights be scaled so that they sum to
the effective sample size of their corresponding second-level cluster. Second-level sampling
weights are left unchanged.

scale method gk specifies the Graubard and Korn (1996) method. Under this method, second-
level weights are set to the cluster averages of the products of the weights at both levels,
and first-level weights are then set equal to one.

pwscale() is supported only with two-level models. See Survey data in Remarks below for more
details on using pwscale().

residuals(rspec), where rspec is

restype
[
, residual options

]
specifies the structure of the residual errors within the lowest-level groups (the second level of a
multilevel model with the observations comprising the first level) of the linear mixed model. For
example, if you are modeling random effects for classes nested within schools, then residuals()
refers to the residual variance–covariance structure of the observations within classes, the lowest-
level groups.

restype is

independent | exchangeable | ar # | ma # | unstructured |
banded # | toeplitz # | exponential
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By default, restype is independent, which means that all residuals are i.i.d. Gaussian with
one common variance. When combined with by(varname), independence is still assumed,
but you estimate a distinct variance for each level of varname. Unlike with the structures
described below, varname does not need to be constant within groups.

restype exchangeable estimates two parameters, one common within-group variance and one
common pairwise covariance. When combined with by(varname), these two parameters
are distinctly estimated for each level of varname. Because you are modeling a within-
group covariance, varname must be constant within lowest-level groups.

restype ar # assumes that within-group errors have an autoregressive (AR) structure of
order #; ar 1 is the default. The t(varname) option is required, where varname is an
integer-valued time variable used to order the observations within groups and to determine
the lags between successive observations. Any nonconsecutive time values will be treated
as gaps. For this structure, # + 1 parameters are estimated (# AR coefficients and one
overall error variance). restype ar may be combined with by(varname), but varname
must be constant within groups.

restype ma # assumes that within-group errors have a moving average (MA) structure of
order #; ma 1 is the default. The t(varname) option is required, where varname is an
integer-valued time variable used to order the observations within groups and to determine
the lags between successive observations. Any nonconsecutive time values will be treated
as gaps. For this structure, # + 1 parameters are estimated (# MA coefficients and one
overall error variance). restype ma may be combined with by(varname), but varname
must be constant within groups.

restype unstructured is the most general structure; it estimates distinct variances for
each within-group error and distinct covariances for each within-group error pair. The
t(varname) option is required, where varname is a nonnegative-integer–valued variable
that identifies the observations within each group. The groups may be unbalanced in that
not all levels of t() need to be observed within every group, but you may not have
repeated t() values within any particular group. When you have p levels of t(), then
p(p + 1)/2 parameters are estimated. restype unstructured may be combined with
by(varname), but varname must be constant within groups.

restype banded # is a special case of unstructured that restricts estimation to the covariances
within the first # off-diagonals and sets the covariances outside this band to zero. The
t(varname) option is required, where varname is a nonnegative-integer–valued variable
that identifies the observations within each group. # is an integer between zero and p−1,
where p is the number of levels of t(). By default, # is p− 1; that is, all elements of
the covariance matrix are estimated. When # is zero, only the diagonal elements of the
covariance matrix are estimated. restype banded may be combined with by(varname),
but varname must be constant within groups.

restype toeplitz # assumes that within-group errors have Toeplitz structure of order #,
for which correlations are constant with respect to time lags less than or equal to # and
are zero for lags greater than #. The t(varname) option is required, where varname
is an integer-valued time variable used to order the observations within groups and to
determine the lags between successive observations. # is an integer between one and the
maximum observed lag (the default). Any nonconsecutive time values will be treated as
gaps. For this structure, # + 1 parameters are estimated (# correlations and one overall
error variance). restype toeplitz may be combined with by(varname), but varname
must be constant within groups.
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restype exponential is a generalization of the autoregressive (AR) covariance model
that allows for unequally spaced and noninteger time values. The t(varname) option
is required, where varname is real-valued. For the exponential covariance model, the
correlation between two errors is the parameter ρ, raised to a power equal to the absolute
value of the difference between the t() values for those errors. For this structure, two
parameters are estimated (the correlation parameter ρ and one overall error variance).
restype exponential may be combined with by(varname), but varname must be constant
within groups.

residual options are by(varname) and t(varname).

by(varname) is for use within the residuals() option and specifies that a set of distinct
residual-error parameters be estimated for each level of varname. In other words, you
use by() to model heteroskedasticity.

t(varname) is for use within the residuals() option to specify a time variable for the
ar, ma, toeplitz, and exponential structures, or to ID the observations when restype
is unstructured or banded.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification and that allow for intragroup correlation; see [R] vce option.
vce(oim) is the default. If vce(robust) is specified, robust variances are clustered at the highest
level in the multilevel model.

vce(robust) and vce(cluster clustvar) are not supported with REML estimation.

� � �
Reporting �

level(#); see [R] estimation options.

variance displays the random-effects and residual-error parameter estimates as variances and co-
variances. The default is to display them as standard deviations and correlations.

noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level. Residual-variance parameter estimates are also displayed in their
original estimation metric.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents xtmixed from calculating standard errors for the estimated random-effects
parameters, although standard errors are still provided for the fixed-effects parameters. Specifying
this option will speed up computation times. nostderr is available only when residuals are
modeled as independent with constant variance.

nolrtest prevents xtmixed from fitting a reference linear regression model and using this model
to calculate a likelihood-ratio test comparing the mixed model to ordinary regression. This option
may also be specified on replay to suppress this test from the output.
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
EM options �

These options control the EM (expectation-maximization) iterations that take place before estimation
switches to a gradient-based method. When residuals are modeled as independent with constant
variance, EM will either converge to the solution or bring parameter estimates close to the solution.
For other residual structures or for weighted estimation, EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(20).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to a gradient-based method,
unless emonly is specified, in which case maximization stops.

emonly specifies that the likelihood be maximized exclusively using EM. The advantage of specifying
emonly is that EM iterations are typically much faster than those for gradient-based methods.
The disadvantages are that EM iterations can be slow to converge (if at all) and that EM provides
no facility for estimating standard errors for the random-effects parameters. emonly is available
only with unweighted estimation and when residuals are modeled as independent with constant
variance.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default, not
displayed unless the emonly option is specified.

emdots specifies that the EM iterations be shown as dots. This option can be convenient because
the EM algorithm may require many iterations to converge.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize. Those that require special mention
for xtmixed are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance–covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

The following option is available with xtmixed but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Remarks are presented under the following headings:

Introduction
Two-level models
Covariance structures
Likelihood versus restricted likelihood
Three-level models
Blocked-diagonal covariance structures
Heteroskedastic random effects
Heteroskedastic residual errors
Other residual-error structures
Random-effects factor notation and crossed-effects models
Diagnosing convergence problems
Distribution theory for likelihood-ratio tests
Survey data

Introduction

Linear mixed models are models containing both fixed effects and random effects. They are a
generalization of linear regression allowing for the inclusion of random deviations (effects) other than
those associated with the overall error term. In matrix notation,

y = Xβ+ Zu + ε (1)

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors,
ε, is assumed to be multivariate normal with mean zero and variance matrix σ2

εR.

The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression
model with β being the regression coefficients to be estimated. For the random portion of (1), Zu+ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[

u
ε

]
=
[

G 0
0 σ2

εR

]
The random effects u are not directly estimated (although they may be predicted), but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the overall residual variance σ2

ε and the residual-variance parameters that are contained within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on (say) age, or both. The general specification of G also provides additional flexibility—the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for residual
errors to be heteroskedastic and correlated, and allows flexibility in exactly how these characteristics
can be modeled.

Comprehensive treatments of mixed models are provided by, among others, Searle, Casella, and
McCulloch (1992); McCulloch, Searle, and Neuhaus (2008); Verbeke and Molenberghs (2000);
Raudenbush and Bryk (2002); Demidenko (2004); and Pinheiro and Bates (2000). In particular,
chapter 2 of Searle, Casella, and McCulloch (1992) provides an excellent history.
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The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in mixed models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the “ANOVA method” to unbalanced data for
general ANOVA designs is due to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

The most popular methods, however, are maximum likelihood (ML) and restricted maximum-
likelihood (REML), and these are the two methods that are supported by xtmixed. The ML estimates
are based on the usual application of likelihood theory, given the distributional assumptions of the
model. The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects, β, but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood.

Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

yj = Xjβ+ Zjuj + εj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response, yj , comprises the rows
of y corresponding with the jth cluster, with Xj and εj defined analogously. The random effects,
uj , can now be thought of as M realizations of a q× 1 vector that is normally distributed with mean
0 and q× q variance matrix Σ. The matrix Zi is the nj × q design matrix for the jth cluster random
effects. Relating this to (1), note that

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ; R = IM ⊗ Λ (3)

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect “at the school level”, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to allow
random effects at both the school and the class-within-school levels. This we demonstrate later.

Finally, we state our convention on counting and ordering model levels. Model (2) is what we
call a two-level model, with extensions to three, four, or any number of levels. The observation
yij is for individual i within cluster j, and the individuals comprise the first level and the clusters
comprise the second level of the model. In our hypothetical three-level model with classes nested
within schools, the observations within schools (the students, presumably) would constitute the first
level, the classes would constitute the second level, and the schools would constitute the third level.
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This differs from certain citations in the classical ANOVA literature and texts such as Pinheiro and
Bates (2000) but is the standard in the vast literature on hierarchical models, for example, Skrondal
and Rabe-Hesketh (2004).

In the sections that follow, we assume that residuals are independent with constant variance; that
is, in (3) we treat Λ equal to the identity matrix and limit ourselves to estimating one overall residual
variance, σ2

ε . Beginning in Heteroskedastic residual errors, we relax this assumption.

Two-level models
We begin with a simple application of (2). We begin with a two-level model because a one-level

linear model, by our convention, is just standard OLS regression.

Example 1

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by variable id. Below is a plot of the growth curves for the first 10 pigs.

. use http://www.stata-press.com/data/r12/pig
(Longitudinal analysis of pig weights)

. twoway connected weight week if id<=10, connect(L)
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It seems clear that each pig experiences a linear trend in growth and that overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we
instead treat them as a random sample from a larger population and model the between-pig variability
as a random effect or, in the terminology of (2), as a random-intercept term at the pig level. We thus
wish to fit the model

weightij = β0 + β1weekij + uj + εij (4)

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect, uj , serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing



312 xtmixed — Multilevel mixed-effects linear regression

. xtmixed weight week || id:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
sd(_cons) 3.849352 .4058119 3.130769 4.732866

sd(Residual) 2.093625 .0755472 1.95067 2.247056

LR test vs. linear regression: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:

1. By typing “weight week”, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

2. When we added “|| id:”, we specified random effects at the level identified by group variable
id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

3. The estimation log consists of three parts:

a. A set of expectation-maximization (EM) iterations used to refine starting values. By default, the
iterations themselves are not displayed, but you can display them with the emlog option.

b. A set of “gradient-based” iterations. By default, these are Newton–Raphson iterations, but other
methods are available by specifying the appropriate maximize options; see [R] maximize.

c. The message “Computing standard errors:”. This is just to inform you that xtmixed has finished
its iterative maximization and is now reparameterizing from a matrix-based parameterization
(see Methods and formulas) to the natural metric of variance components and their estimated
standard errors.

4. The output title, “Mixed-effects ML regression”, informs us that our model was fit using ML, the
default. For REML estimates, use the reml option.

Because this model is a simple random-intercept model fit by ML, it would be equivalent to using
xtreg with its mle option.

5. The first estimation table reports the fixed effects. We estimate β0 = 19.36 and β1 = 6.21.
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6. The second estimation table shows the estimated variance components. The first section of the
table is labeled “id: Identity”, meaning that these are random effects at the id (pig) level
and that their variance–covariance matrix is a multiple of the identity matrix; that is, Σ = σ2

uI.
Because we have only one random effect at this level, xtmixed knew that Identity is the only
possible covariance structure. In any case, the standard deviation of the level-two errors, σu, is
estimated as 3.85 with standard error 0.406.

If you prefer variance estimates, σ̂2
u, to standard deviation estimates, σ̂u, then specify the variance

option either at estimation or on replay.

7. The row labeled “sd(Residual)” displays the estimated standard deviation of the overall error
term; that is, σ̂ε = 2.09. This is the standard deviation of the level-one errors, that is, the residuals.

8. Finally, a likelihood-ratio test comparing the model with one-level ordinary linear regression, model
(4) without uj , is provided and is highly significant for these data.

We now store our estimates for later use:
. estimates store randint

Example 2

Extending (4) to allow for a random slope on week yields the model

weightij = β0 + β1weekij + u0j + u1jweekij + εij (5)

fit using xtmixed:
. xtmixed weight week || id: week

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -869.03825
Iteration 1: log likelihood = -869.03825

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
sd(week) .6066851 .0660294 .4901417 .7509396

sd(_cons) 2.599301 .2969073 2.077913 3.251515

sd(Residual) 1.264441 .0487958 1.17233 1.363789

LR test vs. linear regression: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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. estimates store randslope

Because we did not specify a covariance structure for the random effects (u0j , u1j)′, xtmixed
used the default Independent structure; that is,

Σ = Var
[
u0j

u1j

]
=
[
σ2
u0 0
0 σ2

u1

]
(6)

with σ̂u0 = 2.60 and σ̂u1 = 0.61. Our point estimates of the fixed effects are essentially identical to
those from model (4), but note that this does not hold generally. Given the 95% confidence interval
for σ̂u1, it would seem that the random slope is significant, and we can use lrtest and our two
saved estimation results to verify this fact:

. lrtest randslope randint

Likelihood-ratio test LR chi2(1) = 291.78
(Assumption: randint nested in randslope) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The near-zero significance level favors the model that allows for a random pig-specific regression
line over the model that allows only for a pig-specific shift.

Technical note

At the bottom of the previous xtmixed output, there is a note stating that the likelihood ratio
(LR) test comparing our model with standard linear regression is conservative. Also, our lrtest
output warns us that our test comparing the random-slope model with the random-intercept model
may be conservative if the null hypothesis is on the boundary. For the former, the null hypothesis
is H0 : σ2

u0 = σ2
u1 = 0. For the latter, the null hypothesis is H0 : σ2

u1 = 0. Because variances are
constrained to be positive, both null hypotheses are on the boundaries of their respective parameter
spaces. xtmixed is capable of detecting this automatically because it compares with linear regression.
lrtest, on the other hand, can be used to compare a wide variety of nested mixed models, making
automatic detection of boundary conditions impractical. With lrtest, the onus is on the user to
verify testing on the boundary.

By “conservative”, we mean that when boundary conditions exist, the reported significance level
is an upper bound on the actual significance; see Distribution theory for likelihood-ratio tests later in
this entry for further details.

Technical note
LR tests with REML require identical fixed-effects specifications for both models. As stated in

Ruppert, Wand, and Carroll (2003), “The reason for this is that restricted likelihood is the likelihood
of the residuals after fitting the fixed effects and so is not appropriate when there is more than one
fixed effects model under consideration.” This is not an issue above because we used the default ML
estimation, but had we fit the models using the reml option, we would have to confine our tests to
models comparing different variance structures and not different βs.
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In our example, the fixed-effects specifications for both models are identical (β0 + β1week), so
either ML or REML would have produced valid LR tests.

Finally, lrtest is capable of detecting when you change fixed-effects structures under REML and
will issue an error directing you to refit your models with ML. As such, there is no danger of making
an inappropriate inference.

Covariance structures
In example 2, we fit a model with the default Independent covariance given in (6). Within any

random-effects level specification, we can override this default by specifying an alternative covariance
structure via the covariance() option.

Example 3

We generalize (6) to allow u0j and u1j to be correlated; that is,

Σ = Var
[
u0j

u1j

]
=
[
σ2
u0 σ01

σ01 σ2
u1

]

. xtmixed weight week || id: week, covariance(unstructured) variance

(output omitted )
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear regression: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

But we do not find the correlation to be at all significant.

. lrtest . randslope

Likelihood-ratio test LR chi2(1) = 0.15
(Assumption: randslope nested in .) Prob > chi2 = 0.6959
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In addition to specifying an alternate covariance structure, we specified the variance option to display
variance components in the variance–covariance metric, rather than the default, which displays them
as standard deviations and correlations.

Instead, we could have also specified covariance(identity), restricting u0j and u1j to not
only be independent but also to have common variance, or we could have specified covari-
ance(exchangeable), which imposes a common variance but allows for a nonzero correlation.

Likelihood versus restricted likelihood

Thus far, all our examples have used maximum likelihood (ML) to estimate variance components.
We could have just as easily asked for REML estimates. Refitting the model in example 2 by REML,
we get

. xtmixed weight week || id: week, reml

(output omitted )

Mixed-effects REML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4592.10
Log restricted-likelihood = -870.51473 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0916387 67.77 0.000 6.030287 6.389504
_cons 19.35561 .4021144 48.13 0.000 18.56748 20.14374

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
sd(week) .6135475 .0673971 .4947037 .7609413

sd(_cons) 2.630134 .3028832 2.09872 3.296107

sd(Residual) 1.26443 .0487971 1.172317 1.363781

LR test vs. linear regression: chi2(2) = 765.92 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Although ML estimators are based on the usual likelihood theory, the idea behind REML is to
transform the response into a set of linear contrasts whose distribution is free of the fixed effects β.
The restricted likelihood is then formed by considering the distribution of the linear contrasts. Not
only does this make the maximization problem free of β, it also incorporates the degrees of freedom
used to estimate β into the estimation of the variance components. This follows because, by necessity,
the rank of the linear contrasts must be less than the number of observations.

As a simple example, consider a constant-only regression where yi ∼ N(µ, σ2) for i = 1, . . . , n.
The ML estimate of σ2 can be derived theoretically as the n-divided sample variance. The REML
estimate can be derived by considering the first n− 1 error contrasts, yi− y, whose joint distribution
is free of µ. Applying maximum likelihood to this distribution results in an estimate of σ2, that is,
the (n− 1) divided sample variance, which is unbiased for σ2.
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The unbiasedness property of REML extends to all mixed models when the data are balanced, and
thus REML would seem the clear choice in balanced-data problems, although in large samples the
difference between ML and REML is negligible. One disadvantage of REML is that LR tests based
on REML are inappropriate for comparing models with different fixed-effects specifications. ML is
appropriate for such LR tests and has the advantage of being easy to explain and being the method
of choice for other estimators.

Another factor to consider is that ML estimation under xtmixed is more feature-rich, allowing for
weighted estimation and robust variance–covariance matrices, features not supported under REML. In
the end, which method to use should be based both on your needs and on personal taste.

Examining the REML output, we find that the estimates of the variance components are slightly
larger than the ML estimates. This is typical, because ML estimates, which do not incorporate the
degrees of freedom used to estimate the fixed effects, tend to be biased downward.

Three-level models
The clustered-data representation of the mixed model given in (2) can be extended to two nested

levels of clustering, creating a three-level model once the observations are considered. Formally,

yjk = Xjkβ+ Z(3)
jk u(3)

k + Z(2)
jk u(2)

jk + εjk (7)

for i = 1, . . . , njk first-level observations nested within j = 1, . . . ,Mk second-level groups, which
are nested within k = 1, . . . ,M third-level groups. Group j, k consists of njk observations, so yjk,
Xjk, and εjk each have row dimension njk. Z(3)

jk is the njk × q3 design matrix for the third-level

random effects u(3)
k , and Z(2)

jk is the njk× q2 design matrix for the second-level random effects u(2)
jk .

Furthermore, assume that

u(3)
k ∼ N(0,Σ3); u(2)

jk ∼ N(0,Σ2); εjk ∼ N(0, σ2
ε I)

and that u(3)
k , u(2)

jk , and εjk are independent.

Fitting a three-level model requires you to specify two random-effects “equations”: one for level
three, and then one for level two. The variable list for the first equation represents Z(3)

jk , and for the

second equation represents Z(2)
jk ; that is, you specify the levels top to bottom in xtmixed.

Example 4
Baltagi, Song, and Jung (2001) estimate a Cobb–Douglas production function examining the

productivity of public capital in each state’s private output. Originally provided by Munnell (1990),
the data were recorded over 1970–1986 for 48 states grouped into nine regions.
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. use http://www.stata-press.com/data/r12/productivity
(Public Capital Productivity)

. describe

Contains data from http://www.stata-press.com/data/r12/productivity.dta
obs: 816 Public Capital Productivity

vars: 11 29 Mar 2011 10:57
size: 29,376 (_dta has notes)

storage display value
variable name type format label variable label

state byte %9.0g states 1-48
region byte %9.0g regions 1-9
year int %9.0g years 1970-1986
public float %9.0g public capital stock
hwy float %9.0g log(highway component of public)
water float %9.0g log(water component of public)
other float %9.0g log(bldg/other component of

public)
private float %9.0g log(private capital stock)
gsp float %9.0g log(gross state product)
emp float %9.0g log(non-agriculture payrolls)
unemp float %9.0g state unemployment rate

Sorted by:

Because the states are nested within regions, we fit a three-level mixed model with random intercepts
at both the region and the state-within-region levels. That is, we use (7) with both Z(3)

jk and Z(2)
jk set

to the njk × 1 column of ones, and Σ3 = σ2
3 and Σ2 = σ2

2 are both scalars.

. xtmixed gsp private emp hwy water other unemp || region: || state:

(output omitted )
Mixed-effects ML regression Number of obs = 816

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .2671484 .0212591 12.57 0.000 .2254814 .3088154
emp .754072 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331906 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543854 13.79 0.000 1.826233 2.431413
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(_cons) .038087 .0170591 .0158316 .091628

state: Identity
sd(_cons) .0792193 .0093861 .0628027 .0999273

sd(Residual) .0366893 .000939 .0348944 .0385766

LR test vs. linear regression: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Some items of note:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the region level (level three), and the second is a random intercept at the state
level (level two). The order in which these are specified (from left to right) is significant—xtmixed
assumes that state is nested within region.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the nested-level error structure, we find that the highway and water components
of public capital had significant positive effects on private output, whereas the other public buildings
component had a negative effect.

Technical note
In the previous example, the states are coded 1–48 and are nested within nine regions. xtmixed

treated the states as nested within regions, regardless of whether the codes for each state are unique
between regions. That is, even if codes for states were duplicated between regions, xtmixed would
have enforced the nesting and produced the same results.

The group information at the top of xtmixed output and that produced by the postestimation
command estat group (see [XT] xtmixed postestimation) take the nesting into account. The
statistics are thus not necessarily what you would get if you instead tabulated each group variable
individually.

Model (7) extends in a straightforward manner to more than three levels, as does the specification
of such models in xtmixed.

Blocked-diagonal covariance structures

Covariance matrices of random effects within an equation can be modeled either as a multiple
of the identity matrix, diagonal (that is, Independent), exchangeable, or as general symmetric
(Unstructured). These may also be combined to produce more complex block-diagonal covariance
structures, effectively placing constraints on the variance components.
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Example 5

Returning to our productivity data, we now add random coefficients on hwy and unemp at the
region level. This only slightly changes the estimates of the fixed effects, so we focus our attention
on the variance components:

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable

Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17137.94

Log likelihood = 1447.6787 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Independent
sd(hwy) .0045717 .0120663 .0000259 .8066567

sd(unemp) .0048777 .0013807 .0028007 .0084948
sd(_cons) .0550901 .0786743 .0033533 .9050571

state: Identity
sd(_cons) .0797859 .0097832 .0627412 .101461

sd(Residual) .0353108 .0009104 .0335708 .037141

LR test vs. linear regression: chi2(4) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store prodrc

This model is the same as that fit in example 4, except that Z(3)
jk is now the njk × 3 matrix with

columns determined by the values of hwy, unemp, and an intercept term (one), in that order, and
(because we used the default Independent structure) Σ3 is

Σ3 =

( hwy unemp cons

σ2
a 0 0

0 σ2
b 0

0 0 σ2
c

)

The random-effects specification at the state level remains unchanged; that is, Σ2 is still treated as
the scalar variance of the random intercepts at the state level.

An LR test comparing this model with that from example 4 favors the inclusion of the two random
coefficients, a fact we leave to the interested reader to verify.

Examining the estimated variance components reveals that the variances of the random coefficients
on hwy and unemp could be treated as equal. That is,

Σ3 =

( hwy unemp cons

σ2
a 0 0

0 σ2
a 0

0 0 σ2
c

)

looks plausible. We can impose this equality constraint by treating Σ3 as block diagonal: the first
block is a 2× 2 multiple of the identity matrix, that is, σ2

aI2; the second is a scalar, equivalently, a
1× 1 multiple of the identity.
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We construct block-diagonal covariances by repeating level specifications:

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable

Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17136.65

Log likelihood = 1447.6784 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(hwy unemp) .0048802 .001376 .0028082 .0084809

region: Identity
sd(_cons) .0530951 .0286555 .0184356 .1529149

state: Identity
sd(_cons) .0797369 .0095999 .0629766 .1009577

sd(Residual) .0353111 .0009104 .0335712 .0371413

LR test vs. linear regression: chi2(3) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We specified two equations for the region level: the first for the random coefficients on hwy and
unemp with covariance set to Identity and the second for the random intercept cons, whose
covariance defaults to Identity because it is of dimension one. xtmixed labeled the estimate of
σa as “sd(hwy unemp)” to designate that it is common to the random coefficients on both hwy and
unemp.

An LR test shows that the constrained model fits equally well.

. lrtest . prodrc

Likelihood-ratio test LR chi2(1) = 0.00
(Assumption: . nested in prodrc) Prob > chi2 = 0.9784

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because the null hypothesis for this test is one of equality (H0 : σ2
a = σ2

b ), it is not on the
boundary of the parameter space. As such, we can take the reported significance as precise rather
than a conservative estimate.

You can repeat level specifications as often as you like, defining successive blocks of a block-
diagonal covariance matrix. However, repeated-level equations must be listed consecutively; otherwise,
xtmixed will give an error.

Technical note

In the previous estimation output, there was no constant term included in the first region equation,
even though we did not use the noconstant option. When you specify repeated-level equations,
xtmixed knows not to put constant terms in each equation because such a model would be unidentified.
By default, it places the constant in the last repeated-level equation, but you can use noconstant
creatively to override this.
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Heteroskedastic random effects
Blocked-diagonal covariance structures and repeated-level specifications of random effects can also

be used to model heteroskedasticity among random effects at a given level.

Example 6

Following Rabe-Hesketh and Skrondal (2008, sec. 5.10), we analyze data from Asian children in
a British community who were weighed up to four times, roughly between the ages of 6 weeks and
27 months. The dataset is a random sample of data previously analyzed by Goldstein (1986) and
Prosser, Rasbash, and Goldstein (1991).

. use http://www.stata-press.com/data/r12/childweight
(Weight data on Asian children)

. describe

Contains data from http://www.stata-press.com/data/r12/childweight.dta
obs: 198 Weight data on Asian children

vars: 5 23 May 2011 15:12
size: 3,168 (_dta has notes)

storage display value
variable name type format label variable label

id int %8.0g child identifier
age float %8.0g age in years
weight float %8.0g weight in Kg
brthwt int %8.0g Birth weight in g
girl float %9.0g bg gender

Sorted by: id age

. graph twoway (line weight age, connect(ascending)), by(girl)
> xtitle(Age in years) ytitle(Weight in kg)
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Ignoring gender effects for the moment, we begin with the following model for the ith measurement
on the jth child:

weightij = β0 + β1ageij + β2age
2
ij + uj0 + uj1ageij + εij
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The above models overall mean growth as quadratic in age and allows for two child-specific
random effects: a random intercept, uj0, that represents each child’s vertical shift from the overall
mean (β0), and a random age slope, uj1, that represents each child’s deviation in linear growth
rate from the overall mean linear growth rate (β1). For reasons of simplicity, we do not consider
child-specific changes in the quadratic component of growth.

. xtmixed weight age c.age#c.age || id: age, nolog

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1
avg = 2.9
max = 5

Wald chi2(2) = 1863.46
Log likelihood = -258.51915 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

age 7.693701 .2381076 32.31 0.000 7.227019 8.160384

c.age#c.age -1.654542 .0874987 -18.91 0.000 -1.826037 -1.483048

_cons 3.497628 .1416914 24.68 0.000 3.219918 3.775338

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
sd(age) .5465535 .075708 .4166057 .7170347

sd(_cons) .7087917 .0996506 .5380794 .9336647

sd(Residual) .5561382 .0426951 .4784488 .6464426

LR test vs. linear regression: chi2(2) = 114.70 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because there is no reason to believe that the random effects are uncorrelated, it is always a good
idea to first fit a model with the covariance(unstructured) option. We do not include the output
for such a model because for these data the correlation between random effects is not significant, but
we did check this before reverting to xtmixed’s default Independent structure.

Next we introduce gender effects into the fixed portion of the model by including a main gender
effect and gender/age interaction for overall mean growth:
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. xtmixed weight i.girl i.girl#c.age c.age#c.age || id: age, nolog

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1
avg = 2.9
max = 5

Wald chi2(4) = 1942.30
Log likelihood = -253.182 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.girl -.5104676 .2145529 -2.38 0.017 -.9309835 -.0899516

girl#c.age
0 7.806765 .2524583 30.92 0.000 7.311956 8.301574
1 7.577296 .2531318 29.93 0.000 7.081166 8.073425

c.age#c.age -1.654323 .0871752 -18.98 0.000 -1.825183 -1.483463

_cons 3.754275 .1726404 21.75 0.000 3.415906 4.092644

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
sd(age) .5265782 .0730408 .4012307 .6910851

sd(_cons) .6385054 .0969921 .4740922 .8599364

sd(Residual) .5596163 .0426042 .4820449 .6496707

LR test vs. linear regression: chi2(2) = 104.39 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store homoskedastic

The main gender effect is significant at the 5% level, but the gender/age interaction is not:

. test 0.girl#c.age = 1.girl#c.age

( 1) [weight]0b.girl#c.age - [weight]1.girl#c.age = 0

chi2( 1) = 1.66
Prob > chi2 = 0.1978

On average, boys are heavier than girls but their average linear growth rates are not significantly
different.

In the above model, we introduced a gender effect on average growth, but we still assumed that the
variability in child-specific deviations from this average was the same for boys and girls. To check
this assumption, we introduce gender into the random component of the model. Because support
for factor-variable notation is limited in specifications of random effects (see Random-effects factor
notation and crossed-effects models below), we need to generate the interactions ourselves.
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. gen boy = !girl

. gen boyXage = boy*age

. gen girlXage = girl*age

. xtmixed weight i.girl i.girl#c.age c.age#c.age || id: boy boyXage, noconstant
> || id: girl girlXage, noconstant nolog nofetable

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1
avg = 2.9
max = 5

Wald chi2(4) = 2358.11
Log likelihood = -248.94752 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
sd(boy) .5622358 .138546 .3468691 .9113211

sd(boyXage) .6880757 .1144225 .4966919 .9532031

id: Independent
sd(girl) .7614904 .1286769 .5467994 1.060476

sd(girlXage) .257805 .1073047 .1140251 .582884

sd(Residual) .5548717 .0418872 .4785591 .6433534

LR test vs. linear regression: chi2(4) = 112.86 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store heteroskedastic

In the above, we suppress displaying the fixed portion of the model (the nofetable option)
because it does not differ much from that of the previous model.

Our previous model had the random effects specification

|| id: age

which we have replaced with the dual repeated-level specification

|| id: boy boyXage, noconstant || id: girl girlXage, noconstant

The former models a random intercept and random slope on age, and does so treating all children as
a random sample from one population. The latter also specifies a random intercept and random slope
on age, but allows for the variability of the random intercepts and slopes to differ between boys and
girls. In other words, it allows for heteroskedasticity in random effects due to gender. We use the
noconstant option so that we can separate the overall random intercept (automatically provided by
the former syntax) into one specific to boys and one specific to girls.

There seems to be a large gender effect in the variability of linear growth rates. We can compare
both models with a likelihood-ratio test, recalling that we saved the previous estimation results under
the name homoskedastic:

. lrtest homoskedastic heteroskedastic

Likelihood-ratio test LR chi2(2) = 8.47
(Assumption: homoskedastic nested in heteroskedas~c) Prob > chi2 = 0.0145

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Because the null hypothesis here is one of equality of variances and not that variances are zero, the
above does not test on the boundary, and thus we can treat the significance level as precise and not
conservative. Either way, the results favor the new model with heteroskedastic random effects.

Heteroskedastic residual errors
Up to this point, we have assumed that the level-one residual errors—the ε’s in the stated

models—have been i.i.d. Gaussian with variance σ2
ε . This is demonstrated in xtmixed output in the

random-effects table, where up until now we have estimated a single residual-error standard deviation
or variance, labeled as sd(Residual) or var(Residual), respectively.

To relax the assumptions of homoskedasticity or independence of residual errors, use the resid-
uals() option.

Example 7

West, Welch, and Galecki (2007, chap. 7) analyze data studying the effect of ceramic dental veneer
placement on gingival (gum) health. Data on 55 teeth located in the maxillary arches of 12 patients
were considered.

. use http://www.stata-press.com/data/r12/veneer, clear
(Dental veneer data)

. describe

Contains data from http://www.stata-press.com/data/r12/veneer.dta
obs: 110 Dental veneer data

vars: 7 24 May 2011 12:11
size: 1,100 (_dta has notes)

storage display value
variable name type format label variable label

patient byte %8.0g Patient ID
tooth byte %8.0g Tooth number with patient
gcf byte %8.0g Gingival crevicular fluid (GCF)
age byte %8.0g Patient age
base_gcf byte %8.0g Baseline GCF
cda float %9.0g Average contour difference after

veneer placement
followup byte %9.0g t Follow-up time: 3 or 6 months

Sorted by:

Veneers were placed to match the original contour of the tooth as closely as possible, and researchers
were interested in how contour differences (variable cda) impacted gingival health. Gingival health
was measured as the amount of gingival crevical fluid (GCF) at each tooth, measured at baseline
(variable base gcf) and at two posttreatment follow-ups at 3 and 6 months. Variable gcf records
GCF at follow-up, and variable followup records the follow-up time.

Because two measurements were taken for each tooth and there exist multiple teeth per patient, we
fit a three-level model with the following random effects: a random intercept and random slope on
follow-up time at the patient level, and a random intercept at the tooth level. For the ith measurement
of the jth tooth from the kth patient, we have

gcfijk = β0 + β1followupijk + β2base gcfijk + β3cdaijk + β4ageijk+

u0k + u1kfollowupijk + v0jk + εijk
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which we can fit using xtmixed as

. xtmixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> reml nolog

Mixed-effects REML regression Number of obs = 110

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.48
Log restricted-likelihood = -420.92761 Prob > chi2 = 0.1128

gcf Coef. Std. Err. z P>|z| [95% Conf. Interval]

followup .3009815 1.936863 0.16 0.877 -3.4952 4.097163
base_gcf -.0183127 .1433094 -0.13 0.898 -.299194 .2625685

cda -.329303 .5292525 -0.62 0.534 -1.366619 .7080128
age -.5773932 .2139656 -2.70 0.007 -.9967582 -.1580283

_cons 45.73862 12.55497 3.64 0.000 21.13133 70.34591

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

patient: Unstructured
sd(followup) 6.472072 1.452392 4.168943 10.04756

sd(_cons) 22.91255 5.521438 14.28736 36.74472
corr(followup,_cons) -.9469371 .0394744 -.9878843 -.7827271

tooth: Identity
sd(_cons) 6.888932 1.207033 4.886635 9.711668

sd(Residual) 6.990496 .7513934 5.662578 8.629822

LR test vs. linear regression: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We used REML estimation above for no other reason than variety.

Among the other features of the model fit, we note that the residual standard deviation, σε, was
estimated as 6.99 and that our model assumed that the residuals were independent with constant
variance (homoskedastic). Because it may be the case that the precision of gcf measurements could
change over time, we modify the above to estimate two distinct error standard deviations: one for the
3-month follow-up and one for the 6-month follow-up.

To fit this model, we add the residuals(independent, by(followup)) option, which maintains
independence of residual errors but allows for heteroskedasticity with respect to follow-up time.



328 xtmixed — Multilevel mixed-effects linear regression

. xtmixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> residuals(independent, by(followup)) reml nolog

Mixed-effects REML regression Number of obs = 110

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.51
Log restricted-likelihood = -420.4576 Prob > chi2 = 0.1113

gcf Coef. Std. Err. z P>|z| [95% Conf. Interval]

followup .2703944 1.933096 0.14 0.889 -3.518405 4.059193
base_gcf .0062144 .1419121 0.04 0.965 -.2719283 .284357

cda -.2947235 .5245126 -0.56 0.574 -1.322749 .7333023
age -.5743755 .2142249 -2.68 0.007 -.9942487 -.1545024

_cons 45.15089 12.51452 3.61 0.000 20.62288 69.6789

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

patient: Unstructured
sd(followup) 6.461555 1.449333 4.163051 10.02911

sd(_cons) 22.69806 5.55039 14.0554 36.65509
corr(followup,_cons) -.9480776 .0395764 -.9885662 -.7800707

tooth: Identity
sd(_cons) 6.881798 1.198038 4.892355 9.680234

Residual: Independent,
by followup

3 months: sd(e) 7.833764 1.17371 5.840331 10.5076
6 months: sd(e) 6.035612 1.240554 4.034281 9.029765

LR test vs. linear regression: chi2(5) = 92.06 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Comparison of both models via a likelihood-ratio test reveals the difference in residual standard
deviations as not significant, something we leave to you to verify as an exercise.

The default residual-variance structure is independent, and when specified without by() is equiv-
alent to the default behavior of xtmixed: estimating one overall residual standard deviation/variance
for the entire model.

Other residual-error structures

Besides the default independent residual-error structure, xtmixed supports four other structures
that allow for correlation between residual errors within the lowest-level (smallest/level two) groups.
For purposes of notation, in what follows we assume a two-level model, with the obvious extension
to higher-level models.

The exchangeable structure assumes one overall variance and one common pairwise covariance;
that is,
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Var(εj) = Var


εj1
εj2

...
εjnj

 =


σ2
ε σ1 · · · σ1

σ1 σ2
ε · · · σ1

...
...

. . .
...

σ1 σ1 σ1 σ2
ε


By default, xtmixed will report estimates of the two parameters as estimates of the common standard
deviation, σε, and of pairwise correlation. If the variance option is specified, you obtain estimates
of σ2

ε and the covariance σ1. When the by(varname) option is also specified, these two parameters
are estimated for each level varname.

The ar p structure assumes that the errors have an autoregressive structure of order p. That is,

εij = φ1εi−1,j + · · ·+ φpεi−p,j + uij

where uij are i.i.d. Gaussian with mean zero and variance σ2
u. xtmixed reports estimates of φ1, . . . , φp

and the overall error standard deviation σε (or variance if the variance option is specified), which
can be derived from the above expression. The t(varname) option is required, where varname is a
time variable used to order the observations within lowest-level groups and to determine any gaps
between observations. When the by(varname) option is also specified, the set of p+ 1 parameters is
estimated for each level of varname. If p = 1, then the estimate of φ1 is reported as “rho”, because
in this case it represents the correlation between successive error terms.

The ma q structure assumes that the errors are a moving average process of order q. That is,

εij = uij + θ1ui−1,j + · · ·+ θqui−q,j

where uij are i.i.d. Gaussian with mean zero and variance σ2
u. xtmixed reports estimates of θ1, . . . , θq

and the overall error standard deviation σε (or variance if the variance option is specified), which
can be derived from the above expression. The t(varname) option is required, where varname is a
time variable used to order the observations within lowest level groups and to determine any gaps
between observations. When the by(varname option) is also specified, the set of q+ 1 parameters
is estimated for each level of varname.

The unstructured structure is the most general and estimates unique variances and unique
pairwise covariances for all residuals within the lowest level grouping. Because the data may be
unbalanced and the ordering of the observations is arbitrary, the t(varname) option is required,
where varname is an ID variable that matches error terms in different groups. If varname has n
distinct levels, then n(n+ 1)/2 parameters are estimated. Not all n levels need to be observed within
each group, but duplicated levels of varname within a given group are not allowed because they would
cause a singularity in the estimated error variance matrix for that group. When the by(varname)
option is also specified, the set of n(n+ 1)/2 parameters is estimated for each level of varname.

The banded q structure is a special case of unstructured that confines estimation to within
the first q off-diagonal elements of the residual variance–covariance matrix and sets the covariances
outside this band to zero. As is the case with unstructured, the t(varname) is required, where
varname is an ID variable that matches error terms in different groups. However, with banded variance
structures, the ordering of the values in varname is significant because it determines which covariances
are to be estimated and which are to be set to zero. For example, if varname has n = 5 distinct
values t = 1, 2, 3, 4, 5, then a banded variance–covariance structure of order q = 2 would estimate
the following:
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Var(εj) = Var


ε1j
ε2j
ε3j
ε4j
ε5j

 =


σ2

1 σ12 σ13 0 0
σ12 σ2

2 σ23 σ24 0
σ13 σ23 σ2

3 σ34 σ35

0 σ24 σ34 σ2
4 σ45

0 0 σ35 σ45 σ2
5


In other words, you would have an unstructured variance matrix that constrains σ14 = σ15 = σ25 = 0.
If varname has n distinct levels, then (q + 1)(2n− q)/2 parameters are estimated. Not all n levels
need to be observed within each group, but duplicated levels of varname within a given group are
not allowed because they would cause a singularity in the estimated error variance matrix for that
group. When the by(varname) option is also specified, the set of parameters is estimated for each
level of varname. If q is left unspecified, then banded is equivalent to unstructured; that is, all
variances and covariances are estimated. When q = 0, Var(εj) is treated as diagonal and can thus be
used to model uncorrelated, yet heteroskedastic residual errors.

The toeplitz q structure assumes that the residual errors are homoskedastic and that the correlation
between two errors is determined by the time lag between the two. That is, Var(εij) = σ2

ε and

Corr(εij , εi+k,j) = ρk

If the lag k is less than or equal to q, then the pairwise correlation ρk is estimated; if the lag
is greater than q, then ρk is assumed to be zero. If q is left unspecified, then ρk is estimated for
each observed lag k. The t(varname) option is required, where varname is a time variable t used
to determine the lags between pairs of residual errors. As such, t() must be integer-valued. q + 1
parameters are estimated, one overall variance σ2

ε and q correlations. When the by(varname) option
is also specified, the set of q + 1 parameters is estimated for each level of varname.

The exponential structure is a generalization of the AR structure that allows for noninteger and
irregularly spaced time lags. That is, Var(εij) = σ2

ε and

Corr(εij , εkj) = ρ|i−k|

for 0 ≤ ρ ≤ 1, with i and k not required to be integers. The t(varname) option is required, where
varname is a time variable used to determine i and k for each residual-error pair. t() is real-valued.
xtmixed reports estimates of σ2

ε and ρ. When the by(varname) option is also specified, these two
parameters are estimated for each level of varname.

Example 8

Pinheiro and Bates (2000, chap. 5) analyze data from a study of the estrus cycles of mares.
Originally analyzed in Pierson and Ginther (1987), the data record the number of ovarian follicles
larger than 10mm, daily over a period ranging from three days before ovulation to three days after
the subsequent ovulation.
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. use http://www.stata-press.com/data/r12/ovary
(Ovarian follicles in mares)

. describe

Contains data from http://www.stata-press.com/data/r12/ovary.dta
obs: 308 Ovarian follicles in mares

vars: 6 20 May 2011 13:49
size: 5,544 (_dta has notes)

storage display value
variable name type format label variable label

mare byte %9.0g mare ID
stime float %9.0g Scaled time
follicles byte %9.0g Number of ovarian follicles > 10

mm in diameter
sin1 float %9.0g sine(2*pi*stime)
cos1 float %9.0g cosine(2*pi*stime)
time float %9.0g time order within mare

Sorted by: mare stime

The stime variable is time that has been scaled so that ovulation occurs at scaled times 0 and 1,
and the time variable records the time ordering within mares. Because graphical evidence suggests
a periodic behavior, the analysis includes the sin1 and cos1 variables, which are sine and cosine
transformations of scaled time, respectively.

We consider the following model for the ith measurement on the jth mare:

folliclesij = β0 + β1sin1ij + β2cos1ij + uj + εij

The above model incorporates the cyclical nature of the data as affecting the overall average
number of follicles and includes mare-specific random effects uj . Because we believe successive
measurements within each mare are probably correlated (even after controlling for the periodicity in
the average), we also model the within-mare errors as being autoregressive of order 2.

. xtmixed follicles sin1 cos1 || mare:, residuals(ar 2, t(time)) reml nolog

Mixed-effects REML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group: min = 25
avg = 28.0
max = 31

Wald chi2(2) = 34.72
Log restricted-likelihood = -772.59855 Prob > chi2 = 0.0000

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

sin1 -2.899228 .5110786 -5.67 0.000 -3.900923 -1.897532
cos1 -.8652936 .5432926 -1.59 0.111 -1.930127 .1995402

_cons 12.14455 .9473617 12.82 0.000 10.28775 14.00134
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mare: Identity
sd(_cons) 2.663158 .8264476 1.449596 4.892683

Residual: AR(2)
phi1 .5386104 .0624899 .4161325 .6610883
phi2 .144671 .063204 .0207934 .2685486

sd(e) 3.775055 .3225437 3.192979 4.463244

LR test vs. linear regression: chi2(3) = 251.67 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We picked an order of 2 as a guess, but we could have used likelihood-ratio tests of competing AR
models to determine the optimal order, because models of smaller order are nested within those of
larger order.

Example 9

Fitzmaurice, Laird, and Ware (2004, chap. 7) analyzed data on 37 subjects who participated in an
exercise therapy trial.

. use http://www.stata-press.com/data/r12/exercise
(Exercise Therapy Trial)

. describe

Contains data from http://www.stata-press.com/data/r12/exercise.dta
obs: 259 Exercise Therapy Trial

vars: 4 24 Jun 2010 18:35
size: 1,036 (_dta has notes)

storage display value
variable name type format label variable label

id byte %9.0g Person ID
day byte %9.0g Day of measurement
program byte %9.0g 1 = reps increase; 2 = weights

increase
strength byte %9.0g Strength measurement

Sorted by: id day

Subjects (variable id) were placed on either an increased-repetition regimen (program==1) or a
program that kept the repetitions constant but increased weight (program==2). Muscle-strength
measurements (variable strength) were taken at baseline (day==0) and then at every two days over
the next twelve days.

Following Fitzmaurice, Laird, and Ware (2004, chap. 7), and to demonstrate fitting residual-error
structures to data collected at uneven time points, we confine our analysis to those data collected at
baseline (day 0) and at days 4, 6, 8, and 12. We fit a full two-way factorial model of strength on program
and day, with an unstructured residual-error covariance matrix over those repeated measurements taken
on the same subject:
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. keep if inlist(day, 0, 4, 6, 8, 12)
(74 observations deleted)

. xtmixed strength i.program##i.day || id:,
> noconstant residuals(unstructured, t(day)) nolog

Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group: min = 3
avg = 4.7
max = 5

Wald chi2(9) = 45.85
Log likelihood = -296.58215 Prob > chi2 = 0.0000

strength Coef. Std. Err. z P>|z| [95% Conf. Interval]

2.program 1.360119 1.003549 1.36 0.175 -.6068016 3.32704

day
4 1.125 .3322583 3.39 0.001 .4737858 1.776214
6 1.360127 .3766894 3.61 0.000 .6218298 2.098425
8 1.583563 .4905876 3.23 0.001 .6220287 2.545097

12 1.623576 .5372947 3.02 0.003 .5704977 2.676654

program#day
2 4 -.169034 .4423472 -0.38 0.702 -1.036019 .6979505
2 6 .2113012 .4982385 0.42 0.671 -.7652283 1.187831
2 8 -.1299763 .6524813 -0.20 0.842 -1.408816 1.148864
2 12 .3212829 .7306782 0.44 0.660 -1.11082 1.753386

_cons 79.6875 .7560448 105.40 0.000 78.20568 81.16932

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: (empty)

Residual: Unstructured
sd(e0) 3.024179 .3515413 2.408024 3.797993
sd(e4) 3.445452 .4007049 2.743164 4.327536
sd(e6) 3.17265 .3701737 2.524102 3.987837
sd(e8) 3.636569 .42814 2.88721 4.580421

sd(e12) 3.628924 .4364031 2.866916 4.593468
corr(e0,e4) .9237568 .0241659 .8594221 .9592936
corr(e0,e6) .8847673 .0360256 .7902873 .9381525
corr(e0,e8) .8438552 .0481853 .7193946 .915815

corr(e0,e12) .8107881 .0591609 .6589166 .899148
corr(e4,e6) .9598061 .0131155 .9242041 .9788692
corr(e4,e8) .949579 .016828 .9036835 .9739048

corr(e4,e12) .9024383 .0333957 .81189 .9505891
corr(e6,e8) .957802 .0157897 .9127914 .9798265

corr(e6,e12) .9120406 .0293324 .8329488 .9546129
corr(e8,e12) .9403092 .0213539 .8808047 .9705727

LR test vs. linear regression: chi2(14) = 314.67 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because we are using variable id only to group the repeated measurements and not to introduce
random effects at the subject level, we use the noconstant option to omit any subject-level effects.
The unstructured covariance matrix is the most general and contains many parameters. In this example,
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we estimate a distinct residual standard error for each day and a distinct correlation for each pair of
days.

That there is very high positive correlation between all pairs of measurements is evident, but what is
not as evident is whether the pairwise correlation may be more parsimoniously represented. One option
would be to explore whether the correlation diminishes as the time gap between strength measurements
increases and whether it diminishes systematically. Given the irregularity of the time intervals, an
exponential structure would be more appropriate than, say, an autoregressive or moving-average
structure.

. estimates store unstructured

. xtmixed strength i.program##i.day || id:, noconstant
> residuals(exponential, t(day)) nolog nofetable

Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group: min = 3
avg = 4.7
max = 5

Wald chi2(9) = 36.77
Log likelihood = -307.83324 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: (empty)

Residual: Exponential
rho .9786462 .0051238 .9659207 .9866854

sd(e) 3.350148 .3489952 2.73144 4.109001

LR test vs. linear regression: chi2(1) = 292.17 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

In the above example, we suppressed displaying the main regression parameters because they did
not differ much from those of the previous model. While the unstructured model estimated fifteen
variance–covariance parameters, the exponential model claims to get the job done with just two, a
fact that is not disputed by an LR test comparing the two nested models (at least not at the 0.01 level).

. lrtest unstructured .

Likelihood-ratio test LR chi2(13) = 22.50
(Assumption: . nested in unstructured) Prob > chi2 = 0.0481

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Random-effects factor notation and crossed-effects models
Not all mixed models contain nested levels of random effects.

Example 10

Returning to our longitudinal analysis of pig weights, suppose that instead of (5) we wish to fit

weightij = β0 + β1weekij + ui + vj + εij (8)

for the i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs and

ui ∼ N(0, σ2
u); vj ∼ N(0, σ2

v); εij ∼ N(0, σ2
ε )

all independently. Both (5) and (8) assume an overall population-average growth curve β0 + β1week
and a random pig-specific shift.

The models differ in how week enters into the random part of the model. In (5), we assume
that the effect due to week is linear and pig specific (a random slope); in (8), we assume that the
effect due to week, ui, is systematic to that week and common to all pigs. The rationale behind (8)
could be that, assuming that the pigs were measured contemporaneously, we might be concerned that
week-specific random factors such as weather and feeding patterns had significant systematic effects
on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects, vj , being
crossed with the week effects, ui. One way to fit such models is to consider all the data as one big
cluster and treat the ui and vj as a series of 9 + 48 = 57 random coefficients on indicator variables
for week and pig. In the notation of (2),

u =



u1
...
u9

v1
...
v48


∼ N(0,G); G =

[
σ2
uI9 0
0 σ2

vI48

]

Because G is block diagonal, it can be represented in xtmixed as repeated-level equations. All we
need is an ID variable to identify all the observations as one big group and a way to tell xtmixed
to treat week and pig as factor variables (or equivalently, as two sets of overparameterized indicator
variables identifying weeks and pigs, respectively). xtmixed supports the special group designation
all for the former and the factor notation R.varname for the latter.
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. use http://www.stata-press.com/data/r12/pig, clear
(Longitudinal analysis of pig weights)

. xtmixed weight week || _all: R.week || _all: R.id

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1013.824
Iteration 1: log likelihood = -1013.824

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group: min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.week) .2915259 .1490187 .107046 .7939333

_all: Identity
sd(R.id) 3.851783 .4058045 3.133167 4.73522

sd(Residual) 2.073 .0756007 1.929997 2.226598

LR test vs. linear regression: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store crossed

Thus we estimate σ̂u = 0.29 and σ̂v = 3.85. Both (5) and (8) estimate a total of five parameters, two
fixed effects and three variance components. The models, however, are not nested within each other,
which precludes the use of an LR test to compare both models. Refitting model (5) and looking at
the AIC values by using estimates stats,

. quietly xtmixed weight week || id:week

. estimates stats crossed .

Model Obs ll(null) ll(model) df AIC BIC

crossed 432 . -1013.824 5 2037.648 2057.99
. 432 . -869.0383 5 1748.077 1768.419

Note: N=Obs used in calculating BIC; see [R] BIC note

definitely favors model (5). This finding is not surprising, given that our rationale behind (8) was
somewhat fictitious. In our estimates stats output, the values of ll(null) are missing. xtmixed
does not fit a constant-only model as part of its usual estimation of the full model, but you can use
xtmixed to fit a constant-only model directly, if you wish.
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The R.varname notation is equivalent to giving a list of overparameterized (none dropped)
indicator variables for use in a random-effects specification. When you use R.varname, xtmixed
handles the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant. You can include factor variables in
the fixed-effects specification by using standard methods; see [U] 11.4.3 Factor variables. However,
random-effects equations support only the R.varname factor specification. For more complex factor
specifications (such as interactions) in random-effects equations, use generate to form the variables
manually, as we demonstrated in example 6.

Technical note

Although we were able to fit the crossed-effects model (8), it came at the expense of increasing
the column dimension of our random-effects design from two in model (5) to 57 in model (8).
Computation time and memory requirements grow (roughly) quadratically with the dimension of the
random effects. As a result, fitting such crossed-effects models is feasible only when the total column
dimension is small to moderate.

Reexamining model (8), we note that if we drop ui, we end up with a model equivalent to (4),
meaning that we could have fit (4) by typing

. xtmixed weight week || _all: R.id

instead of

. xtmixed weight week || id:

as we did when we originally fit the model. The results of both estimations are identical, but the
latter specification, organized at the cluster (pig) level with random-effects dimension one (a random
intercept) is much more computationally efficient. Whereas with the first form we are limited in how
many pigs we can analyze, there is no such limitation with the second form.

Furthermore, we fit model (8) by using

. xtmixed weight week || _all: R.week || _all: R.id

as a direct way to demonstrate factor notation. However, we can technically treat pigs as nested within
the “ all” group, yielding the equivalent and more efficient (total column dimension 10) way to fit
(8):

. xtmixed weight week || _all: R.week || id:

We leave it to you to verify that both produce identical results. See Rabe-Hesketh and Skrondal (2008,
chap. 11) for more techniques for making calculations more efficient in more complex models.

Example 11

As another example of how the same model may be fit in different ways by using xtmixed
(and as a way to demonstrate covariance(exchangeable)), consider the three-level model used
in example 4:

yjk = Xjkβ+ u
(3)
k + u

(2)
jk + εjk
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where yjk represents the logarithms of gross state products for the njk = 17 observations from state
j in region k, Xjk is a set of regressors, u(3)

k is a random intercept at the region level, and u(2)
jk is

a random intercept at the state (nested within region) level. We assume that u(3)
k ∼ N(0, σ2

3) and

u
(2)
jk ∼ N(0, σ2

2) independently. Define

vk =


u

(3)
k + u

(2)
1k

u
(3)
k + u

(2)
2k

...
u

(3)
k + u

(2)
Mk,k


where Mk is the number of states in region k. Making this substitution, we can stack the observations
for all the states within region k to get

yk = Xkβ+ Zkvk + εk

where Zk is a set of indicators identifying the states within each region; that is,

Zk = IMk
⊗ J17

for a k-column vector of ones Jk, and

Σ = Var(vk) =


σ2

3 + σ2
2 σ2

3 · · · σ2
3

σ2
3 σ2

3 + σ2
2 · · · σ2

3
...

...
. . .

...
σ2

3 σ2
3 σ2

3 σ2
3 + σ2

2


Mk×Mk

Because Σ is an exchangeable matrix, we can fit this alternative form of the model by specifying the
exchangeable covariance structure.
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. use http://www.stata-press.com/data/r12/productivity
(Public Capital Productivity)

. xtmixed gsp private emp hwy water other unemp || region: R.state,
> cov(exchangeable) variance

(output omitted )

Mixed-effects ML regression Number of obs = 816
Group variable: region Number of groups = 9

Obs per group: min = 51
avg = 90.7
max = 136

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .2671484 .0212591 12.57 0.000 .2254813 .3088154
emp .7540721 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331907 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543855 13.79 0.000 1.826233 2.431413

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Exchangeable
var(R.state) .0077263 .0017926 .0049032 .0121749
cov(R.state) .0014506 .0012995 -.0010963 .0039975

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear regression: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates of the fixed effects and their standard errors are equivalent to those from example 4,
and remapping the variance components from (σ2

3 + σ2
2 , σ

2
3 , σ

2
ε ), as displayed here, to (σ3, σ2, σε),

as displayed in example 4, will show that they are equivalent as well.

Of course, given the discussion in the previous technical note, it is more efficient to fit this model
as we did originally, as a three-level model.

Diagnosing convergence problems

Given the flexibility of the class of linear mixed models, you will find that some models “fail
to converge” when used with your data. The default gradient-based method used by xtmixed is
the Newton–Raphson algorithm, requiring the calculation of a gradient vector and Hessian (second-
derivative) matrix; see [R] ml.

A failure to converge can take any one of three forms:

1. repeated “nonconcave” or “backed-up” iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing
values; or
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3. the message “standard-error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,
most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all
points give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of either

A. a model that is not identified given the data, for example, fitting the three-level nested random
intercept model

yjk = xjkβ+ u
(3)
k + u

(2)
jk + εjk

without any replicated measurements at the (j, k) level, that is, with only one “i” per (j, k)
combination. This model is unidentified for such data because the random intercepts u(2)

jk are
confounded with the overall errors εjk; or

B. a model that contains a variance component whose estimate is really close to zero. When this
occurs, a ridge is formed by an interval of values near zero, which produce the same likelihood
and look equally good to the optimizer.

In unweighted models with independent and homoskedastic residuals, one useful way to diagnose
problems of nonconvergence is to rely on the expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977), normally used by xtmixed only as a means of refining starting values. The
advantages of EM are that it does not require a Hessian calculation, each successive EM iteration will
result in a larger likelihood, iterations can be calculated quickly, and iterations will quickly bring
parameter estimates into a neighborhood of the solution. The disadvantages of EM are that, once in
a neighborhood of the solution, it can be slow to converge, if at all, and EM provides no facility for
estimating standard errors of the estimated variance components. One useful property of EM is that it
is always willing to provide a solution if you allow it to iterate enough times, if you are satisfied with
being in a neighborhood of the optimum rather than right on the optimum, and if standard errors of
variance components are not crucial to your analysis. If you encounter a nonconvergent model, try
using the emonly option to bypass gradient-based optimization. Use emiterate(#) to specify the
maximum number of EM iterations, which you will usually want to set much higher than the default
of 20. If your EM solution shows an estimated variance component that is near zero, this provides
evidence that reason B is the cause of the nonconvergence of the gradient-based method, in which
case the solution would be to drop the offending variance component from the model. If no estimated
variance components are near zero, reason A could be the culprit.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be
able to obtain convergence with standard errors by changing some of the settings of the gradient-
based optimization. Adding the difficult option can be particularly helpful if you are seeing
many “nonconcave” messages; you may also consider changing the technique() or using the
nonrtolerance option; see [R] maximize.

Distribution theory for likelihood-ratio tests

When determining the asymptotic distribution of a likelihood-ratio (LR) test comparing two nested
models fit by xtmixed, issues concerning boundary problems imposed by estimating strictly positive
quantities (that is, variances) can complicate the situation. When performing LR tests involving mixed
models (whether comparing with linear regression within xtmixed or comparing two separate mixed
models with lrtest), you may thus sometimes see a test labeled as “chibar” rather than the usual
“chi2”, or you may see a chi2 test with a note attached stating that the test is conservative or
possibly conservative depending on the hypothesis being tested.
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At the heart of the issue is the number of variances being restricted to zero in the reduced model.
If there are none, the usual asymptotic theory holds, and the distribution of the test statistic is χ2

with degrees of freedom equal to the difference in the number of estimated parameters between both
models.

When there is only one variance being set to zero in the reduced model, the asymptotic distribution
of the LR test statistic is a 50:50 mixture of a χ2

p and a χ2
p+1 distribution, where p is the number

of other restricted parameters in the reduced model that are unaffected by boundary conditions. Stata
labels such test statistics as chibar and adjusts the significance levels accordingly. See Self and
Liang (1987) for the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific
discussion.

When more than one variance parameter is being set to zero in the reduced model, however, the
situation becomes more complicated. For example, consider a comparison test versus linear regression
for a mixed model with two random coefficients and unstructured covariance matrix

Σ =
[
σ2

0 σ01

σ01 σ2
1

]
Because the random component of the mixed model comprises three parameters (σ2

0 , σ01, σ
2
1),

on the surface it would seem that the LR comparison test would be distributed as χ2
3. However, two

complications need to be considered. First, the variances σ2
0 and σ2

1 are restricted to be positive, and
second, constraints such as σ2

1 = 0 implicitly restrict the covariance σ01 to be zero as well. From
a technical standpoint, it is unclear how many parameters must be restricted to reduce the model to
linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the
more-than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994])
and empirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever
the distribution of the LR test statistic, its tail probabilities are bounded above by those of the χ2

distribution with degrees of freedom equal to the full number of restricted parameters (three in the
above example).

xtmixed uses this reference distribution, the χ2 with full degrees of freedom, to produce a
conservative test and places a note in the output labeling the test as such. Because the displayed
significance level is an upper bound, rejection of the null hypothesis based on the reported level
would imply rejection on the basis of the actual level.

Technical note

It may seem that xtmixed does not follow Stata’s standard syntax for multiple-equation models,
but it does. In example 2, we typed

. xtmixed weight week || id:

but we could have used the standard multiequation syntax:

. xtmixed (weight week) (id:)

xtmixed will understand either and produce the same results. We prefer the syntax using || because
it better emphasizes the nested structure of the levels.
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Survey data

Multilevel modeling of survey data is a little different than standard modeling in that weighted
sampling can take place at multiple levels in the model, resulting in multiple sampling weights. Most
survey datasets, regardless of the design, contain one overall inclusion weight for each observation in
the data. This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we
mean that it factors in all levels of clustered sampling, corrections for noninclusion and oversampling,
poststratification, etc.

For simplicity, in what follows assume a simple two-stage sampling design where groups are
randomly sampled and then individuals within groups are sampled. Also assume that no additional
weight corrections are performed; that is, sampling weights are simply the inverse of the probability
of selection. The sampling weight for observation i in cluster j in our two-level sample is then
wij = 1/πij where πij is the probability that observation i, j is selected. If you were performing a
standard analysis such as OLS regression with regress, you would simply use a variable holding wij
as your pweight variable, and the fact that it came from two levels of sampling would not concern
you. Perhaps you would type vce(cluster groupvar) where groupvar identifies the top-level groups
to get standard errors that control for correlation within these groups, but you would still use only a
single weight variable.

Now take these same data and fit a two-level model with xtmixed. As seen in (14) in Methods
and formulas later in this entry, it is not sufficient to use the single sampling weight wij , because
weights enter into the log likelihood at both the group level and the individual level. Instead, what is
required for a two-level model under this sampling design is wj , the inverse of the probability that
group j is selected in the first stage, and wi|j , the inverse of the probability that individual i from
group j is selected at the second stage conditional on group j already being selected. It simply will
not do to just use wij without making any assumptions about wj .

Given the rules of conditional probability, wij = wjwi|j . If your dataset has only wij , then you
will need to either assume equal probability sampling at the first stage (wj = 1 for all j) or find
some way to recover wj from other variables in your data; see Rabe-Hesketh and Skrondal (2006)
and the references therein for some suggestions on how to do this, but realize that there is little yet
known about how well these approximations perform in practice.

What you really need to fit your two-level model are data that contain wj in addition to either wij
or wi|j . If you have wij—that is, the unconditional inclusion weight for observation i, j—then you
need to either divide wij by wj to obtain wi|j or rescale wij so that its dependence on wj disappears.
If you already have wi|j , then rescaling becomes optional (but still an important decision to make!).

Weight rescaling is not an exact science, because the scale of the level-one weights is at issue
regardless of whether they represent wij or wi|j . The reason it is an issue is that because wij is
unique to group j, the group-to-group magnitudes of these weights need to be normalized so that
they are “consistent” from group to group. This is in stark contrast to a standard analysis, where the
scale of sampling weights does not factor into estimation, instead only affecting the estimate of the
total population size.

xtmixed offers three methods for standardizing weights in a two-level model, and you can specify
which method you want via the pwscale() option. If you specify pwscale(size), then the wi|j (or
wij , it does not matter) are scaled to sum to the cluster size nj . Method pwscale(effective) adds
in a dependence on the sum of the squared weights so that level-one weights sum to the “effective”
sample size. Just like pwscale(size), pwscale(effective) also behaves the same whether you
have wi|j or wij , and so it can be used with either.
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Although both pwscale(size) and pwscale(effective) leavewj untouched, the pwscale(gk)
method is a little different in that 1) it changes the weights at both levels and 2) it does assume
you have wi|j for level-one weights and not wij (if you have the latter, then first divide by wj).
Using the method of Graubard and Korn (1996), it sets the weights at the group level (level two) to
the cluster averages of the products of both level weights (this product being wij). It then sets the
individual weights to one everywhere; see Methods and formulas for the computational details of all
three methods.

Determining which method is “best” is a tough call and depends on cluster size (the smaller
the clusters, the greater the sensitivity to scale), whether the sampling is informative (that is, the
sampling weights are correlated with the residuals), whether you are interested primarily in regression
coefficients or in variance components, whether you have a simple random-intercept model or a
more complex random-coefficients model, and other factors; see Rabe-Hesketh and Skrondal (2006),
Carle (2009), and Pfeffermann et al. (1998) for some detailed advice. At the very least, you want
to compare estimates across all three scaling methods (four, if you add no scaling) and perform a
sensitivity analysis.

If you choose to rescale level-one weights, it does not matter if you have wi|j or wij . For the
pwscale(size) and pwscale(effective) methods, you get identical results, and even though
pwscale(gk) assumes wi|j , you can obtain this as wi|j = wij/wj before proceeding.

If you do not specify pwscale(), then no scaling takes place, and thus at a minimum, you need
to make sure you have wi|j in your data and not wij .

Example 12

Rabe-Hesketh and Skrondal (2006) analyzed their data from the 2000 Programme for International
Student Assessment (PISA) study on reading proficiency among 15-year-old American students, as
performed by the Organisation for Economic Co-operation and Development (OECD). The original
study was a three-stage cluster sample where geographic areas were sampled at the first stage, schools
at the second, and students at the third. Our version of the data does not contain the geographic-areas
variable, so we treat this as a two-stage sample where schools are sampled at the first stage and
students at the second.
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. use http://www.stata-press.com/data/r12/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)

. describe

Contains data from http://www.stata-press.com/data/r12/pisa2000.dta
obs: 2,069 Programme for International Student

Assessment (PISA) 2000 data
vars: 11 12 Jun 2011 10:08
size: 37,242 (_dta has notes)

storage display value
variable name type format label variable label

female byte %8.0g 1 if female
isei byte %8.0g International socio-economic

index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student i in school j, where variable id school identifies the schools, variable w fstuwt is
a student-level overall inclusion weight (wij , not wi|j) adjusted for noninclusion and nonparticipation
of students, and variable wnrschbw is the school-level weight wj adjusted for oversampling of schools
with more minority students. The weight adjustments do not interfere with the methods prescribed
above, and thus we can treat the weight variables simply as wij and wj , respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency
threshold. We fit a two-level linear random-intercept model for socioeconomic index. Because we
have wij and not wi|j , we rescale using pwscale(size) and thus obtain results as if we had wi|j .
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. xtmixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt] || id_school:, pweight(wnrschbw) pwscale(size)

(output omitted )
Mixed-effects regression Number of obs = 2069
Group variable: id_school Number of groups = 148

Obs per group: min = 1
avg = 14.0
max = 28

Wald chi2(6) = 187.23
Log pseudolikelihood = -1443093.9 Prob > chi2 = 0.0000

(Std. Err. adjusted for 148 clusters in id_school)

Robust
isei Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .59379 .8732886 0.68 0.497 -1.117824 2.305404
high_school 6.410618 1.500337 4.27 0.000 3.470011 9.351224

college 19.39494 2.121145 9.14 0.000 15.23757 23.55231
one_for -.9584613 1.789947 -0.54 0.592 -4.466692 2.54977

both_for -.2021101 2.32633 -0.09 0.931 -4.761633 4.357413
test_lang 2.519539 2.393165 1.05 0.292 -2.170978 7.210056

_cons 28.10788 2.435712 11.54 0.000 23.33397 32.88179

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id_school: Identity
sd(_cons) 5.890139 .7279 4.623113 7.50441

sd(Residual) 14.7898 .3793531 14.06466 15.55232

Some notes:

1. We specified the level-one weights using standard Stata weight syntax, that is, [pw=w fstuwt].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-
effects specification for the id school level. As such, it is treated as a school-level weight.
Accordingly, wnrschbw needs to be constant within schools, and xtmixed did check for that
before estimating.

3. Because our level-one weights are unconditional, we specified pwscale(size) to rescale them.

4. As is the case with other estimation commands in Stata, standard errors in the presence of sampling
weights are robust.

5. Robust standard errors are clustered at the top level of the model, and this will always be true unless
you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.

As a form of sensitivity analysis, we compare the above with scaling via pwscale(gk). Because
pwscale(gk) assumes wi|j , you want to first divide wij by wj . But you can handle that within the
weight specification itself.
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. xtmixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt/wnrschbw] || id_school:, pweight(wnrschbw) pwscale(gk)

(output omitted )
Mixed-effects regression Number of obs = 2069
Group variable: id_school Number of groups = 148

Obs per group: min = 1
avg = 14.0
max = 28

Wald chi2(6) = 291.37
Log pseudolikelihood = -7270505.6 Prob > chi2 = 0.0000

(Std. Err. adjusted for 148 clusters in id_school)

Robust
isei Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.3519458 .7436334 -0.47 0.636 -1.80944 1.105549
high_school 7.074911 1.139777 6.21 0.000 4.84099 9.308833

college 19.27285 1.286029 14.99 0.000 16.75228 21.79342
one_for -.9142879 1.783091 -0.51 0.608 -4.409082 2.580506

both_for 1.214151 1.611885 0.75 0.451 -1.945085 4.373388
test_lang 2.661866 1.556491 1.71 0.087 -.3887996 5.712532

_cons 31.20145 1.907413 16.36 0.000 27.46299 34.93991

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id_school: Identity
sd(_cons) 5.628074 .6034248 4.561384 6.944213

sd(Residual) 15.04137 .2709432 14.5196 15.5819

The results are somewhat similar to before, which is good news from a sensitivity standpoint. Note
that we specified [pw=w fstwtw/wnrschbw] and thus did the conversion from wij to wi|j within
our call to xtmixed.

We close this section with a bit of bad news. Although weight rescaling and the issues that arise
have been well studied for two-level models, as pointed out by Carle (2009), “. . . a best practice
for scaling weights across multiple levels has yet to be advanced.” As such, pwscale() is currently
supported only for two-level models. If you are fitting a higher-level model with survey data, you
need to make sure your sampling weights are conditional on selection at the previous stage and not
overall inclusion weights, because there is currently no rescaling option to fall back on if you do not.
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Saved results
xtmixed saves the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k f) number of FE parameters
e(k r) number of RE parameters
e(k rs) number of standard deviations
e(k rc) number of correlations
e(k res) number of residual-error parameters
e(N clust) number of clusters
e(nrgroups) number of residual-error by() groups
e(ar p) AR order of residual errors, if specified
e(ma q) MA order of residual errors, if specified
e(res order) order of residual-error structure, if appropriate
e(df m) model degrees of freedom
e(ll) log (restricted) likelihood
e(chi2) χ2

e(p) p-value for χ2

e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) p-value, comparison model
e(rank) rank of e(V)
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtmixed
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type (first-level weights)
e(wexp) weight expression (first-level weights)
e(fweightk) fweight expression for kth highest level, if specified
e(pweightk) pweight expression for kth highest level, if specified
e(ivars) grouping variables
e(title) title in estimation output
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(resopt) residuals() specification, as typed
e(rstructure) residual-error structure
e(rstructlab) residual-error structure output label
e(rbyvar) residual-error by() variable, if specified
e(rglabels) residual-error by() groups labels
e(pwscale) sampling-weight scaling method
e(timevar) residual-error t() variable, if specified
e(chi2type) Wald; type of model χ2 test
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) ML or REML
e(opt) type of optimization
e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(emonly) emonly, if specified
e(ml method) type of ml method
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(tmap) ID mapping for unstructured residual errors
e(V) variance–covariance matrix of the estimator
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
xtmixed is implemented as an ado-file that uses Mata.

As given by (1), in the absence of weights we have the linear mixed model

y = Xβ+ Zu + ε

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors,
ε, is for now assumed to be multivariate normal with mean zero and variance matrix σ2

ε In. We also
assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[

u
ε

]
=
[

G 0
0 σ2

ε In

]
Considering the combined error term Zu + ε, we see that y is multivariate normal with mean Xβ
and n× n variance–covariance matrix

V = ZGZ′ + σ2
ε In

Defining θ as the vector of unique elements of G results in the log likelihood

L(β, θ, σ2
ε ) = −1

2
{
n log(2π) + log |V|+ (y −Xβ)′V−1(y −Xβ)

}
(9)

which is maximized as a function of β, θ, and σ2
ε . As explained in chapter 6 of Searle, Casella, and

McCulloch (1992), considering instead the likelihood of a set of linear contrasts, Ky, that do not
depend on β results in the restricted log likelihood

LR(β, θ, σ2
ε ) = L(β, θ, σ2

ε )− 1
2

log
∣∣X′V−1X

∣∣ (10)

Given the high dimension of V, however, the log-likelihood and restricted log-likelihood criteria are
not usually computed by brute-force application of the above expressions. Instead, you can simplify
the problem by subdividing the data into independent clusters (and subclusters if possible) and using
matrix decomposition methods on the smaller matrices that result from treating each cluster one at a
time.

Consider the two-level model described previously in (2)

yj = Xjβ+ Zjuj + εj

for j = 1, . . . ,M clusters with cluster j containing nj observations, with Var(uj) = Σ, a q × q
matrix.
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Efficient methods for computing (9) and (10) are given in chapter 2 of Pinheiro and Bates (2000).
Namely, for the one-level model, define ∆ to be the Cholesky factor of σ2

εΣ
−1, such that σ2

εΣ
−1 = ∆′∆.

For j = 1, . . . ,M , decompose [
Zj
∆

]
= Qj

[
R11j

0

]
using an orthogonal-triangular (QR) decomposition, with Qj a (nj + q)-square matrix and R11j a
q-square matrix. We then apply Qj as follows:[

R10j

R00j

]
= Q′j

[
Xj

0

]
;

[
c1j

c0j

]
= Q′j

[
yj
0

]
Stack the R00j and c0j matrices, and perform the additional QR decomposition R001 c01

...
...

R00M c0M

 = Q0

[
R00 c0

0 c1

]

Pinheiro and Bates (2000) show that ML estimates of β, σ2
ε , and ∆ (the unique elements of ∆,

that is) are obtained by maximizing the profile log likelihood (profiled in ∆)

L(∆) =
n

2
{log n− log(2π)− 1} − n log ||c1||+

M∑
j=1

log
∣∣∣∣ det(∆)
det(R11j)

∣∣∣∣ (11)

where || · || denotes the 2-norm, and following this maximization with

β̂ = R−1
00 c0; σ̂2

ε = n−1||c1||2 (12)

REML estimates are obtained by maximizing

LR(∆) =
n− p

2
{log(n− p)− log(2π)− 1} − (n− p) log ||c1||

− log |det(R00)|+
M∑
j=1

log
∣∣∣∣ det(∆)
det(R11j)

∣∣∣∣ (13)

followed by
β̂ = R−1

00 c0; σ̂2
ε = (n− p)−1||c1||2

For numerical stability, maximization of (11) and (13) is not performed with respect to the unique
elements of ∆ but instead with respect to the unique elements of the matrix square root (or matrix
logarithm if the matlog option is specified) of Σ/σ2

ε ; define γ to be the vector containing these
elements.

Once maximization with respect to γ is completed, (γ, σ2
ε ) is reparameterized to {α, log(σε)},

where α is a vector containing the unique elements of Σ, expressed as logarithms of standard deviations
for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal elements.
This last step is necessary to (a) obtain a joint variance–covariance estimate of the elements of Σ and
σ2
ε ; (b) obtain a parameterization under which parameter estimates can be interpreted individually,

rather than as elements of a matrix square root (or logarithm); and (c) parameterize these elements
such that their ranges each encompass the entire real line.
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Obtaining a joint variance–covariance matrix for the estimated {α, log(σε)} requires the evaluation
of the log likelihood (or log-restricted likelihood) with only β profiled out. For ML, we have

L∗{α, log(σε)} = L{∆(α, σ2
ε ), σ2

ε }

= −n
2

log(2πσ2
ε )− ||c1||2

2σ2
ε

+
M∑
j=1

log
∣∣∣∣ det(∆)
det(R11j)

∣∣∣∣
with the analogous expression for REML.

The variance–covariance matrix of β̂ is estimated as

V̂ar(β̂) = σ̂2
εR
−1
00

(
R−1

00

)′
but this does not mean that V̂ar(β̂) is identical under both ML and REML because R00 depends on
∆. Because β̂ is asymptotically uncorrelated with {α̂, log(σ̂ε)}, the covariance of β̂ with the other
estimated parameters is treated as zero.

Parameter estimates are stored in e(b) as {β̂, α̂, log(σ̂ε)}, with the corresponding (block-diagonal)
variance–covariance matrix stored in e(V). Parameter estimates can be displayed in this metric by
specifying the estmetric option. However, in xtmixed output, variance components are most often
displayed either as variances and covariances or as standard deviations and correlations.

EM iterations are derived by considering the uj in (2) as missing data. Here we describe the
procedure for maximizing the log likelihood via EM; the procedure for maximizing the restricted log
likelihood is similar. The log likelihood for the full data (y,u) is

LF (β,Σ, σ2
ε ) =

M∑
j=1

{
log f1(yj |uj ,β, σ2

ε ) + log f2(uj |Σ)
}

where f1() is the density function for multivariate normal with mean Xjβ + Zjuj and variance
σ2
ε Inj , and f2() is the density for multivariate normal with mean 0 and q × q covariance matrix

Σ. As before, we can profile β and σ2
ε out of the optimization, yielding the following EM iterative

procedure:

1. For the current iterated value of Σ(t), fix β̂ = β̂(Σ(t)) and σ̂2
ε = σ̂2

ε (Σ(t)) according to (12).

2. Expectation step: Calculate

D(Σ) ≡ E
{
LF (β̂,Σ, σ̂2

ε )|y
}

= C − M

2
log det (Σ)− 1

2

M∑
j=1

E
(
u′jΣ

−1uj |y
)

where C is a constant that does not depend on Σ, and the expected value of the quadratic form
u′jΣ

−1uj is taken with respect to the conditional density f(uj |y, β̂,Σ(t), σ̂2
ε ).

3. Maximization step: Maximize D(Σ) to produce Σ(t+1).

For general, symmetric Σ, the maximizer of D(Σ) can be derived explicitly, making EM iterations
quite fast.
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For general residual-error structures,
Var(εj) = σ2

εΛj

where the subscript j merely represents that εj and Λj vary in dimension in unbalanced data, the
data are first transformed according to

y∗j = Λ̂
−1/2

j yj ; X∗j = Λ̂
−1/2

j Xj ; Z∗j = Λ̂
−1/2

j Zj ;

and the likelihood-evaluation techniques described above are applied to y∗j , X∗j , and Z∗j instead.
The unique elements of Λ, ρ, are estimated along with the fixed effects and variance components.
Because σ2

ε is always estimated and multiplies the entire Λj matrix, ρ̂ is parameterized to take this
into account.

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

L(β,Σ, σ2
ε ) =

M∑
j=1

wj log

[∫
exp

{
nj∑
i=1

wi|j log f1(yij |uj ,β, σ2
ε )

}
f2(uj |Σ)duj

]
(14)

where wj is the inverse of the probability of selection for the jth cluster, wi|j is the inverse of the
conditional probability of selection of individual i given the selection of cluster j, and f1() and f2()
are the multivariate normal densities previously defined.

Weighted estimation is achieved through incorporating wj and wi|j into the matrix decomposition
methods detailed above so as to reflect replicated clusters for wj and replicated observations within
clusters for wi|j . Because this estimation is based on replicated clusters and observations, frequency
weights are handled similarly.

Rescaling of sampling weights can take one of three available forms:

Under pwscale(size),

w∗i|j = njw
∗
i|j

{
nj∑
i=1

wi|j

}−1

Under pwscale(effective),

w∗i|j = w∗i|j

{
nj∑
i=1

wi|j

}{
nj∑
i=1

w2
i|j

}−1

Under both the above, wj remains unchanged. For method pwscale(gk), however, both weights are
modified:

w∗j = n−1
j

nj∑
i=1

wi|jwj ; w∗i|j = 1

Under ML estimation, robust standard errors are obtained in the usual way (see [P] robust) with
the one distinction being that in multilevel models, robust variances are, at a minimum, clustered at
the highest level. This is because given the form of the log likelihood, scores aggregate at the top-level
clusters. For a two-level model, scores are obtained as the partial derivatives of Lj(β,Σ, σ2

ε ) with
respect to {β,α, log(σε)}, where Lj is the log likelihood for cluster j and L =

∑M
j=1 Lj . Robust

variances are not supported under REML estimation because the form of the log restricted likelihood
does not lend itself to separation by highest-level clusters.
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EM iterations always assume equal weighting and an independent, homoskedastic error structure.
As such, with weighted data or when error structures are more complex, EM is used only to obtain
starting values.

For extensions to three-level models and higher, see Bates and Pinheiro (1998) and Rabe-Hesketh
and Skrondal (2006).

� �
Charles Roy Henderson (1911–1989) was born in Iowa and grew up on the family farm. His
education in animal husbandry, animal nutrition, and statistics at Iowa State was interspersed
with jobs in the Iowa Extension Service, Ohio University, and the U.S. Army. After completing
his PhD, Henderson joined the Animal Science faculty at Cornell. He developed and applied
statistical methods in the improvement of farm livestock productivity through genetic selection,
with particular focus on dairy cattle. His methods are general and have been used worldwide
in livestock breeding and beyond agriculture. Henderson’s work on variance components and
best linear unbiased predictions has proved to be one of the main roots of current mixed-model
methods.� �
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Also see
[XT] xtmixed postestimation — Postestimation tools for xtmixed

[XT] xtmelogit — Multilevel mixed-effects logistic regression

[XT] xtmepoisson — Multilevel mixed-effects Poisson regression

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtrc — Random-coefficients model

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands



Title

xtmixed postestimation — Postestimation tools for xtmixed

Description
The following postestimation commands are of special interest after xtmixed:

Command Description

estat group summarize the composition of the nested groups
estat recovariance display the estimated random-effects covariance matrix (or matrices)

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat group reports number of groups and minimum, average, and maximum group sizes for
each level of the model. Model levels are identified by the corresponding group variable in the data.
Because groups are treated as nested, the information in this summary may differ from what you
would get if you tabulated each group variable individually.

estat recovariance displays the estimated variance–covariance matrix of the random effects
for each level in the model. Random effects can be either random intercepts, in which case the
corresponding rows and columns of the matrix are labeled as cons, or random coefficients, in which
case the label is the name of the associated variable in the data.

355
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Syntax for predict

Syntax for obtaining best linear unbiased predictions (BLUPs) of random effects, or the BLUPs’
standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
,
{
reffects | reses

}
[
level(levelvar)

]
Syntax for obtaining scores after ML estimation

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

Syntax for obtaining other predictions

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic level(levelvar)
]

statistic Description

Main

xb linear prediction for the fixed portion of the model only; the default
stdp standard error of the fixed-portion linear prediction
fitted fitted values, fixed-portion linear prediction plus contributions based on

predicted random effects
residuals residuals, response minus fitted values
∗rstandard standardized residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction xβ based on the estimated fixed effects (coefficients)
in the model. This is equivalent to fixing all random effects in the model to their theoretical mean
value of zero.

stdp calculates the standard error of the linear predictor xβ.

level(levelvar) specifies the level in the model at which predictions involving random effects are to
be obtained; see the options below for the specifics. levelvar is the name of the model level and is
either the name of the variable describing the grouping at that level or all, a special designation
for a group comprising all the estimation data.

reffects calculates best linear unbiased predictions (BLUPs) of the random effects. By default, BLUPs
for all random effects in the model are calculated. However, if the level(levelvar) option is
specified, then BLUPs for only level levelvar in the model are calculated. For example, if classes
are nested within schools, then typing

. predict b*, reffects level(school)
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would produce BLUPs at the school level. You must specify q new variables, where q is the number
of random-effects terms in the model (or level). However, it is much easier to just specify stub*
and let Stata name the variables stub1 . . . stubq for you.

reses calculates the standard errors of the best linear unbiased predictions (BLUPs) of the random
effects. By default, standard errors for all BLUPs in the model are calculated. However, if the
level(levelvar) option is specified, then standard errors for only level levelvar in the model are
calculated; see the reffects option. You must specify q new variables, where q is the number
of random-effects terms in the model (or level). However, it is much easier to just specify stub*
and let Stata name the variables stub1 . . . stubq for you.

The reffects and reses options often generate multiple new variables at once. When this occurs,
the random effects (or standard errors) contained in the generated variables correspond to the order
in which the variance components are listed in the output of xtmixed. Still, examining the variable
labels of the generated variables (using the describe command, for instance) can be useful in
deciphering which variables correspond to which terms in the model.

scores calculates the parameter-level scores, one for each parameter in the model including regression
coefficients and variance components. The score for a parameter is the first derivative of the log
likelihood (or log pseudolikelihood) with respect to that parameter. One score per highest-level
group is calculated, and it is placed on the last record within that group. Scores are calculated in
the estimation metric as stored in e(b).

scores is not available after restricted maximum-likelihood (REML) estimation.

fitted calculates fitted values, which are equal to the fixed-portion linear predictor plus contributions
based on predicted random effects, or in mixed-model notation, xβ + Zu. By default, the fitted
values take into account random effects from all levels in the model; however, if the level(levelvar)
option is specified, the fitted values are fit beginning with the topmost level down to and including
level levelvar. For example, if classes are nested within schools, then typing

. predict yhat_school, fitted level(school)

would produce school-level predictions. That is, the predictions would incorporate school-specific
random effects but not those for each class nested within each school.

residuals calculates residuals, equal to the responses minus fitted values. By default, the fitted values
take into account random effects from all levels in the model; however, if the level(levelvar)
option is specified, the fitted values are fit beginning at the topmost level down to and including
level levelvar.

rstandard calculates standardized residuals, equal to the residuals multiplied by the inverse square
root of the estimated error covariance matrix.

Syntax for estat group

estat group

Menu
Statistics > Postestimation > Reports and statistics
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Syntax for estat recovariance
estat recovariance

[
, level(levelvar) correlation matlist options

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat recovariance
level(levelvar) specifies the level in the model for which the random-effects covariance matrix is

to be displayed and returned in r(cov). By default, the covariance matrices for all levels in the
model are displayed. levelvar is the name of the model level and is either the name of variable
describing the grouping at that level or all, a special designation for a group comprising all the
estimation data.

correlation displays the covariance matrix as a correlation matrix and returns the correlation matrix
in r(corr).

matlist options are style and formatting options that control how the matrix (or matrices) are displayed;
see [P] matlist for a list of what is available.

Remarks
Various predictions, statistics, and diagnostic measures are available after fitting a mixed model

using xtmixed. For the most part, calculation centers around obtaining best linear unbiased predictors
(BLUPs) of the random effects. Random effects are not estimated when the model is fit but instead
need to be predicted after estimation.

Example 1

In example 3 of [XT] xtmixed, we modeled the weights of 48 pigs measured on nine successive
weeks as

weightij = β0 + β1weekij + u0j + u1jweekij + εij (1)

for i = 1, . . . , 9, j = 1, . . . , 48, εij ∼ N(0, σ2
ε ), and u0j and u1j normally distributed with mean

zero and variance–covariance matrix

Σ = Var
[
u0j

u1j

]
=
[
σ2
u0 σ01

σ01 σ2
u1

]
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. use http://www.stata-press.com/data/r12/pig
(Longitudinal analysis of pig weights)

. xtmixed weight week || id: week, covariance(unstructured) variance

(output omitted )
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear regression: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Rather than see the estimated variance components listed as above, we can instead see them in matrix
form; that is, we can see Σ̂

. estat recovariance

Random-effects covariance matrix for level id

week _cons

week .3715251
_cons -.0984378 6.823363

or we can see Σ̂ as a correlation matrix

. estat recovariance, correlation

Random-effects correlation matrix for level id

week _cons

week 1
_cons -.0618257 1

We can also obtain BLUPs of the pig-level random effects (u0j and u1j). We need to specify
the variables to be created in the order u1 u0 because that is the order in which the corresponding
variance components are listed in the output (week cons). We obtain the predictions and list them
for the first 10 pigs.
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. predict u1 u0, reffects

. by id, sort: generate tolist = (_n==1)

. list id u0 u1 if id <=10 & tolist

id u0 u1

1. 1 .2369444 -.3957636
10. 2 -1.584127 .510038
19. 3 -3.526551 .3200372
28. 4 1.964378 -.7719702
37. 5 1.299236 -.9241479

46. 6 -1.147302 -.5448151
55. 7 -2.590529 .0394454
64. 8 -1.137067 -.1696566
73. 9 -3.189545 -.7365507
82. 10 1.160324 .0030772

If you forget how to order your variables in predict, or if you use predict stub*, remember that
predict labels the generated variables for you to avoid confusion.

. describe u0 u1

storage display value
variable name type format label variable label

u0 float %9.0g BLUP r.e. for id: _cons
u1 float %9.0g BLUP r.e. for id: week

Examining (1), we see that, within each pig, the successive weight measurements are modeled as
simple linear regression with intercept β0 + uj0 and slope β1 + uj1. We can generate estimates of
the pig-level intercepts and slopes with

. generate intercept = _b[_cons] + u0

. generate slope = _b[week] + u1

. list id intercept slope if id<=10 & tolist

id interc~t slope

1. 1 19.59256 5.814132
10. 2 17.77149 6.719934
19. 3 15.82906 6.529933
28. 4 21.31999 5.437926
37. 5 20.65485 5.285748

46. 6 18.20831 5.665081
55. 7 16.76509 6.249341
64. 8 18.21855 6.040239
73. 9 16.16607 5.473345
82. 10 20.51594 6.212973

Thus we can plot estimated regression lines for each of the pigs. Equivalently, we can just plot the
fitted values because they are based on both the fixed and random effects:
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. predict fitweight, fitted

. twoway connected fitweight week if id<=10, connect(L)
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We can also generate standardized residuals and see if they follow a standard normal distribution, as
they should in any good-fitting model:

. predict rs, rstandard

. summarize rs
Variable Obs Mean Std. Dev. Min Max

rs 432 1.01e-09 .8929356 -3.621446 3.000929

. qnorm rs
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Example 2

In example 4 of [XT] xtmixed, we estimated a Cobb–Douglas production function with random
intercepts at the region level and at the state-within-region level:

yjk = Xjkβ+ u
(3)
k + u

(2)
jk + εjk

. use http://www.stata-press.com/data/r12/productivity, clear
(Public Capital Productivity)

. xtmixed gsp private emp hwy water other unemp || region: || state:
(output omitted )

We can use estat group to see how the data are broken down by state and region

. estat group

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

and we are reminded that we have balanced productivity data for 17 years for each state.

We can use predict, fitted to get the fitted values

ŷjk = Xjkβ̂+ û
(3)
k + û

(2)
jk

but if we instead want fitted values at the region level, that is,

ŷjk = Xjkβ̂+ û
(3)
k

we need to use the level() option;

. predict gsp_region, fitted level(region)

. list gsp gsp_region in 1/10

gsp gsp_re~n

1. 10.25478 10.40529
2. 10.2879 10.42336
3. 10.35147 10.47343
4. 10.41721 10.52648
5. 10.42671 10.54947

6. 10.4224 10.53537
7. 10.4847 10.60781
8. 10.53111 10.64727
9. 10.59573 10.70503

10. 10.62082 10.72794
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Technical note
Out-of-sample predictions are permitted after xtmixed, but if these predictions involve BLUPs of

random effects, the integrity of the estimation data must be preserved. If the estimation data have
changed since the mixed model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus, to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.

Saved results
estat recovariance saves the last-displayed random-effects covariance matrix in r(cov) or in

r(corr) if it is displayed as a correlation matrix.

Methods and formulas
Following the notation defined throughout [XT] xtmixed, best linear unbiased predictions (BLUPs)

of random effects u are obtained as

ũ = G̃Z′Ṽ−1
(
y −Xβ̂

)
where G̃ and Ṽ are G and V = ZGZ′+σ2

εR with ML or REML estimates of the variance components
plugged in. Standard errors for BLUPs are calculated based on the iterative technique of Bates and
Pinheiro (1998, sec. 3.3) for estimating the BLUPs themselves. If estimation is done by REML, these
standard errors account for uncertainty in the estimate of β, while for ML the standard errors treat β
as known. As such, standard errors of REML-based BLUPs will usually be larger.

Fitted values are given by Xβ̂+ Zũ, residuals as ε̂ = y−Xβ̂−Zũ, and standardized residuals
as

ε̂∗ = σ̂−1
ε R̂−1/2ε̂

If the level(levelvar) option is specified, fitted values, residuals, and standardized residuals
consider only those random-effects terms up to and including level levelvar in the model.

For details concerning the calculation of scores, see Methods and formulas in [XT] xtmixed.

Reference
Bates, D. M., and J. C. Pinheiro. 1998. Computational methods for multilevel modelling. In Technical Memorandum

BL0112140-980226-01TM. Murray Hill, NJ: Bell Labs, Lucent Technologies.
http://stat.bell-labs.com/NLME/CompMulti.pdf.

Also see
[XT] xtmixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands

http://stat.bell-labs.com/NLME/CompMulti.pdf
http://stat.bell-labs.com/NLME/CompMulti.pdf
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Syntax
Random-effects (RE) and conditional fixed-effects (FE) overdispersion models

xtnbreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

,
[
re | fe

]
RE/FE options

]
Population-averaged (PA) model

xtnbreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, pa

[
PA options

]
RE/FE options Description

Model

noconstant suppress constant term; not available with fe

re use random-effects estimator; the default
fe use fixed-effects estimator
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
noskip perform overall model test as a likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

364
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PA options Description

Model

noconstant suppress constant term
pa use population-averaged estimator
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1

Correlation

corr(correlation) within-group correlation structure
force estimate even if observations unequally spaced in time

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

A panel variable must be specified. For xtnbreg, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed in

the random-effects and fixed-effects models; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Count outcomes > Negative binomial regression (FE, RE, PA)

Description
xtnbreg fits random-effects overdispersion models, conditional fixed-effects overdispersion models,

and population-averaged negative binomial models. Here “random effects” and “fixed effects” apply
to the distribution of the dispersion parameter, not to the xβ term in the model. In the random-effects
and fixed-effects overdispersion models, the dispersion is the same for all elements in the same
group (that is, elements with the same value of the panel variable). In the random-effects model, the
dispersion varies randomly from group to group, such that the inverse of one plus the dispersion
follows a Beta(r, s) distribution. In the fixed-effects model, the dispersion parameter in a group can
take on any value, because a conditional likelihood is used in which the dispersion parameter drops
out of the estimation.

By default, the population-averaged model is an equal-correlation model; xtnbreg, pa assumes
corr(exchangeable). See [XT] xtgee for information on how to fit other population-averaged
models.

Options for RE/FE models

� � �
Model �

noconstant; see [R] estimation options.

re requests the random-effects estimator, which is the default.

fe requests the conditional fixed-effects estimator.

exposure(varname), offset(varname), constraints(constraints), collinear; see [R] estima-
tion options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports exponentiated coefficients eb rather than coefficients b. For the negative binomial model,
exponentiated coefficients have the interpretation of incidence-rate ratios.

noskip; see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.
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The following option is available with xtnbreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for PA model

� � �
Model �

noconstant; see [R] estimation options.

pa requests the population-averaged estimator.

exposure(varname), offset(varname); see [R] estimation options.

� � �
Correlation �

corr(correlation), force; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports exponentiated coefficients eb rather than coefficients b. For the negative binomial model,
exponentiated coefficients have the interpretation of incidence-rate ratios.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtnbreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
xtnbreg is a convenience command if you want the population-averaged model. Typing

. xtnbreg . . ., . . . pa exposure(time)

is equivalent to typing

. xtgee . . ., . . . family(nbinomial) link(log) corr(exchangeable) exposure(time)

See also [XT] xtgee for information about xtnbreg.

By default, or when re is specified, xtnbreg fits a maximum-likelihood random-effects overdis-
persion model.

Example 1

You have (fictional) data on injury “incidents” incurred among 20 airlines in each of 4 years.
(Incidents range from major injuries to exceedingly minor ones.) The government agency in charge
of regulating airlines has run an experimental safety training program, and, in each of the years, some
airlines have participated and some have not. You now wish to analyze whether the “incident” rate is
affected by the program. You choose to estimate using random-effects negative binomial regression,
as the dispersion might vary across the airlines for unidentified airline-specific reasons. Your measure
of exposure is passenger miles for each airline in each year.

. use http://www.stata-press.com/data/r12/airacc

. xtnbreg i_cnt inprog, exposure(pmiles) irr

Fitting negative binomial (constant dispersion) model:

Iteration 0: log likelihood = -293.57997
Iteration 1: log likelihood = -293.57997

(output omitted )

Fitting full model:

Iteration 0: log likelihood = -295.72633
Iteration 1: log likelihood = -270.49929 (not concave)

(output omitted )

Random-effects negative binomial regression Number of obs = 80
Group variable: airline Number of groups = 20

Random effects u_i ~ Beta Obs per group: min = 4
avg = 4.0
max = 4

Wald chi2(1) = 2.04
Log likelihood = -265.38202 Prob > chi2 = 0.1532

i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .911673 .0590277 -1.43 0.153 .8030206 1.035027
_cons .0367524 .0407032 -2.98 0.003 .0041936 .3220983

ln(pmiles) 1 (exposure)

/ln_r 4.794991 .951781 2.929535 6.660448
/ln_s 3.268052 .4709033 2.345098 4.191005

r 120.9033 115.0735 18.71892 780.9007
s 26.26013 12.36598 10.4343 66.08918

Likelihood-ratio test vs. pooled: chibar2(01) = 19.03 Prob>=chibar2 = 0.000
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In the output above, the /ln r and /ln s lines refer to ln(r) and ln(s), where the inverse of
one plus the dispersion is assumed to follow a Beta(r, s) distribution. The output also includes a
likelihood-ratio test, which compares the panel estimator with the pooled estimator (that is, a negative
binomial estimator with constant dispersion).

You find that the incidence rate for accidents is not significantly different for participation in the
program and that the panel estimator is significantly different from the pooled estimator.

We may alternatively fit a fixed-effects overdispersion model:

. xtnbreg i_cnt inprog, exposure(pmiles) irr fe nolog

Conditional FE negative binomial regression Number of obs = 80
Group variable: airline Number of groups = 20

Obs per group: min = 4
avg = 4.0
max = 4

Wald chi2(1) = 2.11
Log likelihood = -174.25143 Prob > chi2 = 0.1463

i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .9062669 .0613917 -1.45 0.146 .793587 1.034946
_cons .0329025 .0331262 -3.39 0.001 .0045734 .2367111

ln(pmiles) 1 (exposure)

Example 2

We rerun our previous example, but this time we fit a robust equal-correlation population-averaged
model:

. xtnbreg i_cnt inprog, exposure(pmiles) irr vce(robust) pa

Iteration 1: tolerance = .02499392
Iteration 2: tolerance = .0000482
Iteration 3: tolerance = 2.929e-07

GEE population-averaged model Number of obs = 80
Group variable: airline Number of groups = 20
Link: log Obs per group: min = 4
Family: negative binomial(k=1) avg = 4.0
Correlation: exchangeable max = 4

Wald chi2(1) = 1.28
Scale parameter: 1 Prob > chi2 = 0.2571

(Std. Err. adjusted for clustering on airline)

Semirobust
i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .927275 .0617857 -1.13 0.257 .8137513 1.056636
_cons .0080211 .0004117 -94.02 0.000 .0072535 .00887

ln(pmiles) 1 (exposure)
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We compare this with a pooled estimator with clustered robust-variance estimates:

. nbreg i_cnt inprog, exposure(pmiles) irr vce(cluster airline)

Fitting Poisson model:

Iteration 0: log pseudolikelihood = -293.57997
Iteration 1: log pseudolikelihood = -293.57997

Fitting constant-only model:

Iteration 0: log pseudolikelihood = -335.13615
Iteration 1: log pseudolikelihood = -279.43327
Iteration 2: log pseudolikelihood = -276.09296
Iteration 3: log pseudolikelihood = -274.84036
Iteration 4: log pseudolikelihood = -274.81076
Iteration 5: log pseudolikelihood = -274.81075

Fitting full model:

Iteration 0: log pseudolikelihood = -274.56985
Iteration 1: log pseudolikelihood = -274.55077
Iteration 2: log pseudolikelihood = -274.55077

Negative binomial regression Number of obs = 80
Dispersion = mean Wald chi2(1) = 0.60
Log pseudolikelihood = -274.55077 Prob > chi2 = 0.4369

(Std. Err. adjusted for 20 clusters in airline)

Robust
i_cnt IRR Std. Err. z P>|z| [95% Conf. Interval]

inprog .9429015 .0713091 -0.78 0.437 .8130032 1.093555
_cons .007956 .0004237 -90.77 0.000 .0071674 .0088314

ln(pmiles) 1 (exposure)

/lnalpha -2.835089 .3351784 -3.492027 -2.178151

alpha .0587133 .0196794 .0304391 .1132507
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Saved results
xtnbreg, re saves the following in e():
Scalars

e(N) number of observations
e(N g) number of groups
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(r) value of r in Beta(r, s)
e(s) value of s in Beta(r, s)
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtnbreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) estimation method
e(distrib) Beta; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtnbreg, fe saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(chi2) χ2

e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtnbreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) fe
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) requested estimation method
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtnbreg, pa saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code

Macros
e(cmd) xtgee
e(cmd2) xtnbreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) negative binomial(k=1)
e(link) log; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(nmp) nmp, if specified
e(nbalpha) α

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
xtnbreg is implemented as an ado-file.

xtnbreg, pa reports the population-averaged results obtained by using xtgee, fam-
ily(nbinomial) link(log) to obtain estimates. See [XT] xtgee for details on the methods and
formulas.

For the random-effects and fixed-effects overdispersion models, let yit be the count for the tth
observation in the ith group. We begin with the model yit | γit ∼ Poisson(γit), where γit | δi ∼
gamma(λit, δi) with λit = exp(xitβ+ offsetit) and δi is the dispersion parameter. This yields the
model

Pr(Yit = yit | xit, δi) =
Γ(λit + yit)

Γ(λit)Γ(yit + 1)

(
1

1 + δi

)λit ( δi
1 + δi

)yit
(See Hausman, Hall, and Griliches [1984, eq. 3.1, 922]; our δ is the inverse of their δ.) Looking at
within-group effects only, we find that this specification yields a negative binomial model for the ith
group with dispersion (variance divided by the mean) equal to 1+δi, that is, constant dispersion within
group. This parameterization of the negative binomial model differs from the default parameterization
of nbreg, which has dispersion equal to 1 + α exp(xβ+ offset); see [R] nbreg.

For a random-effects overdispersion model, we allow δi to vary randomly across groups; namely,
we assume that 1/(1 + δi) ∼ Beta(r, s). The joint probability of the counts for the ith group is

Pr(Yi1 = yi1, . . . , Yini = yini |Xi) =
∫ ∞

0

ni∏
t=1

Pr(Yit = yit | xit, δi) f(δi) dδi

=
Γ(r + s)Γ(r +

∑ni
t=1 λit)Γ(s+

∑ni
t=1 yit)

Γ(r)Γ(s)Γ(r + s+
∑ni
t=1 λit +

∑ni
t=1 yit)

ni∏
t=1

Γ(λit + yit)
Γ(λit)Γ(yit + 1)

for Xi = (xi1, . . . ,xini) and where f is the probability density function for δi. The resulting log
likelihood is

lnL =
n∑
i=1

wi

[
lnΓ(r + s) + lnΓ

(
r +

ni∑
k=1

λik

)
+ lnΓ

(
s+

ni∑
k=1

yik

)
− lnΓ(r)− lnΓ(s)

− lnΓ
(
r + s+

ni∑
k=1

λik +
ni∑
k=1

yik

)
+

ni∑
t=1

{
lnΓ(λit + yit)− lnΓ(λit)− lnΓ(yit + 1)

}]

where λit = exp(xitβ + offsetit) and wi is the weight for the ith group (Hausman, Hall, and
Griliches 1984, eq. 3.5, 927).

For the fixed-effects overdispersion model, we condition the joint probability of the counts for
each group on the sum of the counts for the group (that is, the observed

∑ni
t=1 yit). This yields

Pr(Yi1 = yi1, . . . , Yini = yini
∣∣ Xi,

∑ni
t=1 Yit =

∑ni
t=1 yit)

=
Γ(
∑ni
t=1 λit)Γ(

∑ni
t=1 yit + 1)

Γ(
∑ni
t=1 λit +

∑ni
t=1 yit)

ni∏
t=1

Γ(λit + yit)
Γ(λit)Γ(yit + 1)
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The conditional log likelihood is

lnL =
n∑
i=1

wi

[
lnΓ

(
ni∑
t=1

λit

)
+ lnΓ

(
ni∑
t=1

yit + 1

)
− lnΓ

(
ni∑
t=1

λit +
ni∑
t=1

yit

)

+
ni∑
t=1

{
lnΓ(λit + yit)− lnΓ(λit)− lnΓ(yit + 1)

}]

See Hausman, Hall, and Griliches (1984) for a more thorough development of the random-effects
and fixed-effects models. Also see Cameron and Trivedi (1998) for a good textbook treatment of this
model.
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Also see
[XT] xtnbreg postestimation — Postestimation tools for xtnbreg

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[MI] estimation — Estimation commands for use with mi estimate

[R] nbreg — Negative binomial regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/racd.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0089


Title

xtnbreg postestimation — Postestimation tools for xtnbreg

Description
The following postestimation commands are available after xtnbreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after xtnbreg, pa.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
Random-effects (RE) and conditional fixed-effects (FE) overdispersion models

predict
[

type
]

newvar
[

if
] [

in
] [

, RE/FE statistic nooffset
]

Population-averaged (PA) model

predict
[

type
]

newvar
[

if
] [

in
] [

, PA statistic nooffset
]

376
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RE/FE statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
nu0 predicted number of events; assumes fixed or random effect is zero
iru0 predicted incidence rate; assumes fixed or random effect is zero
pr0(n) probability Pr(yj = n) assuming the random effect is zero;

only allowed after xtnbreg, re

pr0(a,b) probability Pr(a ≤ yj ≤ b) assuming the random effect is zero;
only allowed after xtnbreg, re

PA statistic Description

Main

mu predicted number of events; considers the offset(); the default
rate predicted number of events
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb calculates the linear prediction. This is the default for the random-effects and fixed-effects models.

mu and rate both calculate the predicted number of events. mu takes into account the offset(), and
rate ignores those adjustments. mu and rate are equivalent if you did not specify offset(). mu
is the default for the population-averaged model.

stdp calculates the standard error of the linear prediction.

nu0 calculates the predicted number of events, assuming a zero random or fixed effect.

iru0 calculates the predicted incidence rate, assuming a zero random or fixed effect.

pr0(n) calculates the probability Pr(yj = n) assuming the random effect is zero, where n is a
nonnegative integer that may be specified as a number or a variable (only allowed after xtnbreg,
re).

pr0(a,b) calculates the probability Pr(a ≤ yj ≤ b) assuming the random effect is zero, where a
and b are nonnegative integers that may be specified as numbers or variables (only allowed after
xtnbreg, re);
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b missing (b ≥ .) means +∞;
pr0(20,.) calculates Pr(yj ≥ 20);
pr0(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr0(.,b) produces a syntax error. A missing value in an observation on the variable a causes a
missing value in that observation for pr0(a,b).

score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for xtnbreg. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xitβ
rather than xitβ+ offsetit.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The probabilities calculated using the pr0(n) option are the probability Pr(yit = n) for a RE
model assuming the random effect is zero. A negative binomial model is an overdispersed Poisson
model, and the nominal overdispersion can be calculated as δ = s/(r − 1), where r and s are as
given in the estimation results. Define µit = exp(xitβ+ offsetit). Then the probabilities in pr0(n)
are calculated as the probability that yit = n, where yit has a negative binomial distribution with
mean δµit and variance δ(1 + δ)µit.

Also see
[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands



Title

xtpcse — Linear regression with panel-corrected standard errors

Syntax
xtpcse depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
correlation(independent) use independent autocorrelation structure
correlation(ar1) use AR1 autocorrelation structure
correlation(psar1) use panel-specific AR1 autocorrelation structure
rhotype(calc) specify method to compute autocorrelation parameter;

seldom used
np1 weight panel-specific autocorrelations by panel sizes
hetonly assume panel-level heteroskedastic errors
independent assume independent errors across panels

by/if/in

casewise include only observations with complete cases
pairwise include all available observations with nonmissing pairs

SE

nmk normalize standard errors by N − k instead of N

Reporting

level(#) set confidence level; default is level(95)

detail report list of gaps in time series
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
iweights and aweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Contemporaneous correlation > Regression with panel-corrected standard
errors (PCSE)

379
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Description
xtpcse calculates panel-corrected standard error (PCSE) estimates for linear cross-sectional time-

series models where the parameters are estimated by either OLS or Prais–Winsten regression. When
computing the standard errors and the variance–covariance estimates, xtpcse assumes that the
disturbances are, by default, heteroskedastic and contemporaneously correlated across panels.

See [XT] xtgls for the generalized least-squares estimator for these models.

Options� � �
Model �

noconstant; see [R] estimation options.

correlation(corr) specifies the form of assumed autocorrelation within panels.

correlation(independent), the default, specifies that there is no autocorrelation.

correlation(ar1) specifies that, within panels, there is first-order autocorrelation AR(1) and
that the coefficient of the AR(1) process is common to all the panels.

correlation(psar1) specifies that, within panels, there is first-order autocorrelation and that the
coefficient of the AR(1) process is specific to each panel. psar1 stands for panel-specific AR(1).

rhotype(calc) specifies the method to be used to calculate the autocorrelation parameter. Allowed
strings for calc are
regress regression using lags; the default
freg regression using leads
tscorr time-series autocorrelation calculation
dw Durbin–Watson calculation

All above methods are consistent and asymptotically equivalent; this is a rarely used option.

np1 specifies that the panel-specific autocorrelations be weighted by Ti rather than by the default
Ti − 1 when estimating a common ρ for all panels, where Ti is the number of observations in
panel i. This option has an effect only when panels are unbalanced and the correlation(ar1)
option is specified.

hetonly and independent specify alternative forms for the assumed covariance of the disturbances
across the panels. If neither is specified, the disturbances are assumed to be heteroskedastic (each
panel has its own variance) and contemporaneously correlated across the panels (each pair of
panels has its own covariance). This is the standard PCSE model.

hetonly specifies that the disturbances are assumed to be panel-level heteroskedastic only with
no contemporaneous correlation across panels.

independent specifies that the disturbances are assumed to be independent across panels; that
is, there is one disturbance variance common to all observations.

� � �
by/if/in �

casewise and pairwise specify how missing observations in unbalanced panels are to be treated
when estimating the interpanel covariance matrix of the disturbances. The default is casewise
selection.

casewise specifies that the entire covariance matrix be computed only on the observations (periods)
that are available for all panels. If an observation has missing data, all observations of that period
are excluded when estimating the covariance matrix of disturbances. Specifying casewise ensures
that the estimated covariance matrix will be of full rank and will be positive definite.
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pairwise specifies that, for each element in the covariance matrix, all available observations
(periods) that are common to the two panels contributing to the covariance be used to compute
the covariance.

The casewise and pairwise options have an effect only when the panels are unbalanced and
neither hetonly nor independent is specified.

� � �
SE �

nmk specifies that standard errors be normalized by N − k, where k is the number of parameters
estimated, rather than N , the number of observations. Different authors have used one or the other
normalization. Greene (2012, 280) remarks that whether a degree-of-freedom correction improves
the small-sample properties is an open question.

� � �
Reporting �

level(#); see [R] estimation options.

detail specifies that a detailed list of any gaps in the series be reported.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtpcse but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
xtpcse is an alternative to feasible generalized least squares (FGLS)—see [XT] xtgls—for fitting

linear cross-sectional time-series models when the disturbances are not assumed to be independent
and identically distributed (i.i.d.). Instead, the disturbances are assumed to be either heteroskedastic
across panels or heteroskedastic and contemporaneously correlated across panels. The disturbances
may also be assumed to be autocorrelated within panel, and the autocorrelation parameter may be
constant across panels or different for each panel.

We can write such models as
yit = xitβ+ εit

where i = 1, . . . ,m is the number of units (or panels); t = 1, . . . , Ti; Ti is the number of periods in
panel i; and εit is a disturbance that may be autocorrelated along t or contemporaneously correlated
across i.

This model can also be written panel by panel as
y1

y2
...

ym

 =


X1

X2
...

Xm

β+


ε1
ε2
...
εm


For a model with heteroskedastic disturbances and contemporaneous correlation but with no autocor-
relation, the disturbance covariance matrix is assumed to be

E[εε′] = Ω =


σ11I11 σ12I12 · · · σ1mI1m

σ21I21 σ22I22 · · · σ2mI2m
...

...
. . .

...
σm1Im1 σm2Im2 · · · σmmImm


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where σii is the variance of the disturbances for panel i, σij is the covariance of the disturbances
between panel i and panel j when the panels’ periods are matched, and I is a Ti by Ti identity
matrix with balanced panels. The panels need not be balanced for xtpcse, but the expression for the
covariance of the disturbances will be more general if they are unbalanced.

This could also be written as

E[εε′] = Σm×m ⊗ ITi×Ti

where Σ is the panel-by-panel covariance matrix and I is an identity matrix.

See [XT] xtgls for a full taxonomy and description of possible disturbance covariance structures.

xtpcse and xtgls follow two different estimation schemes for this family of models. xtpcse
produces OLS estimates of the parameters when no autocorrelation is specified, or Prais–Winsten (see
[TS] prais) estimates when autocorrelation is specified. If autocorrelation is specified, the estimates
of the parameters are conditional on the estimates of the autocorrelation parameter(s). The estimate
of the variance–covariance matrix of the parameters is asymptotically efficient under the assumed
covariance structure of the disturbances and uses the FGLS estimate of the disturbance covariance
matrix; see Kmenta (1997, 121).

xtgls produces full FGLS parameter and variance–covariance estimates. These estimates are condi-
tional on the estimates of the disturbance covariance matrix and are conditional on any autocorrelation
parameters that are estimated; see Kmenta (1997), Greene (2012), Davidson and MacKinnon (1993),
or Judge et al. (1985).

Both estimators are consistent, as long as the conditional mean (xitβ) is correctly specified. If the
assumed covariance structure is correct, FGLS estimates produced by xtgls are more efficient. Beck
and Katz (1995) have shown, however, that the full FGLS variance–covariance estimates are typically
unacceptably optimistic (anticonservative) when used with the type of data analyzed by most social
scientists—10–20 panels with 10–40 periods per panel. They show that the OLS or Prais–Winsten
estimates with PCSEs have coverage probabilities that are closer to nominal.

Because the covariance matrix elements, σij , are estimated from panels i and j, using those
observations that have common time periods, estimators for this model achieve their asymptotic
behavior as the Tis approach infinity. In contrast, the random- and fixed-effects estimators assume
a different model and are asymptotic in the number of panels m; see [XT] xtreg for details of the
random- and fixed-effects estimators.

Although xtpcse allows other disturbance covariance structures, the term PCSE, as used in the
literature, refers specifically to models that are both heteroskedastic and contemporaneously correlated
across panels, with or without autocorrelation.

Example 1

Grunfeld and Griliches (1960) analyzed a company’s current-year gross investment (invest) as
determined by the company’s prior year market value (mvalue) and the prior year’s value of the
company’s plant and equipment (kstock). The dataset includes 10 companies over 20 years, from
1935 through 1954, and is a classic dataset for demonstrating cross-sectional time-series analysis.
Greene (2012, 1112) reproduces the dataset.

To use xtpcse, the data must be organized in “long form”; that is, each observation must represent
a record for a specific company at a specific time; see [D] reshape. In the Grunfeld data, company
is a categorical variable identifying the company, and year is a variable recording the year. Here are
the first few records:



xtpcse — Linear regression with panel-corrected standard errors 383

. use http://www.stata-press.com/data/r12/grunfeld

. list in 1/5

company year invest mvalue kstock time

1. 1 1935 317.6 3078.5 2.8 1
2. 1 1936 391.8 4661.7 52.6 2
3. 1 1937 410.6 5387.1 156.9 3
4. 1 1938 257.7 2792.2 209.2 4
5. 1 1939 330.8 4313.2 203.4 5

To compute PCSEs, Stata must be able to identify the panel to which each observation belongs and
be able to match the periods across the panels. We tell Stata how to do this matching by specifying
the panel and time variables with xtset; see [XT] xtset. Because the data are annual, we specify the
yearly option.

. xtset company year, yearly
panel variable: company (strongly balanced)
time variable: year, 1935 to 1954

delta: 1 year

We can obtain OLS parameter estimates for a linear model of invest on mvalue and kstock
while allowing the standard errors (and variance–covariance matrix of the estimates) to be consistent
when the disturbances from each observation are not independent. Specifically, we want the standard
errors to be robust to each company having a different variance of the disturbances and to each
company’s observations being correlated with those of the other companies through time.

This model is fit in Stata by typing

. xtpcse invest mvalue kstock

Linear regression, correlated panels corrected standard errors (PCSEs)

Group variable: company Number of obs = 200
Time variable: year Number of groups = 10
Panels: correlated (balanced) Obs per group: min = 20
Autocorrelation: no autocorrelation avg = 20

max = 20
Estimated covariances = 55 R-squared = 0.8124
Estimated autocorrelations = 0 Wald chi2(2) = 637.41
Estimated coefficients = 3 Prob > chi2 = 0.0000

Panel-corrected
invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .1155622 .0072124 16.02 0.000 .101426 .1296983
kstock .2306785 .0278862 8.27 0.000 .1760225 .2853345
_cons -42.71437 6.780965 -6.30 0.000 -56.00482 -29.42392

Example 2

xtgls will produce more efficient FGLS estimates of the models’ parameters, but with the
disadvantage that the standard error estimates are conditional on the estimated disturbance covariance.
Beck and Katz (1995) argue that the improvement in power using FGLS with such data is small and
that the standard error estimates from FGLS are unacceptably optimistic (anticonservative).
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The FGLS model is fit by typing

. xtgls invest mvalue kstock, panels(correlated)

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 55 Number of obs = 200
Estimated autocorrelations = 0 Number of groups = 10
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 3738.07
Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .1127515 .0022364 50.42 0.000 .1083683 .1171347
kstock .2231176 .0057363 38.90 0.000 .2118746 .2343605
_cons -39.84382 1.717563 -23.20 0.000 -43.21018 -36.47746

The coefficients between the two models are close; the constants differ substantially, but we are
generally not interested in the constant. As Beck and Katz observed, the standard errors for the FGLS
model are 50%–100% smaller than those for the OLS model with PCSE.

If we were also concerned about autocorrelation of the disturbances, we could obtain a model with
a common AR(1) parameter by specifying correlation(ar1).

. xtpcse invest mvalue kstock, correlation(ar1)
(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])

Prais-Winsten regression, correlated panels corrected standard errors (PCSEs)

Group variable: company Number of obs = 200
Time variable: year Number of groups = 10
Panels: correlated (balanced) Obs per group: min = 20
Autocorrelation: common AR(1) avg = 20

max = 20
Estimated covariances = 55 R-squared = 0.5468
Estimated autocorrelations = 1 Wald chi2(2) = 93.71
Estimated coefficients = 3 Prob > chi2 = 0.0000

Panel-corrected
invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .0950157 .0129934 7.31 0.000 .0695492 .1204822
kstock .306005 .0603718 5.07 0.000 .1876784 .4243317
_cons -39.12569 30.50355 -1.28 0.200 -98.91154 20.66016

rho .9059774

The estimate of the autocorrelation parameter is high (0.906), and the standard errors are larger
than for the model without autocorrelation, which is to be expected if there is autocorrelation.

Example 3

Let’s estimate panel-specific autocorrelation parameters and change the method of estimating the
autocorrelation parameter to the one typically used to estimate autocorrelation in time-series analysis.
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. xtpcse invest mvalue kstock, correlation(psar1) rhotype(tscorr)

Prais-Winsten regression, correlated panels corrected standard errors (PCSEs)

Group variable: company Number of obs = 200
Time variable: year Number of groups = 10
Panels: correlated (balanced) Obs per group: min = 20
Autocorrelation: panel-specific AR(1) avg = 20

max = 20
Estimated covariances = 55 R-squared = 0.8670
Estimated autocorrelations = 10 Wald chi2(2) = 444.53
Estimated coefficients = 3 Prob > chi2 = 0.0000

Panel-corrected
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .1052613 .0086018 12.24 0.000 .0884021 .1221205
kstock .3386743 .0367568 9.21 0.000 .2666322 .4107163
_cons -58.18714 12.63687 -4.60 0.000 -82.95496 -33.41933

rhos = .5135627 .87017 .9023497 .63368 .8571502 ... .8752707

Beck and Katz (1995, 121) make a case against estimating panel-specific AR parameters, as opposed
to one AR parameter for all panels.

Example 4

We can also diverge from PCSEs to estimate standard errors that are panel corrected, but only
for panel-level heteroskedasticity; that is, each company has a different variance of the disturbances.
Allowing also for autocorrelation, we would type

. xtpcse invest mvalue kstock, correlation(ar1) hetonly
(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])

Prais-Winsten regression, heteroskedastic panels corrected standard errors

Group variable: company Number of obs = 200
Time variable: year Number of groups = 10
Panels: heteroskedastic (balanced) Obs per group: min = 20
Autocorrelation: common AR(1) avg = 20

max = 20
Estimated covariances = 10 R-squared = 0.5468
Estimated autocorrelations = 1 Wald chi2(2) = 91.72
Estimated coefficients = 3 Prob > chi2 = 0.0000

Het-corrected
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .0950157 .0130872 7.26 0.000 .0693653 .1206661
kstock .306005 .061432 4.98 0.000 .1856006 .4264095
_cons -39.12569 26.16935 -1.50 0.135 -90.41666 12.16529

rho .9059774

With this specification, we do not obtain what are referred to in the literature as PCSEs. These
standard errors are in the same spirit as PCSEs but are from the asymptotic covariance estimates of
OLS without allowing for contemporaneous correlation.
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Saved results
xtpcse saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N gaps) number of gaps
e(n cf) number of estimated coefficients
e(n cv) number of estimated covariances
e(n cr) number of estimated correlations
e(n sigma) observations used to estimate elements of Sigma
e(mss) model sum of squares
e(df) degrees of freedom
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(r2) R-squared
e(chi2) χ2

e(p) significance
e(rmse) root mean squared error
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) xtpcse
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(panels) contemporaneous covariance structure
e(corr) correlation structure
e(rhotype) type of estimated correlation
e(rho) ρ

e(cons) noconstant or ""
e(missmeth) casewise or pairwise
e(balance) balanced or unbalanced
e(chi2type) Wald; type of model χ2 test
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Sigma) Σ̂ matrix
e(rhomat) vector of autocorrelation parameter estimates
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
xtpcse is implemented as an ado-file.

If no autocorrelation is specified, the parameters β are estimated by OLS; see [R] regress. If
autocorrelation is specified, the parameters β are estimated by Prais–Winsten; see [TS] prais.

When autocorrelation with panel-specific coefficients of correlation is specified (by using option
correlation(psar1)), each panel-level ρi is computed from the residuals of an OLS regression
across all panels; see [TS] prais. When autocorrelation with a common coefficient of correlation is
specified (by using option correlation(ar1)), the common correlation coefficient is computed as

ρ =
ρ1 + ρ2 + · · ·+ ρm

m

where ρi is the estimated autocorrelation coefficient for panel i and m is the number of panels.

The covariance of the OLS or Prais–Winsten coefficients is

Var(β) = (X′X)−1X′ΩX(X′X)−1

where Ω is the full covariance matrix of the disturbances.

When the panels are balanced, we can write Ω as

Ω = Σm×m ⊗ ITi×Ti

where Σ is the m by m panel-by-panel covariance matrix of the disturbances; see Remarks.

xtpcse estimates the elements of Σ as

Σ̂ij =
εi
′εj
Tij

where εi and εj are the residuals for panels i and j, respectively, that can be matched by period, and
where Tij is the number of residuals between the panels i and j that can be matched by time period.

When the panels are balanced (each panel has the same number of observations and all periods
are common to all panels), Tij = T , where T is the number of observations per panel.

When panels are unbalanced, xtpcse by default uses casewise selection, in which only those
residuals from periods that are common to all panels are used to compute Ŝij . Here Tij = T ∗,
where T ∗ is the number of periods common to all panels. When pairwise is specified, each Ŝij is
computed using all observations that can be matched by period between the panels i and j.
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Also see
[XT] xtpcse postestimation — Postestimation tools for xtpcse

[XT] xtset — Declare data to be panel data

[XT] xtgls — Fit panel-data models by using GLS

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[R] regress — Linear regression

[TS] newey — Regression with Newey–West standard errors

[TS] prais — Prais–Winsten and Cochrane–Orcutt regression
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Title

xtpcse postestimation — Postestimation tools for xtpcse

Description
The following postestimation commands are available after xtpcse:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, xb stdp
]

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

389



390 xtpcse postestimation — Postestimation tools for xtpcse

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xtpcse — Linear regression with panel-corrected standard errors

[U] 20 Estimation and postestimation commands



Title

xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

Syntax
Random-effects (RE) model

xtpoisson depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, re RE options
]

Conditional fixed-effects (FE) model

xtpoisson depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, fe

[
FE options

]
Population-averaged (PA) model

xtpoisson depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, pa

[
PA options

]
RE options Description

Model

noconstant suppress constant term
re use random-effects estimator; the default
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
normal use a normal distribution for random effects instead of gamma
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
noskip fit constant-only model and perform likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intmethod(intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod(mvaghermite)

intpoints(#) use # quadrature points; default is intpoints(12)

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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FE options Description

Model

fe use fixed-effects estimator
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

PA options Description

Model

noconstant suppress constant term
pa use population-averaged estimator
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1

Correlation

corr(correlation) within-group correlation structure
force estimate if observations unequally spaced in time

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
scale(parm) overrides the default scale parameter;

parm may be x2, dev, phi, or #
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Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive
stationary # stationary
nonstationary # nonstationary

A panel variable must be specified. For xtpoisson, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed for the population-averaged model and iweights are allowed

in the random-effects and fixed-effects models; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Count outcomes > Poisson regression (FE, RE, PA)

Description
xtpoisson fits random-effects, conditional fixed-effects, and population-averaged Poisson models.

Whenever we refer to a fixed-effects model, we mean the conditional fixed-effects model.

By default, the population-averaged model is an equal-correlation model; xtpoisson, pa assumes
corr(exchangeable). See [XT] xtgee for information on how to fit other population-averaged
models.
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Options for RE model

� � �
Model �

noconstant; see [R] estimation options.

re, the default, requests the random-effects estimator.

exposure(varname), offset(varname); see [R] estimation options.

normal specifies that the random effects follow a normal distribution instead of a gamma distribution.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports exponentiated coefficients eb rather than coefficients b. For the Poisson model, exponen-
tiated coefficients are interpreted as incidence-rate ratios.

noskip; see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod), intpoints(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xtpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for FE model

� � �
Model �

fe requests the fixed-effects estimator.

exposure(varname), offset(varname), constraints(constraints), collinear; see [R] estima-
tion options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(robust) invokes a cluster–robust estimate of the VCE in which the ID variable specifies the
clusters.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports exponentiated coefficients eb rather than coefficients b. For the Poisson model, exponen-
tiated coefficients are interpreted as incidence-rate ratios.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xtpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for PA model

� � �
Model �

noconstant; see [R] estimation options.

pa requests the population-averaged estimator.

exposure(varname), offset(varname); see [R] estimation options.

� � �
Correlation �

corr(correlation), force; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce options.
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� � �
Reporting �

level(#); see [R] estimation options.

irr reports exponentiated coefficients eb rather than coefficients b. For the Poisson model, exponen-
tiated coefficients are interpreted as incidence-rate ratios.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
xtpoisson is a convenience command if you want the population-averaged model. Typing

. xtpoisson . . ., . . . pa exposure(time)

is equivalent to typing

. xtgee . . ., . . . family(poisson) link(log) corr(exchangeable) exposure(time)

Also see [XT] xtgee for information about xtpoisson.

By default or when re is specified, xtpoisson fits via maximum likelihood the random-effects
model

Pr(Yit = yit|xit) = F (yit,xitβ+ νi)

for i = 1, . . . , n panels, where t = 1, . . . , ni, and F (x, z) = Pr(X = x), where X is Poisson
distributed with mean exp(z). In the standard random-effects model, νi is assumed to be i.i.d. such
that exp(νi) is gamma with mean one and variance α, which is estimated from the data. If normal
is specified, νi is assumed to be i.i.d. N(0, σ2

ν).

Example 1

We have data on the number of ship accidents for five different types of ships (McCullagh and
Nelder 1989, 205). We wish to analyze whether the “incident” rate is affected by the period in which
the ship was constructed and operated. Our measure of exposure is months of service for the ship,
and in this model, we assume that the exponentiated random effects are distributed as gamma with
mean one and variance α.
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. use http://www.stata-press.com/data/r12/ships

. xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exposure(service) irr

Fitting Poisson model:

Iteration 0: log likelihood = -147.37993
Iteration 1: log likelihood = -80.372714
Iteration 2: log likelihood = -80.116093
Iteration 3: log likelihood = -80.115916
Iteration 4: log likelihood = -80.115916

Fitting full model:

Iteration 0: log likelihood = -79.653186
Iteration 1: log likelihood = -76.990836 (not concave)
Iteration 2: log likelihood = -74.824942
Iteration 3: log likelihood = -74.811243
Iteration 4: log likelihood = -74.811217
Iteration 5: log likelihood = -74.811217

Random-effects Poisson regression Number of obs = 34
Group variable: ship Number of groups = 5

Random effects u_i ~ Gamma Obs per group: min = 6
avg = 6.8
max = 7

Wald chi2(4) = 50.90
Log likelihood = -74.811217 Prob > chi2 = 0.0000

accident IRR Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 1.466305 .1734005 3.24 0.001 1.162957 1.848777
co_65_69 2.032543 .304083 4.74 0.000 1.515982 2.72512
co_70_74 2.356853 .3999259 5.05 0.000 1.690033 3.286774
co_75_79 1.641913 .3811398 2.14 0.033 1.04174 2.58786

_cons .0013724 .0002992 -30.24 0.000 .0008952 .002104
ln(service) 1 (exposure)

/lnalpha -2.368406 .8474597 -4.029397 -.7074155

alpha .0936298 .0793475 .0177851 .4929165

Likelihood-ratio test of alpha=0: chibar2(01) = 10.61 Prob>=chibar2 = 0.001

The output also includes a likelihood-ratio test of α = 0, which compares the panel estimator with
the pooled (Poisson) estimator.

We find that the incidence rate for accidents is significantly different for the periods of construction
and operation of the ships and that the random-effects model is significantly different from the pooled
model.

We may alternatively fit a fixed-effects specification instead of a random-effects specification:
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. xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exp(service) irr fe

Iteration 0: log likelihood = -80.738973
Iteration 1: log likelihood = -54.857546
Iteration 2: log likelihood = -54.641897
Iteration 3: log likelihood = -54.641859
Iteration 4: log likelihood = -54.641859

Conditional fixed-effects Poisson regression Number of obs = 34
Group variable: ship Number of groups = 5

Obs per group: min = 6
avg = 6.8
max = 7

Wald chi2(4) = 48.44
Log likelihood = -54.641859 Prob > chi2 = 0.0000

accident IRR Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 1.468831 .1737218 3.25 0.001 1.164926 1.852019
co_65_69 2.008003 .3004803 4.66 0.000 1.497577 2.692398
co_70_74 2.26693 .384865 4.82 0.000 1.625274 3.161912
co_75_79 1.573695 .3669393 1.94 0.052 .9964273 2.485397

ln(service) 1 (exposure)

Both of these models fit the same thing but will differ in efficiency, depending on whether the
assumptions of the random-effects model are true.

We could have assumed that the random effects followed a normal distribution, N(0, σ2
ν), instead

of a “log-gamma” distribution, and obtained

. xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exp(service) irr
> normal nolog

Random-effects Poisson regression Number of obs = 34
Group variable: ship Number of groups = 5

Random effects u_i ~ Gaussian Obs per group: min = 6
avg = 6.8
max = 7

Wald chi2(4) = 50.95
Log likelihood = -74.780982 Prob > chi2 = 0.0000

accident IRR Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 1.466677 .1734403 3.24 0.001 1.163259 1.849236
co_65_69 2.032604 .3040933 4.74 0.000 1.516025 2.725205
co_70_74 2.357045 .3998397 5.05 0.000 1.690338 3.286717
co_75_79 1.646935 .3820235 2.15 0.031 1.045278 2.594905

_cons .0013075 .0002775 -31.28 0.000 .0008625 .001982
ln(service) 1 (exposure)

/lnsig2u -2.351868 .8586262 -2.74 0.006 -4.034745 -.6689918

sigma_u .3085306 .1324562 .1330045 .7156988

Likelihood-ratio test of sigma_u=0: chibar2(01) = 10.67 Pr>=chibar2 = 0.001

The output includes the additional panel-level variance component. This is parameterized as the log
of the variance ln(σ2

ν) (labeled lnsig2u in the output). The standard deviation σν is also included
in the output labeled sigma u.
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When sigma u is zero, the panel-level variance component is unimportant and the panel estimator
is no different from the pooled estimator. A likelihood-ratio test of this is included at the bottom
of the output. This test formally compares the pooled estimator (poisson) with the panel estimator.
Here σν is significantly greater than zero, so a panel estimator is indicated.

Example 2

This time we fit a robust equal-correlation population-averaged model:

. xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exp(service) pa
> vce(robust) eform

Iteration 1: tolerance = .04083192
Iteration 2: tolerance = .00270188
Iteration 3: tolerance = .00030663
Iteration 4: tolerance = .00003466
Iteration 5: tolerance = 3.891e-06
Iteration 6: tolerance = 4.359e-07

GEE population-averaged model Number of obs = 34
Group variable: ship Number of groups = 5
Link: log Obs per group: min = 6
Family: Poisson avg = 6.8
Correlation: exchangeable max = 7

Wald chi2(4) = 252.94
Scale parameter: 1 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on ship)

Semirobust
accident IRR Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 1.483299 .1197901 4.88 0.000 1.266153 1.737685
co_65_69 2.038477 .1809524 8.02 0.000 1.712955 2.425859
co_70_74 2.643467 .4093947 6.28 0.000 1.951407 3.580962
co_75_79 1.876656 .33075 3.57 0.000 1.328511 2.650966

_cons .0010255 .0000721 -97.90 0.000 .0008935 .001177
ln(service) 1 (exposure)



400 xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

We may compare this with a pooled estimator with clustered robust-variance estimates:

. poisson accident op_75_79 co_65_69 co_70_74 co_75_79, exp(service)
> vce(cluster ship) irr

Iteration 0: log pseudolikelihood = -147.37993
Iteration 1: log pseudolikelihood = -80.372714
Iteration 2: log pseudolikelihood = -80.116093
Iteration 3: log pseudolikelihood = -80.115916
Iteration 4: log pseudolikelihood = -80.115916

Poisson regression Number of obs = 34
Wald chi2(3) = .
Prob > chi2 = .

Log pseudolikelihood = -80.115916 Pseudo R2 = 0.3438

(Std. Err. adjusted for 5 clusters in ship)

Robust
accident IRR Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 1.47324 .1287036 4.44 0.000 1.2414 1.748377
co_65_69 2.125914 .2850531 5.62 0.000 1.634603 2.764897
co_70_74 2.860138 .6213563 4.84 0.000 1.868384 4.378325
co_75_79 2.021926 .4265285 3.34 0.001 1.337221 3.057227

_cons .0009609 .0000277 -240.66 0.000 .000908 .0010168
ln(service) 1 (exposure)

Technical note
The random-effects model is calculated using quadrature, which is an approximation whose accuracy

depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtpoisson, re normal likelihood function is calculated by Gauss–Hermite quadrature,
on large problems the computations can be slow. Computation time is roughly proportional to the
number of points used for the quadrature.
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Saved results
xtpoisson, re saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N cd) number of completely determined observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(sigma u) panel-level standard deviation
e(alpha) the value of alpha
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xtpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) requested estimation method
e(distrib) Gamma; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

xtpoisson, re normal saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N cd) number of completely determined observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(sigma u) panel-level standard deviation
e(n quad) number of quadrature points
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(offset1) ln(varname), where varname is variable from exposure()
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

xtpoisson, fe saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) fe
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) requested estimation method
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

xtpoisson, pa saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code
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Macros
e(cmd) xtgee
e(cmd2) xtpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) Poisson
e(link) log; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) covariance estimation method
e(nmp) nmp, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
xtpoisson is implemented as an ado-file.

xtpoisson, pa reports the population-averaged results obtained by using xtgee, fam-
ily(poisson) link(log) to obtain estimates. See [XT] xtgee for details about the methods and
formulas.

xtpoisson, fe with robust standard errors implements the formula presented in Wooldridge (1999).
The formula is a cluster–robust estimate of the VCE in which the ID variable specifies the clusters.

Although Hausman, Hall, and Griliches (1984) wrote the seminal article on the random-effects and
fixed-effects models, Cameron and Trivedi (1998) provide a good textbook treatment. Allison (2009,
chap. 4) succinctly discusses these models and illustrates the differences between them using Stata.

For a random-effects specification, we know that

Pr(yi1, . . . , yini |αi,xi1, . . . ,xini) =

(
ni∏
t=1

λyitit
yit!

)
exp

{
− exp(αi)

ni∑
t=1

λit

}
exp

(
αi

ni∑
t=1

yit

)
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where λit = exp(xitβ). We may rewrite the above as [defining εi = exp(αi)]

Pr(yi1, . . . , yini |εi,xi1, . . . ,xini) =

{
ni∏
t=1

(λitεi)yit

yit!

}
exp

(
−

ni∑
t=1

λitεi

)

=

(
ni∏
t=1

λyitit
yit!

)
exp

(
−εi

ni∑
t=1

λit

)
ε

∑ni

t=1
yit

i

We now assume that εi follows a gamma distribution with mean one and variance 1/θ so that
unconditional on εi

Pr(yi1, . . . , yini |Xi) =
θθ

Γ(θ)

(
ni∏
t=1

λyitit
yit!

)∫ ∞
0

exp

(
−εi

ni∑
t=1

λit

)
ε

∑ni

t=1
yit

i εθ−1
i exp(−θεi)dεi

=
θθ

Γ(θ)

(
ni∏
t=1

λyitit
yit!

)∫ ∞
0

exp

{
−εi

(
θ +

ni∑
t=1

λit

)}
ε
θ+
∑ni

t=1
yit−1

i dεi

=

(
ni∏
t=1

λyitit
yit!

) Γ

(
θ +

ni∑
t=1

yit

)
Γ(θ)

 θ

θ +
ni∑
t=1

λit


θ 1

θ +
ni∑
t=1

λit



ni∑
t=1

yit

for Xi = (xi1, . . . ,xini).

The log likelihood (assuming gamma heterogeneity) is then derived using

ui =
θ

θ +
∑ni
t=1 λit

λit = exp(xitβ)

Pr(Yi1 = yi1, . . . , Yini = yini |Xi) =
∏ni
t=1 λ

yit
it Γ (θ +

∑ni
t=1 yit)∏ni

t=1 yit!Γ(θ) (
∑ni
t=1 λit)

∑ni

t=1
yit
uθi (1− ui)

∑ni

t=1
yit

such that the log likelihood may be written as

L =
n∑
i=1

wi

{
log Γ

(
θ +

ni∑
t=1

yit

)
−

ni∑
t=1

log Γ (1 + yit)− log Γ(θ) + θ log ui

+ log(1− ui)
ni∑
t=1

yit +
ni∑
t=1

yit(xitβ)−

(
ni∑
t=1

yit

)
log

(
ni∑
t=1

λit

)}

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.
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Alternatively, if we assume a normal distribution, N(0, σ2
ν), for the random effects νi

Pr(yi1, . . . , yini |Xi) =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

where
F (y, z) = exp

{
− exp(z) + yz − log(y!)

}
.

The panel-level likelihood li is given by

li =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

≡
∫ ∞
−∞

g(yit, xit, νi)dνi

This integral can be approximated with M -point Gauss–Hermite quadrature

∫ ∞
−∞

e−x
2
h(x)dx ≈

M∑
m=1

w∗mh(a∗m)

This is equivalent to ∫ ∞
−∞

f(x)dx ≈
M∑
m=1

w∗m exp
{

(a∗m)2
}
f(a∗m)

where the w∗m denote the quadrature weights and the a∗m denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods li.

The default approximation of the log likelihood is by adaptive Gauss–Hermite quadrature, which
approximates the panel-level likelihood with

li ≈
√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}
g(yit, xit,

√
2σ̂ia∗m + µ̂i)

where σ̂i and µ̂i are the adaptive parameters for panel i. Therefore, with the definition of g(yit, xit, νi),
the total log likelihood is approximated by

L ≈
n∑
i=1

wi log
[√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}exp

{
−(
√

2σ̂ia∗m + µ̂i)2/2σ2
ν

}
√

2πσν

ni∏
t=1

F (yit, xitβ+
√

2σ̂ia∗m + µ̂i)
]

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.
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The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for µ̂i and σ̂i by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with σ̂i,0 = 1 and µ̂i,0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for li, we use

li,k ≈
M∑
m=1

√
2σ̂i,k−1w

∗
m exp

{
a∗m)2

}
g(yit, xit,

√
2σ̂i,k−1a

∗
m + µ̂i,k−1)

Letting
τi,m,k−1 =

√
2σ̂i,k−1a

∗
m + µ̂i,k−1

µ̂i,k =
M∑
m=1

(τi,m,k−1)

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k

and

σ̂i,k =
M∑
m=1

(τi,m,k−1)2

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k
− (µ̂i,k)2

and this is repeated until µ̂i,k and σ̂i,k have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method(aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

g(yit, xit, νi) =
e−ν

2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}

and find αi the mode of g(yit, xit, νi). We calculate

γi = − ∂2

∂ν2
i

log{g(yit, xit, νi)}
∣∣
νi=αi

Then∫ ∞
−∞

g(yit, xit, νi)dνi ≈
(

2
γi

)1/2 M∑
m=1

w∗m exp
{

(a∗m)2
}
g

{
yit, xit,

(
2
γi

)1/2

a∗m + αi

}

This adaptation is performed on the first iteration only; that is, the αi and γi are calculated once at
the first iteration and then held constant throughout the subsequent iterations.
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The log likelihood can also be calculated by nonadaptive Gauss–Hermite quadrature, the int-
method(ghermite) option, where ρ = σ2

ν/(σ
2
ν + 1):

L =
n∑
i=1

wi log
{

Pr(yi1, . . . , yini |xi1, . . . ,xini)
}

≈
n∑
i=1

wi log

[
1√
π

M∑
m=1

w∗m

ni∏
t=1

F

{
yit,xitβ+ a∗m

(
2ρ

1− ρ

)1/2
}]

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

ni∏
t=1

F (yit,xitβ+ νi)

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can
become less accurate. For large ρ, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.

For a fixed-effects specification, we know that

Pr(Yit = yit|xit) = exp{− exp(αi + xitβ)} exp(αi + xitβ)yit/yit!

=
1
yit!

exp{− exp(αi) exp(xitβ) + αiyit} exp(xitβ)yit

≡ Fit

Because we know that the observations are independent, we may write the joint probability for
the observations within a panel as

Pr (Yi1 = yi1, . . . , Yini = yini |Xi)

=
ni∏
t=1

1
yit!

exp{− exp(αi) exp(xitβ) + αiyit} exp(xitβ)yit

=

(
ni∏
t=1

exp(xitβ)yit

yit!

)
exp

{
− exp(αi)

∑
t

exp(xitβ) + αi
∑
t

yit

}
and we also know that the sum of ni Poisson independent random variables, each with parameter
λit for t = 1, . . . , ni, is distributed as Poisson with parameter

∑
t λit. Thus
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Pr

(∑
t

Yit =
∑
t

yit

∣∣∣Xi

)
=

1
(
∑
t yit)!

exp

{
− exp(αi)

∑
t

exp(xitβ) + αi
∑
t

yit

}{∑
t

exp(xitβ)

}∑
t
yit

So, the conditional likelihood is conditioned on the sum of the outcomes in the set (panel). The
appropriate function is given by

Pr
(
Yi1 = yi1, . . . , Yini = yini

∣∣∣Xi,
∑
t

Yit =
∑
t

yit

)
=[(

ni∏
t=1

exp(xitβ)yit

yit!

)
exp

{
− exp(αi)

∑
t

exp(xitβ) + αi
∑
t

yit

}]/
 1

(
∑
t yit)!

exp

{
− exp(αi)

∑
t

exp(xitβ) + αi
∑
t

yit

}{∑
t

exp(xitβ)

}∑
t
yit


=

(∑
t

yit

)
!
ni∏
t=1

exp(xitβ)yit

yit! {
∑
k exp(xikβ)}yit

which is free of αi.

The conditional log likelihood is given by

L = log
n∏
i=1

[(
ni∑
t=1

yit

)
!
ni∏
t=1

exp(xitβ)yit

yit! {
∑n`
`=1 exp(xi`β)}yit

]wi

= log
n∏
i=1

{
(
∑
t yit)!∏ni

t=1 yit!

ni∏
t=1

pyitit

}wi

=
n∑
i=1

wi

{
log Γ

(
ni∑
t=1

yit + 1

)
−

ni∑
t=1

log Γ(yit + 1) +
ni∑
t=1

yit log pit

}
where

pit = exitβ
/∑

`

exi`β



xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models 411

References
Allison, P. D. 2009. Fixed Effects Regression Models. Newbury Park, CA: Sage.

Baltagi, B. H. 2008. Econometric Analysis of Panel Data. 4th ed. New York: Wiley.

. 2009. A Companion to Econometric Analysis of Panel Data. Chichester, UK: Wiley.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge: Cambridge University
Press.

Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Hardin, J. W., and J. M. Hilbe. 2007. Generalized Linear Models and Extensions. 2nd ed. College Station, TX: Stata
Press.

Hausman, J. A., B. H. Hall, and Z. Griliches. 1984. Econometric models for count data with an application to the
patents–R & D relationship. Econometrica 52: 909–938.

Liang, K.-Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73:
13–22.

Liu, Q., and D. A. Pierce. 1994. A note on Gauss–Hermite quadrature. Biometrika 81: 624–629.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall/CRC.

Naylor, J. C., and A. F. M. Smith. 1982. Applications of a method for the efficient computation of posterior
distributions. Journal of the Royal Statistical Society, Series C 31: 214–225.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and
Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Wooldridge, J. M. 1999. Distribution-free estimation of some nonlinear panel data models. Journal of Econometrics
90: 77–97.

Also see
[XT] xtpoisson postestimation — Postestimation tools for xtpoisson
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Title

xtpoisson postestimation — Postestimation tools for xtpoisson

Description
The following postestimation commands are available after xtpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after xtpoisson, pa.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
Random-effects (RE) and fixed-effects (FE) models

predict
[

type
]

newvar
[

if
] [

in
] [

, RE/FE statistic nooffset
]

Population-averaged (PA) model

predict
[

type
]

newvar
[

if
] [

in
] [

, PA statistic nooffset
]

412
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RE/FE statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
nu0 predicted number of events; assumes fixed or random effect is zero
iru0 predicted incidence rate; assumes fixed or random effect is zero
pr0(n) probability Pr(yj = n) assuming the random effect is zero;

only allowed after xtpoisson, re

pr0(a,b) probability Pr(a ≤ yj ≤ b) assuming the random effect is zero;
only allowed after xtpoisson, re

PA statistic Description

Main

mu predicted number of events; considers the offset(); the default
rate predicted number of events
xb linear prediction
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb calculates the linear prediction. This is the default for the random-effects and fixed-effects models.

mu and rate both calculate the predicted number of events. mu takes into account the offset(), and
rate ignores those adjustments. mu and rate are equivalent if you did not specify offset(). mu
is the default for the population-averaged model.

stdp calculates the standard error of the linear prediction.

nu0 calculates the predicted number of events, assuming a zero random or fixed effect.

iru0 calculates the predicted incidence rate, assuming a zero random or fixed effect.

pr0(n) calculates the probability Pr(yj = n) assuming the random effect is zero, where n is a
nonnegative integer that may be specified as a number or a variable (only allowed after xtpoisson,
re).
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pr0(a,b) calculates the probability Pr(a ≤ yj ≤ b) assuming the random effect is zero, where a
and b are nonnegative integers that may be specified as numbers or variables (only allowed after
xtpoisson, re);

b missing (b ≥ .) means +∞;
pr0(20,.) calculates Pr(yj ≥ 20);
pr0(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr0(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr0(a,b).

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable (only allowed after xtpoisson, pa).

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b) (only allowed after xtpoisson, pa). The syntax
for this option is analogous to that used with pr0(a,b).

score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for xtpoisson. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as xitβ rather than xitβ+ offsetit.

Remarks

Example 1

In example 1 of [XT] xtpoisson, we fit a random-effects model of the number of accidents
experienced by five different types of ships on the basis of when the ships were constructed and
operated. Here we obtain the predicted number of accidents for each observation, assuming that the
random effect for each panel is zero:

. use http://www.stata-press.com/data/r12/ships

. xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exposure(service) irr

(output omitted )
. predict n_acc, nu0
(6 missing values generated)

. summarize n_acc

Variable Obs Mean Std. Dev. Min Max

n_acc 34 13.52307 23.15885 .0617592 83.31905

From these results, you may be tempted to conclude that some types of ships are safe, with a predicted
number of accidents close to zero, whereas others are dangerous, because 1 observation is predicted
to have more than 83 accidents.

However, when we fit the model, we specified the exposure(service) option. The variable
service records the total number of months of operation for each type of ship constructed in and
operated during particular years. Because ships experienced different utilization rates and thus were
exposed to different levels of accident risk, we included service as our exposure variable. When
comparing different types of ships, we must therefore predict the number of accidents, assuming that
all ships faced the same exposure to risk. To do that, we use the iru0 option with predict:
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. predict acc_rate, iru0

. summarize acc_rate

Variable Obs Mean Std. Dev. Min Max

acc_rate 40 .002975 .0010497 .0013724 .0047429

These results show that if each ship were used for 1 month, the expected number of accidents is
0.002975. Depending on the type of ship and years of construction and operation, the incidence rate
of accidents ranges from 0.00137 to 0.00474.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The probabilities calculated using the pr0(n) option are the probability Pr(yit = n) for a RE
model assuming the random effect is zero. Define µit = exp(xitβ + offsetit). The probabilities in
pr0(n) are calculated as the probability that yit = n, where yit has a Poisson distribution with mean
µit. Specifically,

Pr(yit = n) = (n!)−1 exp(−µit)(µit)n

Probabilities calculated using the pr(n) option after fitting a PA model are also calculated as
described above.

Also see
[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[U] 20 Estimation and postestimation commands



Title

xtprobit — Random-effects and population-averaged probit models

Syntax
Random-effects (RE) model

xtprobit depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, re RE options
]

Population-averaged (PA) model

xtprobit depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, pa

[
PA options

]
RE options Description

Model

noconstant suppress constant term
re use random-effects estimator; the default
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform overall model test as a likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intmethod(intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod(mvaghermite)

intpoints(#) use # quadrature points; default is intpoints(12)

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

416
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PA options Description

Model

noconstant suppress constant term
pa use population-averaged estimator
offset(varname) include varname in model with coefficient constrained to 1

Correlation

corr(correlation) within-group correlation structure
force estimate even if observations unequally spaced in time

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
scale(parm) overrides the default scale parameter;

parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

A panel variable must be specified. For xtprobit, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed in

the random-effects model; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Binary outcomes > Probit regression (RE, PA)

Description
xtprobit fits random-effects and population-averaged probit models. There is no command for a

conditional fixed-effects model, as there does not exist a sufficient statistic allowing the fixed effects
to be conditioned out of the likelihood. Unconditional fixed-effects probit models may be fit with
the probit command with indicator variables for the panels. However, unconditional fixed-effects
estimates are biased.

By default, the population-averaged model is an equal-correlation model; xtprobit, pa assumes
corr(exchangeable). See [XT] xtgee for information about how to fit other population-averaged
models.

See [R] logistic for a list of related estimation commands.

Options for RE model

� � �
Model �

noconstant; see [R] estimation options.

re requests the random-effects estimator. re is the default if neither re nor pa is specified.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#), noskip; see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod), intpoints(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xtprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Options for PA model� � �
Model �

noconstant; see [R] estimation options.

pa requests the population-averaged estimator.

offset(varname); see [R] estimation options.

� � �
Correlation �

corr(correlation), force; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
xtprobit is a convenience command for obtaining the population-averaged model. Typing

. xtprobit . . ., pa . . .

is equivalent to typing
. xtgee . . ., . . . family(binomial) link(probit) corr(exchangeable)

See also [XT] xtgee for information about xtprobit.
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By default or when re is specified, xtprobit fits via maximum likelihood the random-effects
model

Pr(yit 6= 0|xit) = Φ(xitβ+ νi)

for i = 1, . . . , n panels, where t = 1, . . . , ni, νi are i.i.d., N(0, σ2
ν), and Φ is the standard normal

cumulative distribution function.

Underlying this model is the variance components model

yit 6= 0 ⇐⇒ xitβ+ νi + εit > 0

where εit are i.i.d. Gaussian distributed with mean zero and variance σ2
ε = 1, independently of νi.

Example 1

We are studying unionization of women in the United States and are using the union dataset; see
[XT] xt. We wish to fit a random-effects model of union membership:

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtprobit union age grade i.not_smsa south##c.year

Fitting comparison model:

Iteration 0: log likelihood = -13864.23
Iteration 1: log likelihood = -13545.541
Iteration 2: log likelihood = -13544.385
Iteration 3: log likelihood = -13544.385

Fitting full model:

rho = 0.0 log likelihood = -13544.385
rho = 0.1 log likelihood = -12237.655
rho = 0.2 log likelihood = -11590.282
rho = 0.3 log likelihood = -11211.185
rho = 0.4 log likelihood = -10981.319
rho = 0.5 log likelihood = -10852.793
rho = 0.6 log likelihood = -10808.759
rho = 0.7 log likelihood = -10865.57

Iteration 0: log likelihood = -10807.712
Iteration 1: log likelihood = -10599.332
Iteration 2: log likelihood = -10552.287
Iteration 3: log likelihood = -10552.225
Iteration 4: log likelihood = -10552.225
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Random-effects probit regression Number of obs = 26200
Group variable: idcode Number of groups = 4434

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12

Wald chi2(6) = 220.91
Log likelihood = -10552.225 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0082967 .0084599 0.98 0.327 -.0082843 .0248778
grade .0482731 .0099469 4.85 0.000 .0287776 .0677686

1.not_smsa -.139657 .0460548 -3.03 0.002 -.2299227 -.0493913
1.south -1.584394 .358473 -4.42 0.000 -2.286989 -.8818002

year -.0039854 .0088399 -0.45 0.652 -.0213113 .0133406

south#c.year
1 .0134017 .0044622 3.00 0.003 .0046559 .0221475

_cons -1.668202 .4751819 -3.51 0.000 -2.599542 -.7368628

/lnsig2u .6103616 .0458783 .5204418 .7002814

sigma_u 1.35687 .0311255 1.297217 1.419267
rho .6480233 .0104643 .6272511 .6682502

Likelihood-ratio test of rho=0: chibar2(01) = 5984.32 Prob >= chibar2 = 0.000

The output includes the additional panel-level variance component, which is parameterized as the log
of the variance ln(σ2

ν) (labeled lnsig2u in the output). The standard deviation σν is also included
in the output (labeled sigma u) together with ρ (labeled rho), where

ρ =
σ2
ν

σ2
ν + 1

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is
not different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of
the output. This test formally compares the pooled estimator (probit) with the panel estimator.

Technical note
The random-effects model is calculated using quadrature, which is an approximation whose accuracy

depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number of
integration points using the intpoints() option and run quadchk again. Do not attempt to interpret
the results of estimates when the coefficients reported by quadchk differ substantially.
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points

Log -10552.225 -10554.496 -10552.399
likelihood -2.2712569 -.17396615 Difference

.00021524 .00001649 Relative difference

union: .00829671 .00828745 .00831488
age -9.265e-06 .00001817 Difference

-.0011167 .00218987 Relative difference

union: .0482731 .04860277 .04826287
grade .00032967 -.00001023 Difference

.00682917 -.00021188 Relative difference

union: -.13965702 -.14057441 -.13953521
1.not_smsa -.00091739 .00012181 Difference

.00656891 -.00087218 Relative difference

union: -1.5843944 -1.5909857 -1.5843375
1.south -.00659135 .00005689 Difference

.00416017 -.00003591 Relative difference

union: -.00398535 -.00397811 -.00400181
year 7.237e-06 -.00001646 Difference

-.00181578 .00412982 Relative difference

union: .01340169 .01344457 .01340388
1.south#c.year .00004288 2.193e-06 Difference

.00319946 .0001636 Relative difference

union: -1.6682022 -1.6757524 -1.6665327
_cons -.00755024 .00166948 Difference

.00452597 -.00100077 Relative difference

lnsig2u: .61036163 .61780789 .60974814
_cons .00744626 -.00061349 Difference

.01219976 -.00100513 Relative difference

The results obtained for 12 quadrature points were closer to the results for 16 points than to the
results for eight points. Although the relative and absolute differences are a bit larger than we would
like, they are not large. We can increase the number of quadrature points with the intpoints()
option; if we choose intpoints(20) and do another quadchk we will get acceptable results, with
relative differences around 0.01%.
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This is not the case if we use nonadaptive quadrature. Then the results we obtain are

. xtprobit union age grade i.not_smsa south##c.year, intmethod(ghermite)

Fitting comparison model:

Iteration 0: log likelihood = -13864.23
Iteration 1: log likelihood = -13545.541
Iteration 2: log likelihood = -13544.385
Iteration 3: log likelihood = -13544.385

Fitting full model:

rho = 0.0 log likelihood = -13544.385
rho = 0.1 log likelihood = -12237.655
rho = 0.2 log likelihood = -11590.282
rho = 0.3 log likelihood = -11211.185
rho = 0.4 log likelihood = -10981.319
rho = 0.5 log likelihood = -10852.793
rho = 0.6 log likelihood = -10808.759
rho = 0.7 log likelihood = -10865.57

Iteration 0: log likelihood = -10808.759
Iteration 1: log likelihood = -10594.349
Iteration 2: log likelihood = -10560.913
Iteration 3: log likelihood = -10560.876
Iteration 4: log likelihood = -10560.876

Random-effects probit regression Number of obs = 26200
Group variable: idcode Number of groups = 4434

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12

Wald chi2(6) = 218.99
Log likelihood = -10560.876 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0093488 .0083385 1.12 0.262 -.0069945 .025692
grade .0488014 .0101168 4.82 0.000 .0289728 .06863

1.not_smsa -.1364862 .0462831 -2.95 0.003 -.2271995 -.045773
1.south -1.592711 .3576715 -4.45 0.000 -2.293734 -.8916877

year -.0053723 .0087219 -0.62 0.538 -.0224668 .0117223

south#c.year
1 .0136764 .0044532 3.07 0.002 .0049482 .0224046

_cons -1.575539 .4639881 -3.40 0.001 -2.484939 -.6661388

/lnsig2u .5615976 .0432021 .476923 .6462722

sigma_u 1.324187 .0286038 1.269295 1.381453
rho .6368221 .0099918 .617021 .6561699

Likelihood-ratio test of rho=0: chibar2(01) = 5967.02 Prob >= chibar2 = 0.000

We now check the stability of the quadrature technique for this nonadaptive quadrature model. We
expect it to be less stable.
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points

Log -10560.876 -10574.239 -10555.792
likelihood -13.362535 5.0839579 Difference

.00126529 -.0004814 Relative difference

union: .00934876 .01264615 .00731888
age .0032974 -.00202987 Difference

.35270966 -.21712744 Relative difference

union: .04880139 .05710089 .04432417
grade .00829951 -.00447722 Difference

.17006703 -.09174372 Relative difference

union: -.13648624 -.13327724 -.14094541
1.not_smsa .003209 -.00445917 Difference

-.0235115 .03267123 Relative difference

union: -1.592711 -1.5275627 -1.6059143
1.south .06514823 -.01320331 Difference

-.04090399 .00828983 Relative difference

union: -.00537226 -.00867673 -.00307042
year -.00330447 .00230184 Difference

.61509968 -.4284678 Relative difference

union: .01367641 .01278071 .01369009
1.south#c.year -.0008957 .00001368 Difference

-.06549266 .00100054 Relative difference

union: -1.5755388 -1.4888646 -1.6505526
_cons .08667418 -.0750138 Difference

-.0550124 .04761152 Relative difference

lnsig2u: .56159763 .49290978 .58068904
_cons -.06868786 .0190914 Difference

-.12230795 .03399481 Relative difference

Once again, the results obtained for 12 quadrature points were closer to the results for 16 points
than to the results for eight points. However, here the convergence point seems to be sensitive to the
number of quadrature points, so we should not trust these results. We should increase the number
of quadrature points with the intpoints() option and then use quadchk again. We should not use
the results of a random-effects specification when there is evidence that the numeric technique for
calculating the model is not stable (as shown by quadchk).

Generally, the relative differences in the coefficients should not change by more than 1% if the
quadrature technique is stable. See [XT] quadchk for details. Increasing the number of quadrature
points can often improve the stability, and for models with high rho we may need many. We can
also switch between adaptive and nonadaptive quadrature. As a rule, adaptive quadrature, which is
the default integration method, is much more flexible and robust.
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Because the xtprobit, re likelihood function is calculated by Gauss–Hermite quadrature, on
large problems the computations can be slow. Computation time is roughly proportional to the number
of points used for the quadrature.

Example 2

As an alternative to the random-effects specification, we can fit an equal-correlation probit model:

. xtprobit union age grade i.not_smsa south##c.year, pa

Iteration 1: tolerance = .12544249
Iteration 2: tolerance = .0034686
Iteration 3: tolerance = .00017448
Iteration 4: tolerance = 8.382e-06
Iteration 5: tolerance = 3.997e-07

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 242.57
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0089699 .0053208 1.69 0.092 -.0014586 .0193985
grade .0333174 .0062352 5.34 0.000 .0210966 .0455382

1.not_smsa -.0715717 .027543 -2.60 0.009 -.1255551 -.0175884
1.south -1.017368 .207931 -4.89 0.000 -1.424905 -.6098308

year -.0062708 .0055314 -1.13 0.257 -.0171122 .0045706

south#c.year
1 .0086294 .00258 3.34 0.001 .0035727 .013686

_cons -.8670997 .294771 -2.94 0.003 -1.44484 -.2893592

Example 3

In example 3 of [R] probit, we showed the above results and compared them with probit,
vce(cluster id). xtprobit with the pa option allows a vce(robust) option (the random-effects
estimator does not allow the vce(robust) specification), so we can obtain the population-averaged
probit estimator with the robust variance calculation by typing
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. xtprobit union age grade i.not_smsa south##c.year, pa vce(robust) nolog

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 156.33
Scale parameter: 1 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on idcode)

Semirobust
union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0089699 .0051169 1.75 0.080 -.001059 .0189988
grade .0333174 .0076425 4.36 0.000 .0183383 .0482965

1.not_smsa -.0715717 .0348659 -2.05 0.040 -.1399076 -.0032359
1.south -1.017368 .3026981 -3.36 0.001 -1.610645 -.4240906

year -.0062708 .0055745 -1.12 0.261 -.0171965 .0046549

south#c.year
1 .0086294 .0037866 2.28 0.023 .0012078 .0160509

_cons -.8670997 .3243959 -2.67 0.008 -1.502904 -.2312955

These standard errors are similar to those shown for probit, vce(cluster id) in [R] probit.

Example 4

In a previous example, we showed how quadchk indicated that the quadrature technique was
numerically unstable. Here we present an example in which the quadrature is stable.

In this example, we have (synthetic) data on whether workers complain to managers at fast-food
restaurants. The covariates are age (in years of the worker), grade (years of schooling completed
by the worker), south (equal to 1 if the restaurant is located in the South), tenure (the number
of years spent on the job by the worker), gender (of the worker), race (of the worker), income
(in thousands of dollars by the restaurant), genderm (gender of the manager), burger (equal to 1
if the restaurant specializes in hamburgers), and chicken (equal to 1 if the restaurant specializes in
chicken). The model is given by
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. use http://www.stata-press.com/data/r12/chicken

. xtprobit complain age grade south tenure gender race income genderm burger
> chicken, nolog

Random-effects probit regression Number of obs = 2763
Group variable: restaurant Number of groups = 500

Random effects u_i ~ Gaussian Obs per group: min = 3
avg = 5.5
max = 8

Wald chi2(10) = 126.59
Log likelihood = -1318.2088 Prob > chi2 = 0.0000

complain Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0430409 .0130211 -3.31 0.001 -.0685617 -.01752
grade .0330934 .0264572 1.25 0.211 -.0187618 .0849486
south .1012 .0707196 1.43 0.152 -.037408 .2398079

tenure -.0440079 .0987099 -0.45 0.656 -.2374758 .14946
gender .3318499 .0601382 5.52 0.000 .2139812 .4497185

race .3417901 .0382251 8.94 0.000 .2668703 .4167098
income -.0022702 .0008885 -2.56 0.011 -.0040117 -.0005288

genderm .0524577 .0706585 0.74 0.458 -.0860305 .1909459
burger .0448931 .0956151 0.47 0.639 -.1425091 .2322953

chicken .1904714 .0953067 2.00 0.046 .0036737 .3772691
_cons -.2145311 .6240549 -0.34 0.731 -1.437656 1.008594

/lnsig2u -1.704494 .2502057 -2.194888 -1.214099

sigma_u .4264557 .0533508 .333723 .5449563
rho .1538793 .0325769 .1002105 .2289765

Likelihood-ratio test of rho=0: chibar2(01) = 29.91 Prob >= chibar2 = 0.000

Again we would like to check the stability of the quadrature technique of the model before
interpreting the results. Given the estimate of ρ and the small size of the panels (between 3 and 8),
we should find that the quadrature technique is numerically stable.
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points

Log -1318.2088 -1318.2088 -1318.2088
likelihood -2.002e-06 -1.194e-09 Difference

1.519e-09 9.061e-13 Relative difference

complain: -.04304086 -.04304086 -.04304086
age -3.896e-10 -2.625e-12 Difference

9.051e-09 6.100e-11 Relative difference

complain: .0330934 .0330934 .0330934
grade 2.208e-11 1.867e-12 Difference

6.673e-10 5.643e-11 Relative difference

complain: .10119998 .10119999 .10119998
south 2.369e-09 3.957e-11 Difference

2.341e-08 3.910e-10 Relative difference

complain: -.04400789 -.0440079 -.04400789
tenure -3.362e-09 -2.250e-11 Difference

7.640e-08 5.114e-10 Relative difference

complain: .33184986 .33184986 .33184986
gender 3.190e-09 2.546e-11 Difference

9.612e-09 7.673e-11 Relative difference

complain: .34179006 .34179007 .34179006
race 3.801e-09 2.990e-11 Difference

1.112e-08 8.749e-11 Relative difference

complain: -.00227021 -.00227021 -.00227021
income -4.468e-11 -9.252e-13 Difference

1.968e-08 4.075e-10 Relative difference

complain: .05245769 .05245769 .05245769
genderm 1.963e-09 4.481e-11 Difference

3.742e-08 8.542e-10 Relative difference

complain: .04489311 .04489311 .04489311
burger 4.173e-10 6.628e-12 Difference

9.296e-09 1.476e-10 Relative difference

complain: .19047138 .19047139 .19047138
chicken 3.096e-09 4.916e-11 Difference

1.625e-08 2.581e-10 Relative difference

complain: -.21453112 -.21453111 -.21453112
_cons 1.281e-08 2.682e-10 Difference

-5.972e-08 -1.250e-09 Relative difference

lnsig2u: -1.7044935 -1.7044934 -1.7044935
_cons 1.255e-07 -4.135e-10 Difference

-7.365e-08 2.426e-10 Relative difference
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The relative and absolute differences are all small between the default 12 quadrature points and the
result with 16 points. We do not have any coefficients that have a large difference between the default
12 quadrature points and eight quadrature points.

We conclude that the quadrature technique is stable. Because the differences here are so small, we
would plan on using and interpreting these results rather than trying to rerun with more quadrature
points.

Saved results
xtprobit, re saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N cd) number of completely determined observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(rho) ρ

e(sigma u) panel-level standard deviation
e(n quad) number of quadrature points
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtprobit, pa saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code

Macros
e(cmd) xtgee
e(cmd2) xtprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(family) binomial
e(link) probit; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(nmp) nmp, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
xtprobit is implemented as an ado-file.

xtprobit reports the population-averaged results obtained by using xtgee, family(binomial)
link(probit) to obtain estimates.
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Assuming a normal distribution, N(0, σ2
ν), for the random effects νi

Pr(yi1, . . . , yini |xi1, . . . ,xini) =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

where

F (y, z) =
{

Φ(z) if y 6= 0
1− Φ(z) otherwise

where Φ is the cumulative normal distribution.

The panel-level likelihood li is given by

li =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}
dνi

≡
∫ ∞
−∞

g(yit, xit, νi)dνi

This integral can be approximated with M -point Gauss–Hermite quadrature

∫ ∞
−∞

e−x
2
h(x)dx ≈

M∑
m=1

w∗mh(a∗m)

This is equivalent to ∫ ∞
−∞

f(x)dx ≈
M∑
m=1

w∗m exp
{

(a∗m)2
}
f(a∗m)

where the w∗m denote the quadrature weights and the a∗m denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods li.

The default approximation of the log likelihood is by adaptive Gauss–Hermite quadrature, which
approximates the panel-level likelihood with

li ≈
√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}
g(yit, xit,

√
2σ̂ia∗m + µ̂i)

where σ̂i and µ̂i are the adaptive parameters for panel i. Therefore, with the definition of g(yit, xit, νi),
the total log likelihood is approximated by
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L ≈
n∑
i=1

wi log
[√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}exp

{
−(
√

2σ̂ia∗m + µ̂i)2/2σ2
ν

}
√

2πσν

ni∏
t=1

F (yit, xitβ+
√

2σ̂ia∗m + µ̂i)
]

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for µ̂i and σ̂i by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with σ̂i,0 = 1 and µ̂i,0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for li, we use

li,k ≈
M∑
m=1

√
2σ̂i,k−1w

∗
m exp

{
a∗m)2

}
g(yit, xit,

√
2σ̂i,k−1a

∗
m + µ̂i,k−1)

Letting
τi,m,k−1 =

√
2σ̂i,k−1a

∗
m + µ̂i,k−1

µ̂i,k =
M∑
m=1

(τi,m,k−1)

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k

and

σ̂i,k =
M∑
m=1

(τi,m,k−1)2

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yit, xit, τi,m,k−1)

li,k
− (µ̂i,k)2

and this is repeated until µ̂i,k and σ̂i,k have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method(aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

g(yit, xit, νi) =
e−ν

2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yit,xitβ+ νi)

}

and find αi the mode of g(yit, xit, νi). We calculate

γi = − ∂2

∂ν2
i

log{g(yit, xit, νi)}
∣∣
νi=αi
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Then∫ ∞
−∞

g(yit, xit, νi)dνi ≈
(

2
γi

)1/2 M∑
m=1

w∗m exp
{

(a∗m)2
}
g

{
yit, xit,

(
2
γi

)1/2

a∗m + αi

}

This adaptation is performed on the first iteration only; that is, the αi and γi are calculated once at
the first iteration and then held constant throughout the subsequent iterations.

The log likelihood can also be calculated by nonadaptive Gauss–Hermite quadrature, the int-
method(ghermite) option, where ρ = σ2

ν/(σ
2
ν + 1):

L =
n∑
i=1

wi log
{

Pr(yi1, . . . , yini |xi1, . . . ,xini)
}

≈
n∑
i=1

wi log

[
1√
π

M∑
m=1

w∗m

ni∏
t=1

F

{
yit,xitβ+ a∗m

(
2ρ

1− ρ

)1/2
}]

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

ni∏
t=1

F (yit,xitβ+ νi)

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can
become less accurate. For large ρ, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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Title

xtprobit postestimation — Postestimation tools for xtprobit

Description
The following postestimation commands are available after xtprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after xtprobit, pa.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
Random-effects model

predict
[

type
]

newvar
[

if
] [

in
] [

, RE statistic nooffset
]

Population-averaged model

predict
[

type
]

newvar
[

if
] [

in
] [

, PA statistic nooffset
]

RE statistic Description

Main

xb linear prediction; the default
pu0 probability of a positive outcome
stdp standard error of the linear prediction

436
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PA statistic Description

Main

mu probability of depvar; considers the offset(); the default
rate probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb calculates the linear prediction. This is the default for the random-effects model.

pu0 calculates the probability of a positive outcome, assuming that the random effect for that
observation’s panel is zero (ν = 0). This probability may not be similar to the proportion of
observed outcomes in the group.

stdp calculates the standard error of the linear prediction.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset(),
and rate ignores those adjustments. mu and rate are equivalent if you did not specify offset().
mu is the default for the population-averaged model.

score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for xtprobit. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
xitβ rather than xitβ+ offsetit.

Remarks

Example 1

In example 2 of [XT] xtprobit, we fit a population-averaged model of union status on the woman’s
age and level of schooling, whether she lived in an urban area, whether she lived in the south, and the
year observed. Here we compute the average marginal effects from that fitted model on the probability
of being in a union.

. use http://www.stata-press.com/data/r12/union
(NLS Women 14-24 in 1968)

. xtprobit union age grade i.not_smsa south##c.year, pa

(output omitted )
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. margins, dydx(*)

Average marginal effects Number of obs = 26200
Model VCE : Conventional

Expression : Pr(union != 0), predict()
dy/dx w.r.t. : age grade 1.not_smsa 1.south year

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age .0025337 .0015035 1.69 0.092 -.0004132 .0054805
grade .0094109 .0017566 5.36 0.000 .005968 .0128537

1.not_smsa -.0199744 .0075879 -2.63 0.008 -.0348464 -.0051023
1.south -.0910805 .0073315 -12.42 0.000 -.10545 -.076711

year -.000938 .0015413 -0.61 0.543 -.0039589 .0020828

Note: dy/dx for factor levels is the discrete change from the base level.

On average, not living in a metropolitan area (not smsa = 0) lowers the probability of being in a
union by about two percentage points.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xtprobit — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands



Title

xtrc — Random-coefficients model

Syntax

xtrc depvar indepvars
[

if
] [

in
] [

, options
]

options Description

Main

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

betas display group-specific best linear predictors
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

A panel variable must be specified; use xtset; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Random-coefficients regression by GLS

Description
xtrc fits the Swamy (1970) random-coefficients linear regression model.

Options

� � �
Main �

noconstant, offset(varname); see [R] estimation options

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.
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vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

betas requests that the group-specific best linear predictors also be displayed.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtrc but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
In random-coefficients models, we wish to treat the parameter vector as a realization (in each panel)

of a stochastic process. xtrc fits the Swamy (1970) random-coefficients model, which is suitable for
linear regression of panel data. See Greene (2012, chap. 11) and Poi (2003) for more information
about this and other panel-data models.

Example 1

Greene (2012, 1112) reprints data from a classic study of investment demand by Grunfeld and
Griliches (1960). In [XT] xtgls, we use this dataset to illustrate many of the possible models that may be
fit with the xtgls command. Although the models included in the xtgls command offer considerable
flexibility, they all assume that there is no parameter variation across firms (the cross-sectional units).

To take a first look at the assumption of parameter constancy, we should reshape our data so
that we may fit a simultaneous-equation model with sureg; see [R] sureg. Because there are only
five panels here, this is not too difficult.

. use http://www.stata-press.com/data/r12/invest2

. reshape wide invest market stock, i(time) j(company)
(note: j = 1 2 3 4 5)

Data long -> wide

Number of obs. 100 -> 20
Number of variables 5 -> 16
j variable (5 values) company -> (dropped)
xij variables:

invest -> invest1 invest2 ... invest5
market -> market1 market2 ... market5
stock -> stock1 stock2 ... stock5

. sureg (invest1 market1 stock1) (invest2 market2 stock2) (invest3 market3 stock3)
> (invest4 market4 stock4) (invest5 market5 stock5)

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

invest1 20 2 84.94729 0.9207 261.32 0.0000
invest2 20 2 12.36322 0.9119 207.21 0.0000
invest3 20 2 26.46612 0.6876 46.88 0.0000
invest4 20 2 9.742303 0.7264 59.15 0.0000
invest5 20 2 95.85484 0.4220 14.97 0.0006



xtrc — Random-coefficients model 441

Coef. Std. Err. z P>|z| [95% Conf. Interval]

invest1
market1 .120493 .0216291 5.57 0.000 .0781007 .1628853
stock1 .3827462 .032768 11.68 0.000 .318522 .4469703
_cons -162.3641 89.45922 -1.81 0.070 -337.7009 12.97279

invest2
market2 .0695456 .0168975 4.12 0.000 .0364271 .1026641
stock2 .3085445 .0258635 11.93 0.000 .2578529 .3592362
_cons .5043112 11.51283 0.04 0.965 -22.06042 23.06904

invest3
market3 .0372914 .0122631 3.04 0.002 .0132561 .0613268
stock3 .130783 .0220497 5.93 0.000 .0875663 .1739997
_cons -22.43892 25.51859 -0.88 0.379 -72.45443 27.57659

invest4
market4 .0570091 .0113623 5.02 0.000 .0347395 .0792788
stock4 .0415065 .0412016 1.01 0.314 -.0392472 .1222602
_cons 1.088878 6.258805 0.17 0.862 -11.17815 13.35591

invest5
market5 .1014782 .0547837 1.85 0.064 -.0058958 .2088523
stock5 .3999914 .1277946 3.13 0.002 .1495186 .6504642
_cons 85.42324 111.8774 0.76 0.445 -133.8525 304.6989

Here we instead fit a random-coefficients model:

. use http://www.stata-press.com/data/r12/invest2

. xtrc invest market stock

Random-coefficients regression Number of obs = 100
Group variable: company Number of groups = 5

Obs per group: min = 20
avg = 20.0
max = 20

Wald chi2(2) = 17.55
Prob > chi2 = 0.0002

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .0807646 .0250829 3.22 0.001 .0316031 .1299261
stock .2839885 .0677899 4.19 0.000 .1511229 .4168542
_cons -23.58361 34.55547 -0.68 0.495 -91.31108 44.14386

Test of parameter constancy: chi2(12) = 603.99 Prob > chi2 = 0.0000

Just as the results of our simultaneous-equation model do not support the assumption of parameter
constancy, the test included with the random-coefficients model also indicates that the assumption is
not valid for these data. With large panel datasets, we would not want to take the time to look at a
simultaneous-equations model (aside from the fact that our doing so was subjective).



442 xtrc — Random-coefficients model

Saved results
xtrc saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(df chi2c) degrees of freedom for comparison χ2 test
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)

Macros
e(cmd) xtrc
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(title) title in estimation output
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Sigma) Σ̂ matrix
e(beta ps) matrix of best linear predictors
e(V) variance–covariance matrix of the estimators
e(V ps) matrix of variances for the best linear predictors; row i contains vec of

variance matrix for group i predictor
Functions

e(sample) marks estimation sample

Methods and formulas
xtrc is implemented as an ado-file.

In a random-coefficients model, the parameter heterogeneity is treated as stochastic variation.
Assume that we write

yi = Xiβi + εi

where i = 1, . . . ,m, and βi is the coefficient vector (k× 1) for the ith cross-sectional unit, such that

βi = β+ νi E(νi) = 0 E(νiν′i) = Σ

Our goal is to find β̂ and Σ̂.
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The derivation of the estimator assumes that the cross-sectional specific coefficient vector βi is
the outcome of a random process with mean vector β and covariance matrix Σ,

yi = Xiβi + εi = Xi(β+ νi) + εi = Xiβ+ (Xiνi + εi) = Xiβ+ ωi

where E(ωi) = 0 and

E(ωiω′i) = E
{

(Xiνi + εi)(Xiνi + εi)′
}

= E(εiε′i) + XiE(νiν′i)X
′
i = σ2

i I + XiΣ X′i = Πi

Stacking the m equations, we have
y = Xβ+ ω

where Π ≡ E(ωω′) is a block diagonal matrix with Πi, i = 1...m, along the main diagonal and
zeros elsewhere. The GLS estimator of β̂ is then

β̂ =

(∑
i

X′iΠ
−1
i Xi

)−1∑
i

X′iΠ
−1
i yi =

m∑
i=1

Wibi

where

Wi =

{
m∑
i=1

(Σ + Vi)−1

}−1

(Σ + Vi)−1

bi = (X′iXi)
−1 X′iyi and Vi = σ2

i (X′iXi)
−1, showing that the resulting GLS estimator is a

matrix-weighted average of the panel-specific OLS estimators. The variance of β̂ is

Var(β̂) =
m∑
i=1

(Σ + Vi)−1

To calculate the above estimator β̂ for the unknown Σ and Vi parameters, we use the two-step
approach suggested by Swamy (1970):

bi = OLS panel-specific estimator

σ̂2
i =

ε̂′iε̂i

ni − k
V̂i = σ̂2

i (X′iXi)
−1

b =
1
m

m∑
i=1

bi

Σ̂ =
1

m− 1

(
m∑
i=1

bib′i −mb b
′
)
− 1
m

m∑
i=1

V̂i

The two-step procedure begins with the usual OLS estimates of βi. With those estimates, we may
proceed by obtaining estimates of V̂i and Σ̂ (and thus Ŵi) and then obtain an estimate of β.

Swamy (1970) further points out that the matrix Σ̂ may not be positive definite and that because
the second term is of order 1/(mT ), it is negligible in large samples. A simple and asymptotically
expedient solution is simply to drop this second term and instead use

Σ̂ =
1

m− 1

(
m∑
i=1

bib′i −mb b
′
)
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As discussed by Judge et al. (1985, 541), the feasible best linear predictor of βi is given by

β̂i = β̂+ Σ̂X′i
(
XiΣ̂X′i + σ̂2

i I
)−1 (

yi −Xiβ̂
)

=
(
Σ̂
−1

+ V̂−1
i

)−1 (
Σ̂
−1
β̂+ V̂−1

i bi
)

The conventional variance of β̂i is given by

Var(β̂i) = Var(β̂) + (I−Ai)
{

V̂i −Var(β̂)
}

(I−Ai)
′

where

Ai =
(
Σ̂
−1

+ V̂−1
i

)−1

Σ̂
−1

To test the model, we may look at the difference between the OLS estimate of β, ignoring the
panel structure of the data and the matrix-weighted average of the panel-specific OLS estimators. The
test statistic suggested by Swamy (1970) is given by

χ2
k(m−1) =

m∑
i=1

(bi − β
∗
)′V̂−1

i (bi − β
∗
) where β

∗
=

(
m∑
i=1

V̂−1
i

)−1 m∑
i=1

V̂−1
i bi

Johnston and DiNardo (1997) have shown that the test is algebraically equivalent to testing

H0 : β1 = β2 = · · · = βm

in the generalized (groupwise heteroskedastic) xtgls model, where V is block diagonal with ith
diagonal element Πi.
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Also see
[XT] xtrc postestimation — Postestimation tools for xtrc

[XT] xtmixed — Multilevel mixed-effects linear regression

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands
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Title

xtrc postestimation — Postestimation tools for xtrc

Description
The following postestimation commands are available after xtrc:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combination

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
group(group) linear prediction based on group group

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction using the mean parameter vector.

stdp calculates the standard error of the linear prediction.

group(group) calculates the linear prediction using the best linear predictors for group group.

nooffset is relevant only if you specified offset(varname) for xtrc. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xitb
rather than xitb + offsetit.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xtrc — Random-coefficients model

[U] 20 Estimation and postestimation commands



Title

xtreg — Fixed-, between-, and random-effects and population-averaged linear models

Syntax
GLS random-effects (RE) model

xtreg depvar
[

indepvars
] [

if
] [

in
] [

, re RE options
]

Between-effects (BE) model

xtreg depvar
[

indepvars
] [

if
] [

in
]
, be

[
BE options

]
Fixed-effects (FE) model

xtreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, fe

[
FE options

]
ML random-effects (MLE) model

xtreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, mle

[
MLE options

]
Population-averaged (PA) model

xtreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, pa

[
PA options

]
RE options Description

Model

re use random-effects estimator; the default
sa use Swamy–Arora estimator of the variance components

SE/Robust

vce(vcetype) vcetype may be conventional, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

theta report θ
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics
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BE options Description

Model

be use between-effects estimator
wls use weighted least squares

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics

FE options Description

Model

fe use fixed-effects estimator

SE/Robust

vce(vcetype) vcetype may be conventional, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics
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MLE options Description

Model

noconstant suppress constant term
mle use ML random-effects estimator

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

PA options Description

Model

noconstant suppress constant term
pa use population-averaged estimator
offset(varname) include varname in model with coefficient constrained to 1

Correlation

corr(correlation) within-group correlation structure
force estimate even if observations unequally spaced in time

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
rgf multiply the robust variance estimate by (N − 1)/(N − P )
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics
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correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

A panel variable must be specified. For xtreg, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
aweights, fweights, and pweights are allowed for the fixed-effects model. iweights, fweights, and pweights

are allowed for the population-averaged model. iweights are allowed for the maximum-likelihood
random-effects (MLE) model. See [U] 11.1.6 weight. Weights must be constant within panel.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Linear models > Linear regression (FE, RE, PA, BE)

Description
xtreg fits regression models to panel data. In particular, xtreg with the be option fits random-

effects models by using the between regression estimator; with the fe option, it fits fixed-effects
models (by using the within regression estimator); and with the re option, it fits random-effects
models by using the GLS estimator (producing a matrix-weighted average of the between and within
results). See [XT] xtdata for a faster way to fit fixed- and random-effects models.

Options for RE model

� � �
Model �

re, the default, requests the GLS random-effects estimator.

sa specifies that the small-sample Swamy–Arora estimator individual-level variance component be
used instead of the default consistent estimator. See xtreg, re in Methods and formulas for details.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Specifying vce(robust) is equivalent to specifying vce(cluster panelvar); see xtreg, re in
Methods and formulas.
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� � �
Reporting �

level(#); see [R] estimation options.

theta, used with xtreg, re only, specifies that the output include the estimated value of θ used
in combining the between and fixed estimators. For balanced data, this is a constant, and for
unbalanced data, a summary of the values is presented in the header of the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for BE model

� � �
Model �

be requests the between regression estimator.

wls specifies that, for unbalanced data, weighted least squares be used rather than the default OLS.
Both methods produce consistent estimates. The true variance of the between-effects residual is
σ2
ν + Tiσ

2
ε (see xtreg, be in Methods and formulas below). WLS produces a “stabilized” variance

of σ2
ν/Ti + σ2

ε , which is also not constant. Thus the choice between OLS and WLS amounts to
which is more stable.

Comment: xtreg, be is rarely used anyway, but between estimates are an ingredient in the random-
effects estimate. Our implementation of xtreg, re uses the OLS estimates for this ingredient,
based on our judgment that σ2

ν is large relative to σ2
ε in most models. Formally, only a consistent

estimate of the between estimates is required.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for FE model

� � �
Model �

fe requests the fixed-effects (within) regression estimator.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Specifying vce(robust) is equivalent to specifying vce(cluster panelvar); see xtreg, fe in
Methods and formulas.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for MLE model

� � �
Model �

noconstant; see [R] estimation options.

mle requests the maximum-likelihood random-effects estimator.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, trace, tolerance(#), ltolerance(#), and

from(init specs); see [R] maximize. These options are seldom used.

The following option is available with xtreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for PA model

� � �
Model �

noconstant; see [R] estimation options.
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pa requests the population-averaged estimator. For linear regression, this is the same as a random-effects
estimator (both interpretations hold).

xtreg, pa is equivalent to xtgee, family(gaussian) link(id) corr(exchangeable), which
are the defaults for the xtgee command. xtreg, pa allows all the relevant xtgee options such
as vce(robust). Whether you use xtreg, pa or xtgee makes no difference. See [XT] xtgee.

offset(varname); see [R] estimation options.

� � �
Correlation �

corr(correlation), force; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, and that use bootstrap
or jackknife methods; see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp; see [XT] vce options.

rgf specifies that the robust variance estimate is multiplied by (N − 1)/(N − P ), where N is the
total number of observations and P is the number of coefficients estimated. This option can be
used with family(gaussian) only when vce(robust) is either specified or implied by the use
of pweights. Using this option implies that the robust variance estimate is not invariant to the
scale of any weights used.

scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

nolog suppresses display of the iteration log.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
If you have not read [XT] xt, please do so.

See Baltagi (2008, chap. 2) and Wooldridge (2009, chap. 14) for good overviews of fixed-effects and
random-effects models. Allison (2009) provides perspective on the use of fixed- versus random-effects
estimators and provides many examples using Stata.

Consider fitting models of the form

yit = α+ xitβ+ νi + εit (1)

In this model, νi + εit is the residual that we have little interest in; we want estimates of β. νi is
the unit-specific residual; it differs between units, but for any particular unit, its value is constant. In
the pulmonary data of [XT] xt, a person who exercises less would presumably have a lower forced
expiratory volume (FEV) year after year and so would have a negative νi.

εit is the “usual” residual with the usual properties (mean 0, uncorrelated with itself, uncorrelated
with x, uncorrelated with ν, and homoskedastic), although in a more thorough development, we could
decompose εit = υt + ωit, assume that ωit is a standard residual, and better describe υt.

Before making the assumptions necessary for estimation, let’s perform some useful algebra on (1).
Whatever the properties of νi and εit, if (1) is true, it must also be true that

yi = α+ xiβ+ νi + εi (2)

where yi =
∑
t yit/Ti, xi =

∑
t xit/Ti, and εi =

∑
t εit/Ti. Subtracting (2) from (1), it must be

equally true that
(yit − yi) = (xit − xi)β+ (εit − εi) (3)

These three equations provide the basis for estimating β. In particular, xtreg, fe provides what is
known as the fixed-effects estimator—also known as the within estimator—and amounts to using
OLS to perform the estimation of (3). xtreg, be provides what is known as the between estimator
and amounts to using OLS to perform the estimation of (2). xtreg, re provides the random-effects
estimator and is a (matrix) weighted average of the estimates produced by the between and within
estimators. In particular, the random-effects estimator turns out to be equivalent to estimation of

(yit − θyi) = (1− θ)α+ (xit − θxi)β+ {(1− θ)νi + (εit − θεi)} (4)

where θ is a function of σ2
ν and σ2

ε . If σ2
ν = 0, meaning that νi is always 0, θ = 0 and (1) can

be estimated by OLS directly. Alternatively, if σ2
ε = 0, meaning that εit is 0, θ = 1 and the within

estimator returns all the information available (which will, in fact, be a regression with an R2 of 1).

For more reasonable cases, few assumptions are required to justify the fixed-effects estimator of
(3). The estimates are, however, conditional on the sample in that the νi are not assumed to have
a distribution but are instead treated as fixed and estimable. This statistical fine point can lead to
difficulty when making out-of-sample predictions, but that aside, the fixed-effects estimator has much
to recommend it.

More is required to justify the between estimator of (2), but the conditioning on the sample is not
assumed because νi + εi is treated as a residual. Newly required is that we assume that νi and xi are
uncorrelated. This follows from the assumptions of the OLS estimator but is also transparent: were νi
and xi correlated, the estimator could not determine how much of the change in yi, associated with
an increase in xi, to assign to β versus how much to attribute to the unknown correlation. (This,
of course, suggests the use of an instrumental-variable estimator, zi, which is correlated with xi but
uncorrelated with νi, though that approach is not implemented here.)
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The random-effects estimator of (4) requires the same no-correlation assumption. In comparison
with the between estimator, the random-effects estimator produces more efficient results, albeit ones
with unknown small-sample properties. The between estimator is less efficient because it discards the
over-time information in the data in favor of simple means; the random-effects estimator uses both
the within and the between information.

All this would seem to leave the between estimator of (2) with no role (except for a minor,
technical part it plays in helping to estimate σ2

ν and σ2
ε , which are used in the calculation of θ, on

which the random-effects estimates depend). Let’s, however, consider a variation on (1):

yit = α+ xiβ1 + (xit − xi)β2 + νi + εit (1′)

In this model, we postulate that changes in the average value of x for an individual have a different
effect from temporary departures from the average. In an economic situation, y might be purchases
of some item and x income; a change in average income should have more effect than a transitory
change. In a clinical situation, y might be a physical response and x the level of a chemical in the
brain; the model allows a different response to permanent rather than transitory changes.

The variations of (2) and (3) corresponding to (1′) are

yi = α+ xiβ1 + νi + εi (2′)
(yit − yi) = (xit − xi)β2 + (εit − εi) (3′)

That is, the between estimator estimates β1 and the within β2, and neither estimates the other. Thus
even when estimating equations like (1), it is worth comparing the within and between estimators.
Differences in results can suggest models like (1′), or at the least some other specification error.

Finally, it is worth understanding the role of the between and within estimators with regressors
that are constant over time or constant over units. Consider the model

yit = α+ xitβ1 + siβ2 + ztβ3 + νi + εit (1′′)

This model is the same as (1), except that we explicitly identify the variables that vary over both
time and i (xit, such as output or FEV); variables that are constant over time (si, such as race or
sex); and variables that vary solely over time (zt, such as the consumer price index or age in a cohort
study). The corresponding between and within equations are

yi = α+ xiβ1 + siβ2 + zβ3 + νi + εi (2′′)
(yit − yi) = (xit − xi)β1 + (zt − z)β3 + (εit − εi) (3′′)

In the between estimator of (2′′), no estimate of β3 is possible because z is a constant across the i
observations; the regression-estimated intercept will be an estimate of α + zβ3. On the other hand,
it can provide estimates of β1 and β2. It can estimate effects of factors that are constant over time,
such as race and sex, but to do so it must assume that νi is uncorrelated with those factors.

The within estimator of (3′′), like the between estimator, provides an estimate of β1 but provides
no estimate of β2 for time-invariant factors. Instead, it provides an estimate of β3, the effects of
the time-varying factors. The within estimator can also provide estimates ui for νi. More correctly,
the estimator ui is an estimator of νi + siβ2. Thus ui is an estimator of νi only if there are no
time-invariant variables in the model. If there are time-invariant variables, ui is an estimate of νi
plus the effects of the time-invariant variables.

Remarks are presented under the following headings:
Assessing goodness of fit
xtreg and associated commands
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Assessing goodness of fit

R2 is a popular measure of goodness of fit in ordinary regression. In our case, given α̂ and β̂
estimates of α and β, we can assess the goodness of fit with respect to (1), (2), or (3). The prediction
equations are, respectively,

ŷit = α̂+ xitβ̂ (1′′′)

ŷi = α̂+ xiβ̂ (2′′′)̂̃yit = (ŷit − ŷi) = (xit − xi)β̂ (3′′′)

xtreg reports “R-squares” corresponding to these three equations. R-squares is in quotes because
the R-squares reported do not have all the properties of the OLS R2.

The ordinary properties of R2 include being equal to the squared correlation between ŷ and y and
being equal to the fraction of the variation in y explained by ŷ—formally defined as Var(ŷ)/Var(y).
The identity of the definitions is from a special property of the OLS estimates; in general, given a
prediction ŷ for y, the squared correlation is not equal to the ratio of the variances, and the ratio of
the variances is not required to be less than 1.

xtreg reports R2 values calculated as correlations squared, calling them R2 overall, corresponding
to (1′′′); R2 between, corresponding to (2′′′); and R2 within, corresponding to (3′′′). In fact, you can
think of each of these three numbers as having all the properties of ordinary R2s, if you bear in mind
that the prediction being judged is not ŷit, ŷi, and ̂̃yit, but γ1ŷit from the regression yit = γ1ŷit;
γ2ŷi from the regression yi = γ2ŷi; and γ3

̂̃yit from ỹit = γ3
̂̃yit.

In particular, xtreg, be obtains its estimates by performing OLS on (2), and therefore its reported
R2 between is an ordinary R2. The other two reported R2s are merely correlations squared, or, if
you prefer, R2s from the second-round regressions yit = γ11ŷit and ỹit = γ13

̂̃yit.
xtreg, fe obtains its estimates by performing OLS on (3), so its reported R2 within is an ordinary

R2. As with be, the other R2s are correlations squared, or, if you prefer, R2s from the second-round
regressions yi = γ22ŷi and, as with be, ỹit = γ23

̂̃yit.
xtreg, re obtains its estimates by performing OLS on (4); none of the R2s corresponding to (1′′′),

(2′′′), or (3′′′) correspond directly to this estimator (the “relevant” R2 is the one corresponding to
(4)). All three reported R2s are correlations squared, or, if you prefer, from second-round regressions.

xtreg and associated commands

Example 1: Between-effects model

Using nlswork.dta described in [XT] xt, we will model ln wage in terms of completed years
of schooling (grade), current age and age squared, current years worked (experience) and experience
squared, current years of tenure on the current job and tenure squared, whether black (race = 2),
whether residing in an area not designated a standard metropolitan statistical area (SMSA), and whether
residing in the South.

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

To obtain the between-effects estimates, we use xtreg, be. nlswork.dta has previously been xtset
idcode year because that is what is true of the data, but for running xtreg, it would have been
sufficient to have xtset idcode by itself.
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. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, be

Between regression (regression on group means) Number of obs = 28091
Group variable: idcode Number of groups = 4697

R-sq: within = 0.1591 Obs per group: min = 1
between = 0.4900 avg = 6.0
overall = 0.3695 max = 15

F(10,4686) = 450.23
sd(u_i + avg(e_i.))= .3036114 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade .0607602 .0020006 30.37 0.000 .0568382 .0646822
age .0323158 .0087251 3.70 0.000 .0152105 .0494211

c.age#c.age -.0005997 .0001429 -4.20 0.000 -.0008799 -.0003194

ttl_exp .0138853 .0056749 2.45 0.014 .0027598 .0250108

c.ttl_exp#
c.ttl_exp .0007342 .0003267 2.25 0.025 .0000936 .0013747

tenure .0698419 .0060729 11.50 0.000 .0579361 .0817476

c.tenure#
c.tenure -.0028756 .0004098 -7.02 0.000 -.0036789 -.0020722

2.race -.0564167 .0105131 -5.37 0.000 -.0770272 -.0358061
not_smsa -.1860406 .0112495 -16.54 0.000 -.2080949 -.1639862

south -.0993378 .010136 -9.80 0.000 -.1192091 -.0794665
_cons .3339113 .1210434 2.76 0.006 .0966093 .5712133

The between-effects regression is estimated on person-averages, so the “n = 4697” result is relevant.
xtreg, be reports the “number of observations” and group-size information: describe in [XT] xt
showed that we have 28,534 “observations”—person-years, really—of data. If we take the subsample
that has no missing values in ln wage, grade, . . . , south leaves us with 28,091 observations on
person-years, reflecting 4,697 persons, each observed for an average of 6.0 years.

For goodness of fit, the R2 between is directly relevant; our R2 is 0.4900. If, however, we use
these estimates to predict the within model, we have an R2 of 0.1591. If we use these estimates to
fit the overall data, our R2 is 0.3695.

The F statistic tests that the coefficients on the regressors grade, age, . . . , south are all jointly
zero. Our model is significant.

The root mean squared error of the fitted regression, which is an estimate of the standard deviation
of νi + εi, is 0.3036.

For our coefficients, each year of schooling increases hourly wages by 6.1%; age increases wages
up to age 26.9 and thereafter decreases them (because the quadratic ax2 + bx + c turns over at
x = −b/2a, which for our age and c.age#c.age coefficients is 0.0323158/(2×0.0005997) ≈ 26.9);
total experience increases wages at an increasing rate (which is surprising and bothersome); tenure on
the current job increases wages up to a tenure of 12.1 years and thereafter decreases them; wages of
blacks are, these things held constant, (approximately) 5.6% below that of nonblacks (approximately
because 2.race is an indicator variable); residing in a non-SMSA (rural area) reduces wages by
18.6%; and residing in the South reduces wages by 9.9%.
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Example 2: Fixed-effects model

To fit the same model with the fixed-effects estimator, we specify the fe option.

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, fe
note: grade omitted because of collinearity
note: 2.race omitted because of collinearity

Fixed-effects (within) regression Number of obs = 28091
Group variable: idcode Number of groups = 4697

R-sq: within = 0.1727 Obs per group: min = 1
between = 0.3505 avg = 6.0
overall = 0.2625 max = 15

F(8,23386) = 610.12
corr(u_i, Xb) = 0.1936 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade 0 (omitted)
age .0359987 .0033864 10.63 0.000 .0293611 .0426362

c.age#c.age -.000723 .0000533 -13.58 0.000 -.0008274 -.0006186

ttl_exp .0334668 .0029653 11.29 0.000 .0276545 .039279

c.ttl_exp#
c.ttl_exp .0002163 .0001277 1.69 0.090 -.0000341 .0004666

tenure .0357539 .0018487 19.34 0.000 .0321303 .0393775

c.tenure#
c.tenure -.0019701 .000125 -15.76 0.000 -.0022151 -.0017251

2.race 0 (omitted)
not_smsa -.0890108 .0095316 -9.34 0.000 -.1076933 -.0703282

south -.0606309 .0109319 -5.55 0.000 -.0820582 -.0392036
_cons 1.03732 .0485546 21.36 0.000 .9421496 1.13249

sigma_u .35562203
sigma_e .29068923

rho .59946283 (fraction of variance due to u_i)

F test that all u_i=0: F(4696, 23386) = 5.13 Prob > F = 0.0000

The observation summary at the top is the same as for the between-effects model, although this time
it is the “Number of obs” that is relevant.

Our three R2s are not too different from those reported previously; the R2 within is slightly higher
(0.1727 versus 0.1591), and the R2 between is a little lower (0.3505 versus 0.4900), as expected,
because the between estimator maximizes R2 between and the within estimator R2 within. In terms
of overall fit, these estimates are somewhat worse (0.2625 versus 0.3695).

xtreg, fe can estimate σν and σε, although how you interpret these estimates depends on whether
you are using xtreg to fit a fixed-effects model or random-effects model. To clarify this fine point,
in the fixed-effects model, νi are formally fixed—they have no distribution. If you subscribe to this
view, think of the reported σ̂ν as merely an arithmetic way to describe the range of the estimated but
fixed νi. If, however, you are using the fixed-effects estimator of the random-effects model, 0.355622
is an estimate of σν or would be if there were no omitted variables.
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Here both grade and 2.race were omitted from the model because they do not vary over time.
Because grade and 2.race are time invariant, our estimate ui is an estimate of νi plus the effects
of grade and 2.race, so our estimate of the standard deviation is based on the variation in νi,
grade, and 2.race. On the other hand, had 2.race and grade been omitted merely because they
were collinear with the other regressors in our model, ui would be an estimate of νi, and 0.355622
would be an estimate of σν . (xtsum and xttab allow you to determine whether a variable is time
invariant; see [XT] xtsum and [XT] xttab.)

Regardless of the status of ui, our estimate of the standard deviation of εit is valid (and, in fact,
is the estimate that would be used by the random-effects estimator to produce its results).

Our estimate of the correlation of ui with xit suffers from the problem of what ui measures. We
find correlation but cannot say whether this is correlation of νi with xit or merely correlation of
grade and 2.race with xit. In any case, the fixed-effects estimator is robust to such a correlation,
and the other estimates it produces are unbiased.

So, although this estimator produces no estimates of the effects of grade and 2.race, it does
predict that age has a positive effect on wages up to age 24.9 years (compared with 26.9 years
estimated by the between estimator); that total experience still increases wages at an increasing rate
(which is still bothersome); that tenure increases wages up to 9.1 years (compared with 12.1); that
living in a non-SMSA reduces wages by 8.9% (compared with a more drastic 18.6%); and that living
in the South reduces wages by 6.1% (as compared with 9.9%).

Example 3: Fixed-effects models with robust standard errors

If we suspect that there is heteroskedasticity or within-panel serial correlation in the idiosyncratic
error term εit, we could specify the vce(robust) option:
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. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, fe vce(robust)
note: grade omitted because of collinearity
note: 2.race omitted because of collinearity

Fixed-effects (within) regression Number of obs = 28091
Group variable: idcode Number of groups = 4697

R-sq: within = 0.1727 Obs per group: min = 1
between = 0.3505 avg = 6.0
overall = 0.2625 max = 15

F(8,4696) = 273.86
corr(u_i, Xb) = 0.1936 Prob > F = 0.0000

(Std. Err. adjusted for 4697 clusters in idcode)

Robust
ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade 0 (omitted)
age .0359987 .0052407 6.87 0.000 .0257243 .046273

c.age#c.age -.000723 .0000845 -8.56 0.000 -.0008887 -.0005573

ttl_exp .0334668 .004069 8.22 0.000 .0254896 .0414439

c.ttl_exp#
c.ttl_exp .0002163 .0001763 1.23 0.220 -.0001294 .0005619

tenure .0357539 .0024683 14.49 0.000 .0309148 .040593

c.tenure#
c.tenure -.0019701 .0001696 -11.62 0.000 -.0023026 -.0016376

2.race 0 (omitted)
not_smsa -.0890108 .0137629 -6.47 0.000 -.1159926 -.062029

south -.0606309 .0163366 -3.71 0.000 -.0926583 -.0286035
_cons 1.03732 .0739644 14.02 0.000 .8923149 1.182325

sigma_u .35562203
sigma_e .29068923

rho .59946283 (fraction of variance due to u_i)

Although the estimated coefficients are the same with and without the vce(robust) option, the
robust estimator produced larger standard errors and a p-value for c.ttl exp#c.ttl exp above
the conventional 10%. The F test of νi = 0 is suppressed because it is too difficult to compute the
robust form of the statistic when there are more than a few panels.

Technical note
The robust standard errors reported above are identical to those obtained by clustering on the panel

variable idcode. Clustering on the panel variable produces an estimator of the VCE that is robust to
cross-sectional heteroskedasticity and within-panel (serial) correlation that is asymptotically equivalent
to that proposed by Arellano (1987). Although the example above applies the fixed-effects estimator,
the robust and cluster–robust VCE estimators are also available for the random-effects estimator.
Wooldridge (2009) and Arellano (2003) discuss these robust and cluster–robust VCE estimators for
the fixed-effects and random-effects estimators. More details are available in Methods and formulas.
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Example 4: Random-effects model

Refitting our log-wage model with the random-effects estimator, we obtain

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, re theta

Random-effects GLS regression Number of obs = 28091
Group variable: idcode Number of groups = 4697

R-sq: within = 0.1715 Obs per group: min = 1
between = 0.4784 avg = 6.0
overall = 0.3708 max = 15

Wald chi2(10) = 9244.74
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

theta
min 5% median 95% max

0.2520 0.2520 0.5499 0.7016 0.7206

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0646499 .0017812 36.30 0.000 .0611589 .0681409
age .0368059 .0031195 11.80 0.000 .0306918 .0429201

c.age#c.age -.0007133 .00005 -14.27 0.000 -.0008113 -.0006153

ttl_exp .0290208 .002422 11.98 0.000 .0242739 .0337678

c.ttl_exp#
c.ttl_exp .0003049 .0001162 2.62 0.009 .000077 .0005327

tenure .0392519 .0017554 22.36 0.000 .0358113 .0426925

c.tenure#
c.tenure -.0020035 .0001193 -16.80 0.000 -.0022373 -.0017697

2.race -.053053 .0099926 -5.31 0.000 -.0726381 -.0334679
not_smsa -.1308252 .0071751 -18.23 0.000 -.1448881 -.1167622

south -.0868922 .0073032 -11.90 0.000 -.1012062 -.0725781
_cons .2387207 .049469 4.83 0.000 .1417633 .3356781

sigma_u .25790526
sigma_e .29068923

rho .44045273 (fraction of variance due to u_i)

According to the R2s, this estimator performs worse within than the within fixed-effects estimator
and worse between than the between estimator, as it must, and slightly better overall.

We estimate that σν is 0.2579 and σε is 0.2907 and, by assertion, assume that the correlation of
ν and x is zero.

All that is known about the random-effects estimator is its asymptotic properties, so rather than
reporting an F statistic for overall significance, xtreg, re reports a χ2. Taken jointly, our coefficients
are significant.

xtreg, re also reports a summary of the distribution of θi, an ingredient in the estimation of (4).
θ is not a constant here because we observe women for unequal periods.

We estimate that schooling has a rate of return of 6.5% (compared with 6.1% between and no
estimate within); that the increase of wages with age turns around at 25.8 years (compared with 26.9
between and 24.9 within); that total experience yet again increases wages increasingly; that the effect
of job tenure turns around at 9.8 years (compared with 12.1 between and 9.1 within); that being
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black reduces wages by 5.3% (compared with 5.6% between and no estimate within); that living in
a non-SMSA reduces wages 13.1% (compared with 18.6% between and 8.9% within); and that living
in the South reduces wages 8.7% (compared with 9.9% between and 6.1% within).

Example 5: Random-effects model fit using ML

We could also have fit this random-effects model with the maximum likelihood estimator:

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure
> c.tenure#c.tenure 2.race not_smsa south, mle

Fitting constant-only model:
Iteration 0: log likelihood = -13690.161
Iteration 1: log likelihood = -12819.317
Iteration 2: log likelihood = -12662.039
Iteration 3: log likelihood = -12649.744
Iteration 4: log likelihood = -12649.614
Iteration 5: log likelihood = -12649.614

Fitting full model:
Iteration 0: log likelihood = -8922.145
Iteration 1: log likelihood = -8853.6409
Iteration 2: log likelihood = -8853.4255
Iteration 3: log likelihood = -8853.4254

Random-effects ML regression Number of obs = 28091
Group variable: idcode Number of groups = 4697

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 6.0
max = 15

LR chi2(10) = 7592.38
Log likelihood = -8853.4254 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0646093 .0017372 37.19 0.000 .0612044 .0680142
age .0368531 .0031226 11.80 0.000 .030733 .0429732

c.age#c.age -.0007132 .0000501 -14.24 0.000 -.0008113 -.000615

ttl_exp .0288196 .0024143 11.94 0.000 .0240877 .0335515

c.ttl_exp#
c.ttl_exp .000309 .0001163 2.66 0.008 .0000811 .0005369

tenure .0394371 .0017604 22.40 0.000 .0359868 .0428875

c.tenure#
c.tenure -.0020052 .0001195 -16.77 0.000 -.0022395 -.0017709

2.race -.0533394 .0097338 -5.48 0.000 -.0724172 -.0342615
not_smsa -.1323433 .0071322 -18.56 0.000 -.1463221 -.1183644

south -.0875599 .0072143 -12.14 0.000 -.1016998 -.0734201
_cons .2390837 .0491902 4.86 0.000 .1426727 .3354947

/sigma_u .2485556 .0035017 .2417863 .2555144
/sigma_e .2918458 .001352 .289208 .2945076

rho .4204033 .0074828 .4057959 .4351212

Likelihood-ratio test of sigma_u=0: chibar2(01)= 7339.84 Prob>=chibar2 = 0.000
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The estimates are nearly the same as those produced by xtreg, re—the GLS estimator. For instance,
xtreg, re estimated the coefficient on grade to be 0.0646499, xtreg, mle estimated 0.0646093,
and the ratio is 0.0646499/0.0646093 = 1.001 to three decimal places. Similarly, the standard errors
are nearly equal: 0.0017811/0.0017372 = 1.025. Below we compare all 11 coefficients:

Coefficient ratio SE ratio
Estimator mean min. max. mean min. max.
xtreg, mle (ML) 1. 1. 1. 1. 1. 1.
xtreg, re (GLS) .997 .987 1.007 1.006 .997 1.027

Example 6: Population-averaged model

We could also have fit this model with the population-averaged estimator:

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, pa

Iteration 1: tolerance = .0310561
Iteration 2: tolerance = .00074898
Iteration 3: tolerance = .0000147
Iteration 4: tolerance = 2.880e-07

GEE population-averaged model Number of obs = 28091
Group variable: idcode Number of groups = 4697
Link: identity Obs per group: min = 1
Family: Gaussian avg = 6.0
Correlation: exchangeable max = 15

Wald chi2(10) = 9598.89
Scale parameter: .1436709 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0645427 .0016829 38.35 0.000 .0612442 .0678412
age .036932 .0031509 11.72 0.000 .0307564 .0431076

c.age#c.age -.0007129 .0000506 -14.10 0.000 -.0008121 -.0006138

ttl_exp .0284878 .0024169 11.79 0.000 .0237508 .0332248

c.ttl_exp#
c.ttl_exp .0003158 .0001172 2.69 0.007 .000086 .0005456

tenure .0397468 .0017779 22.36 0.000 .0362621 .0432315

c.tenure#
c.tenure -.002008 .0001209 -16.61 0.000 -.0022449 -.0017711

2.race -.0538314 .0094086 -5.72 0.000 -.072272 -.0353909
not_smsa -.1347788 .0070543 -19.11 0.000 -.1486049 -.1209526

south -.0885969 .0071132 -12.46 0.000 -.1025386 -.0746552
_cons .2396286 .0491465 4.88 0.000 .1433034 .3359539

These results differ from those produced by xtreg, re and xtreg, mle. Coefficients are larger and
standard errors smaller. xtreg, pa is simply another way to run the xtgee command. That is, we
would have obtained the same output had we typed



464 xtreg — Fixed-, between-, and random-effects and population-averaged linear models

. xtgee ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south
(output omitted because it is the same as above )

See [XT] xtgee. In the language of xtgee, the random-effects model corresponds to an exchangeable
correlation structure and identity link, and xtgee also allows other correlation structures. Let’s
stay with the random-effects model, however. xtgee will also produce robust estimates of variance,
and we refit this model that way by typing

. xtgee ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, vce(robust)
(output omitted, coefficients the same, standard errors different )

In the previous example, we presented a table comparing xtreg, re with xtreg, mle. Below
we add the results from the estimates shown and the ones we did with xtgee, vce(robust):

Coefficient ratio SE ratio
Estimator mean min. max. mean min. max.
xtreg, mle (ML) 1. 1. 1. 1. 1. 1.
xtreg, re (GLS) .997 .987 1.007 1.006 .997 1.027
xtreg, pa (PA) 1.060 .847 1.317 .853 .626 .986
xtgee, vce(robust) (PA) 1.060 .847 1.317 1.306 .957 1.545

So, which are right? This is a real dataset, and we do not know. However, in example 2 in [XT] xtreg
postestimation, we will present evidence that the assumptions underlying the xtreg, re and xtreg,
mle results are not met.
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Saved results
xtreg, re saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(Tcon) 1 if T is constant
e(sigma) ancillary parameter (gamma, lnormal)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(rho) ρ

e(thta min) minimum θ

e(thta 5) θ, 5th percentile
e(thta 50) θ, 50th percentile
e(thta 95) θ, 95th percentile
e(thta max) maximum θ

e(rmse) root mean squared error of GLS regression
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) re
e(clustvar) name of cluster variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(sa) Swamy–Arora estimator of the variance components (sa only)
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(bf) coefficient vector for fixed-effects model
e(theta) θ

e(V) variance–covariance matrix of the estimators
e(VCEf) VCE for fixed-effects model

Functions
e(sample) marks estimation sample
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xtreg, be saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(typ) WLS, if wls specified
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(Tcon) 1 if T is constant
e(r2) R-squared
e(r2 a) adjusted R-squared
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(F) F statistic
e(rmse) root mean squared error
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) be
e(title) title in estimation output
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtreg, fe saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(tss) total sum of squares
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(Tcon) 1 if T is constant
e(sigma) ancillary parameter (gamma, lnormal)
e(corr) corr(ui, Xb)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2) R-squared
e(r2 a) adjusted R-squared
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(rho) ρ

e(F) F statistic
e(F f) F for ui=0

e(df a) degrees of freedom for absorbed effect
e(df b) numerator degrees of freedom for F statistic
e(rmse) root mean squared error
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) fe
e(wtype) weight type
e(wexp) weight expression
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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xtreg, mle saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(rho) ρ

e(rank) rank of e(V)

Macros
e(cmd) xtreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(model) ml
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(distrib) Gaussian; the distribution of the RE
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample



xtreg — Fixed-, between-, and random-effects and population-averaged linear models 469

xtreg, pa saves the following in e():
Scalars

e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(tol) target tolerance
e(dif) achieved tolerance
e(rc) return code

Macros
e(cmd) xtgee
e(cmd2) xtreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) Gaussian
e(link) identity; link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(rgf) rgf, if rgf specified
e(nmp) nmp, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
xtreg is implemented as an ado-file.

The model to be fit is
yit = α+ xitβ+ νi + εit

for i = 1, . . . , n and, for each i, t = 1, . . . , T , of which Ti periods are actually observed.
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Methods and formulas are presented under the following headings:
xtreg, fe
xtreg, be
xtreg, re
xtreg, mle
xtreg, pa

xtreg, fe

xtreg, fe produces estimates by running OLS on

(yit − yi + y) = α+ (xit − xi + x)β+ (εit − εi + ν) + ε

where yi =
∑Ti
t=1 yit/Ti, and similarly, y =

∑
i

∑
t yit/(nTi). The conventional covariance matrix

of the estimators is adjusted for the extra n − 1 estimated means, so results are the same as using
OLS on (1) to estimate νi directly. Specifying vce(robust) or vce(cluster clustvar) causes the
Huber/White/sandwich VCE estimator to be calculated for the coefficients estimated in this regression.
See [P] robust, in particular, in Introduction and Methods and formulas. Wooldridge (2009) and
Arellano (2003) discuss this application of the Huber/White/sandwich VCE estimator. As discussed
by Wooldridge (2009), Stock and Watson (2008), and Arellano (2003), specifying vce(robust) is
equivalent to specifying vce(cluster panelvar), where panelvar is the variable that identifies the
panels.

Clustering on the panel variable produces a consistent VCE estimator when the disturbances are
not identically distributed over the panels or there is serial correlation in εit.

The cluster–robust–VCE estimator requires that there are many clusters and the disturbances are
uncorrelated across the clusters. The panel variable must be nested within the cluster variable because
of the within-panel correlation induced by the within transform.

From the estimates α̂ and β̂, estimates ui of νi are obtained as ui = yi− α̂−xiβ̂. Reported from
the calculated ui are its standard deviation and its correlation with xiβ̂. Reported as the standard
deviation of eit is the regression’s estimated root mean squared error, s, which is adjusted (as
previously stated) for the n− 1 estimated means.

Reported as R2 within is the R2 from the mean-deviated regression.

Reported as R2 between is corr(xiβ̂, yi)2.

Reported as R2 overall is corr(xitβ̂, yit)2.

xtreg, be

xtreg, be fits the following model:

yi = α+ xiβ+ νi + εi

Estimation is via OLS unless Ti is not constant and the wls option is specified. Otherwise, the
estimation is performed via WLS. The estimates and conventional VCE are obtained from regress
for both cases, but for WLS, [aweight=Ti] is specified.

Reported as R2 between is the R2 from the fitted regression.

Reported as R2 within is corr
{

(xit − xi)β̂, yit − yi
}2

.

Reported as R2 overall is corr(xitβ̂, yit)2.
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xtreg, re

The key to the random-effects estimator is the GLS transform. Given estimates of the idiosyncratic
component, σ̂2

e , and the individual component, σ̂2
u, the GLS transform of a variable z for the

random-effects model is

z∗it = zit − θ̂izi

where zi = 1
Ti

∑Ti
t zit and

θ̂i = 1−

√
σ̂2
e

Tiσ̂2
u + σ̂2

e

Given an estimate of θ̂i, one transforms the dependent and independent variables, and then the
coefficient estimates and the conventional variance–covariance matrix come from an OLS regression
of y∗it on x∗it and the transformed constant 1 − θ̂i. Specifying vce(robust) or vce(cluster
clustvar) causes the Huber/White/sandwich VCE estimator to be calculated for the coefficients
estimated in this regression. See [P] robust, in particular, in Introduction and Methods and formulas.
Wooldridge (2009) and Arellano (2003) discuss this application of the Huber/White/sandwich VCE
estimator. As discussed by Wooldridge (2009), Stock and Watson (2008), and Arellano (2003),
specifying vce(robust) is equivalent to specifying vce(cluster panelvar), where panelvar is the
variable that identifies the panels.

Clustering on the panel variable produces a consistent VCE estimator when the disturbances are
not identically distributed over the panels or there is serial correlation in εit.

The cluster–robust–VCE estimator requires that there are many clusters and the disturbances are
uncorrelated across the clusters. The panel variable must be nested within the cluster variable because
of the within-panel correlation that is generally induced by the random-effects transform when there
is heteroskedasticity or within-panel serial correlation in the idiosyncratic errors.

Stata has two implementations of the Swamy–Arora method for estimating the variance components.
They produce the same results in balanced panels and share the same estimator of σ2

e . However,
the two methods differ in their estimator of σ2

u in unbalanced panels. We call the first σ̂2
uT

and
the second σ̂2

uSA. Both estimators are consistent; however, σ̂2
uSA has a more elaborate adjustment

for small samples than σ̂2
uT

. (See Baltagi [2008], Baltagi and Chang [1994], and Swamy and Arora
[1972] for derivations of these methods.)

Both methods use the same function of within residuals to estimate the idiosyncratic error component
σe. Specifically,

σ̂2
e =

∑n
i

∑Ti
t e2

it

N − n−K + 1

where

eit = (yit − yi + y)− α̂w − (xit − xi + x)β̂w

and α̂w and β̂w are the within estimates of the coefficients and N =
∑n
i Ti. After passing the within

residuals through the within transform, only the idiosyncratic errors are left.
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The default method for estimating σ2
u is

σ̂2
uT

= max
{

0,
SSRb
n−K

− σ̂2
e

T

}

where

SSRb =
n∑
i

(
yi − α̂b − xiβ̂b

)2

α̂b and β̂b are coefficient estimates from the between regression and T is the harmonic mean of Ti:

T =
n∑n
i

1
Ti

This estimator is consistent for σ2
u and is computationally less expensive than the second method.

The sum of squared residuals from the between model estimate a function of both the idiosyncratic
component and the individual component. Using our estimator of σ2

e , we can remove the idiosyncratic
component, leaving only the desired individual component.

The second method is the Swamy–Arora method for unbalanced panels derived by Baltagi and
Chang (1994), which has a more precise small-sample adjustment. Using this method,

σ̂2
uSA = max

{
0,
SSRb − (n−K)σ̂2

e

N − tr

}
where

tr = trace
{

(X′PX)−1X′ZZ′X
}

P = diag
{(

1
Ti

)
ιTiι

′
Ti

}

Z = diag [ιTi ]

X is the N ×K matrix of covariates, including the constant, and ιTi is a Ti × 1 vector of ones.

The estimated coefficients (α̂r, β̂r) and their covariance matrix Vr are reported together with
the previously calculated quantities σ̂e and σ̂u. The standard deviation of νi + eit is calculated as√
σ̂2
e + σ̂2

u.

Reported as R2 between is corr(xiβ̂, yi)2.

Reported as R2 within is corr
{

(xit − xi)β̂, yit − yi
}2

.

Reported as R2 overall is corr(xitβ̂, yit)2.
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xtreg, mle

The log likelihood for the ith unit is

li = −1
2

(
1
σ2
e

[ Ti∑
t=1

(yit − xitβ)2 − σu
2

Tiσ2
u + σ2

e

{ Ti∑
t=1

(yit − xitβ)
}2
]

+ ln
(
Ti
σ2
u

σ2
e

+ 1
)

+ Ti ln(2πσ2
e)

)

The mle and re options yield essentially the same results, except when total N =
∑
i Ti is small

(200 or less) and the data are unbalanced.

xtreg, pa

See [XT] xtgee for details on the methods and formulas used to calculate the population-averaged
model using a generalized estimating equations approach.
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[R] areg — Linear regression with a large dummy-variable set

[R] regress — Linear regression

[TS] prais — Prais–Winsten and Cochrane–Orcutt regression

[U] 20 Estimation and postestimation commands
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xtreg postestimation — Postestimation tools for xtreg

Description
The following postestimation commands are of special interest after xtreg:

Command Description

xttest0 Breusch and Pagan LM test for random effects

For information about this command, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after xtreg with the be, pa, or re option.

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

xttest0, for use after xtreg, re, presents the Breusch and Pagan (1980) Lagrange multiplier
test for random effects, a test that Var(νi) = 0.
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Syntax for predict
For all but the population-averaged model

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

Population-averaged model

predict
[

type
]

newvar
[

if
] [

in
] [

, PA statistic nooffset
]

statistic Description

Main

xb xjb, fitted values; the default
stdp standard error of the fitted values
ue ui + eit, the combined residual
∗xbu xjb + ui, prediction including effect
∗u ui, the fixed- or random-error component
∗e eit, the overall error component

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

PA statistic Description

Main

mu predicted probability of depvar; considers the offset()

rate predicted probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb calculates the linear prediction, that is, a+ bxit. This is the default for all except the population-
averaged model.

stdp calculates the standard error of the linear prediction. For the fixed-effects model, this excludes
the variance due to uncertainty about the estimate of ui.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset(),
and rate ignores those adjustments. mu and rate are equivalent if you did not specify offset().
mu is the default for the population-averaged model.
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ue calculates the prediction of ui + eit.

xbu calculates the prediction of a+bxit+ui, the prediction including the fixed or random component.

u calculates the prediction of ui, the estimated fixed or random effect.

e calculates the prediction of eit.

score calculates the equation-level score, uj = ∂lnLj(xjβ)/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for xtreg, pa. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as xitb rather than xitb + offsetit.

Syntax for xttest0

xttest0

Menu
Statistics > Longitudinal/panel data > Linear models > Lagrange multiplier test for random effects

Remarks

Example 1

Continuing with our xtreg, re estimation example (example 4) in xtreg, we can see that xttest0
will report a test of νi = 0. In case we have any doubts, we could type

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, re theta

(output omitted )
. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects

ln_wage[idcode,t] = Xb + u[idcode] + e[idcode,t]

Estimated results:
Var sd = sqrt(Var)

ln_wage .2283326 .4778416
e .0845002 .2906892
u .0665151 .2579053

Test: Var(u) = 0
chibar2(01) = 14779.98

Prob > chibar2 = 0.0000
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Example 2

More importantly, after xtreg, re estimation, hausman will perform the Hausman specification
test. If our model is correctly specified, and if νi is uncorrelated with xit, the (subset of) coefficients
that are estimated by the fixed-effects estimator and the same coefficients that are estimated here
should not statistically differ:

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, re

(output omitted )
. estimates store random_effects

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race not_smsa south, fe

(output omitted )
. hausman . random_effects

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
. random_eff~s Difference S.E.

age .0359987 .0368059 -.0008073 .0013177
c.age#c.age -.000723 -.0007133 -9.68e-06 .0000184

ttl_exp .0334668 .0290208 .0044459 .001711
c.ttl_exp#~p .0002163 .0003049 -.0000886 .000053

tenure .0357539 .0392519 -.003498 .0005797
c.tenure#c~e -.0019701 -.0020035 .0000334 .0000373

not_smsa -.0890108 -.1308252 .0418144 .0062745
south -.0606309 -.0868922 .0262613 .0081345

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(8) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 149.43

Prob>chi2 = 0.0000

We can reject the hypothesis that the coefficients are the same. Before turning to what this means,
note that hausman listed the coefficients estimated by the two models. It did not, however, list grade
and 2.race. hausman did not make a mistake; in the Hausman test, we compare only the coefficients
estimated by both techniques.

What does this mean? We have an unpleasant choice: we can admit that our model is
misspecified—that we have not parameterized it correctly—or we can hold that our specifica-
tion is correct, in which case the observed differences must be due to the zero correlation of νi and
the xit assumption.

Technical note
We can also mechanically explore the underpinnings of the test’s dissatisfaction. In the comparison

table from hausman, it is the coefficients on not smsa and south that exhibit the largest differences.
In equation (1′) of [XT] xtreg, we showed how to decompose a model into within and between effects.
Let’s do that with these two variables, assuming that changes in the average have one effect, whereas
transitional changes have another:
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. egen avgnsmsa = mean(not_smsa), by(idcode)

. generate devnsma = not_smsa -avgnsmsa
(8 missing values generated)

. egen avgsouth = mean(south), by(idcode)

. generate devsouth = south - avgsouth
(8 missing values generated)

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race avgnsm devnsm avgsou devsou

Random-effects GLS regression Number of obs = 28091
Group variable: idcode Number of groups = 4697

R-sq: within = 0.1723 Obs per group: min = 1
between = 0.4809 avg = 6.0
overall = 0.3737 max = 15

Wald chi2(12) = 9319.56
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0631716 .0017903 35.29 0.000 .0596627 .0666805
age .0375196 .0031186 12.03 0.000 .0314072 .043632

c.age#c.age -.0007248 .00005 -14.50 0.000 -.0008228 -.0006269

ttl_exp .0286543 .0024207 11.84 0.000 .0239098 .0333989

c.ttl_exp#
c.ttl_exp .0003222 .0001162 2.77 0.006 .0000945 .0005499

tenure .0394423 .001754 22.49 0.000 .0360044 .0428801

c.tenure#
c.tenure -.0020081 .0001192 -16.85 0.000 -.0022417 -.0017746

2.race -.0545936 .0102101 -5.35 0.000 -.074605 -.0345821
avgnsmsa -.1833237 .0109339 -16.77 0.000 -.2047537 -.1618937
devnsma -.0887596 .0095071 -9.34 0.000 -.1073931 -.070126

avgsouth -.1011235 .0098789 -10.24 0.000 -.1204858 -.0817611
devsouth -.0598538 .0109054 -5.49 0.000 -.081228 -.0384797

_cons .2682987 .0495778 5.41 0.000 .171128 .3654694

sigma_u .2579182
sigma_e .29068923

rho .44047745 (fraction of variance due to u_i)

We will leave the reinterpretation of this model to you, except that if we were really going to sell
this model, we would have to explain why the between and within effects are different. Focusing on
residence in a non-SMSA, we might tell a story about rural people being paid less and continuing
to get paid less when they move to the SMSA. Given our panel data, we could create variables to
measure this (an indicator for moved from non-SMSA to SMSA) and to measure the effects. In our
assessment of this model, we should think about women in the cities moving to the country and their
relative productivity in a bucolic setting.
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In any case, the Hausman test now is

. estimates store new_random_effects

. xtreg ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp
> tenure c.tenure#c.tenure 2.race avgnsm devnsm avgsou devsou, fe

(output omitted )
. hausman . new_random_effects

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
. new_random~s Difference S.E.

age .0359987 .0375196 -.0015209 .0013198
c.age#c.age -.000723 -.0007248 1.84e-06 .0000184

ttl_exp .0334668 .0286543 .0048124 .0017127
c.ttl_exp#~p .0002163 .0003222 -.0001059 .0000531

tenure .0357539 .0394423 -.0036884 .0005839
c.tenure#c~e -.0019701 -.0020081 .000038 .0000377

devnsma -.0890108 -.0887596 -.0002512 .000683
devsouth -.0606309 -.0598538 -.0007771 .0007618

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(8) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 92.52

Prob>chi2 = 0.0000

We have mechanically succeeded in greatly reducing the χ2, but not by enough. The major differences
now are in the age, experience, and tenure effects. We already knew this problem existed because
of the ever-increasing effect of experience. More careful parameterization work rather than simply
including squares needs to be done.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

xttest0

xttest0 reports the Lagrange multiplier test for random effects developed by Breusch and
Pagan (1980) and as modified by Baltagi and Li (1990). The model

yit = α+ xitβ+ νit

is fit via OLS, and then the quantity

λLM =
(nT )2

2

(
A2

1

(
∑
i T

2
i )− nT

)
is calculated, where

A1 = 1−
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i=1(

∑Ti
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2∑
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∑
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2
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The Baltagi and Li modification allows for unbalanced data and reduces to the standard formula

λLM =

 nT
2(T−1)

{∑
i
(
∑

t
vit)

2∑
i

∑
t
v2
it

− 1
}2

, σ̂2
u ≥ 0

0 , σ̂2
u < 0

when Ti = T (balanced data). Under the null hypothesis, λLM is distributed as a 50:50 mixture of a
point mass at zero and χ2(1).
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Also see
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[U] 20 Estimation and postestimation commands
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Title

xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

Syntax
GLS random-effects (RE) model

xtregar depvar
[

indepvars
] [

if
] [

in
] [

, re options
]

Fixed-effects (FE) model

xtregar depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, fe

[
options

]
options Description

Model

re use random-effects estimator; the default
fe use fixed-effects estimator
rhotype(rhomethod) specify method to compute autocorrelation; see Options for details;

seldom used
rhof(#) use # for ρ and do not estimate ρ
twostep perform two-step estimate of correlation

Reporting

level(#) set confidence level; default is level(95)

lbi perform Baltagi–Wu LBI test
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights and aweights are allowed for the fixed-effects model with rhotype(regress) or rhotype(freg),

or with a fixed rho; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Longitudinal/panel data > Linear models > Linear regression with AR(1) disturbance (FE, RE)

Description
xtregar fits cross-sectional time-series regression models when the disturbance term is first-order

autoregressive. xtregar offers a within estimator for fixed-effects models and a GLS estimator for
random-effects models. Consider the model

482
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yit = α+ xitβ+ νi + εit i = 1, . . . , N ; t = 1, . . . , Ti (1)

where
εit = ρεi,t−1 + ηit (2)

and where |ρ| < 1 and ηit is independent and identically distributed (i.i.d.) with mean 0 and variance
σ2
η . If νi are assumed to be fixed parameters, the model is a fixed-effects model. If νi are assumed to

be realizations of an i.i.d. process with mean 0 and variance σ2
ν , it is a random-effects model. Whereas

in the fixed-effects model, the νi may be correlated with the covariates xit, in the random-effects
model the νi are assumed to be independent of the xit. On the other hand, any xit that do not vary
over t are collinear with the νi and will be dropped from the fixed-effects model. In contrast, the
random-effects model can accommodate covariates that are constant over time.

xtregar can accommodate unbalanced panels whose observations are unequally spaced over time.
xtregar implements the methods derived in Baltagi and Wu (1999).

Options

� � �
Model �

re requests the GLS estimator of the random-effects model, which is the default.

fe requests the within estimator of the fixed-effects model.

rhotype(rhomethod) allows the user to specify any of the following estimators of ρ:

dw ρdw = 1− d/2, where d is the Durbin–Watson d statistic
regress ρreg = β from the residual regression εt = βεt−1

freg ρfreg = β from the residual regression εt = βεt+1

tscorr ρtscorr = ε′εt−1/ε
′ε, where ε is the vector of residuals and εt−1 is the vector

of lagged residuals
theil ρtheil = ρtscorr(N − k)/N
nagar ρnagar = (ρdwN

2 + k2)/(N2 − k2)

onestep ρonestep = (n/mc)(ε′εt−1/ε
′ε), where ε is the vector of residuals, n is the

number of observations, and mc is the number of consecutive pairs of residuals

dw is the default method. Except for onestep, the details of these methods are given in [TS] prais.
prais handles unequally spaced data. onestep is the one-step method proposed by Baltagi and
Wu (1999). More details on this method are available below in Methods and formulas.

rhof(#) specifies that the given number be used for ρ and that ρ not be estimated.

twostep requests that a two-step implementation of the rhomethod estimator of ρ be used. Unless
a fixed value of ρ is specified, ρ is estimated by running prais on the de-meaned data. When
twostep is specified, prais will stop on the first iteration after the equation is transformed
by ρ—the two-step efficient estimator. Although it is customary to iterate these estimators to
convergence, they are efficient at each step. When twostep is not specified, the FGLS process
iterates to convergence as described in the Methods and formulas of [TS] prais.

� � �
Reporting �

level(#); see [R] estimation options.
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lbi requests that the Baltagi–Wu (1999) locally best invariant (LBI) test statistic that ρ = 0 and a
modified version of the Bhargava, Franzini, and Narendranathan (1982) Durbin–Watson statistic
be calculated and reported. The default is not to report them. p-values are not reported for either
statistic. Although Bhargava, Franzini, and Narendranathan (1982) published critical values for
their statistic, no tables are currently available for the Baltagi–Wu LBI. Baltagi and Wu (1999)
derive a normalized version of their statistic, but this statistic cannot be computed for datasets of
moderate size. You can also specify these options upon replay.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtregar but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
The fixed-effects model
The random-effects model

Introduction

If you have not read [XT] xt, please do so.

Consider a linear panel-data model described by (1) and (2). In the fixed-effects model, the νi are
a set of fixed parameters to be estimated. Alternatively, the νi may be random and correlated with
the other covariates, with inference conditional on the νi in the sample; see Mundlak (1978) and
Hsiao (2003). In the random-effects model, also known as the variance-components model, the νi are
assumed to be realizations of an i.i.d. process with mean 0 and variance σ2

ν . xtregar offers a within
estimator for the fixed-effect model and the Baltagi–Wu (1999) GLS estimator of the random-effects
model. The Baltagi–Wu (1999) GLS estimator extends the balanced panel estimator in Baltagi and
Li (1991) to a case of exogenously unbalanced panels with unequally spaced observations. Both these
estimators offer several estimators of ρ.

The data can be unbalanced and unequally spaced. Specifically, the dataset contains observations
on individual i at times tij for j = 1, . . . , ni. The difference tij − ti,j−1 plays an integral role in
the estimation techniques used by xtregar. For this reason, you must xtset your data before using
xtregar. For instance, if you have quarterly data, the “time” difference between the third and fourth
quarter must be 1 month, not 3.

The fixed-effects model

Let’s examine the fixed-effect model first. The basic approach is common to all fixed-effects models.
The νi are treated as nuisance parameters. We use a transformation of the model that removes the
nuisance parameters and leaves behind the parameters of interest in an estimable form. Subtracting
the group means from (1) removes the νi from the model

yitij − yi =
(
xitij − xi

)
β+ εitij − εi (3)
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where

yi =
1
ni

ni∑
j=1

yitij xi =
1
ni

ni∑
j=1

xitij εi =
1
ni

ni∑
j=1

εitij

After the transformation, (3) is a linear AR(1) model, potentially with unequally spaced observations.
(3) can be used to estimate ρ. Given an estimate of ρ, we must do a Cochrane–Orcutt transformation
on each panel and then remove the within-panel means and add back the overall mean for each
variable. OLS on the transformed data will produce the within estimates of α and β.

Example 1

Let’s use the Grunfeld investment dataset to illustrate how xtregar can be used to fit the fixed-
effects model. This dataset contains information on 10 firms’ investment, market value, and the value
of their capital stocks. The data were collected annually between 1935 and 1954. The following
output shows that we have xtset our data and gives the results of running a fixed-effects model with
investment as a function of market value and the capital stock.

. use http://www.stata-press.com/data/r12/grunfeld

. xtset
panel variable: company (strongly balanced)
time variable: year, 1935 to 1954

delta: 1 year

. xtregar invest mvalue kstock, fe

FE (within) regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: within = 0.5927 Obs per group: min = 19
between = 0.7989 avg = 19.0
overall = 0.7904 max = 19

F(2,178) = 129.49
corr(u_i, Xb) = -0.0454 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0949999 .0091377 10.40 0.000 .0769677 .113032
kstock .350161 .0293747 11.92 0.000 .2921935 .4081286
_cons -63.22022 5.648271 -11.19 0.000 -74.36641 -52.07402

rho_ar .67210608
sigma_u 91.507609
sigma_e 40.992469
rho_fov .8328647 (fraction of variance due to u_i)

F test that all u_i=0: F(9,178) = 11.53 Prob > F = 0.0000

Because there are 10 groups, the panel-by-panel Cochrane–Orcutt method decreases the number of
available observations from 200 to 190. The above example used the default dw estimator of ρ. Using
the tscorr estimator of ρ yields
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. xtregar invest mvalue kstock, fe rhotype(tscorr)

FE (within) regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: within = 0.6583 Obs per group: min = 19
between = 0.8024 avg = 19.0
overall = 0.7933 max = 19

F(2,178) = 171.47
corr(u_i, Xb) = -0.0709 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0978364 .0096786 10.11 0.000 .0787369 .1169359
kstock .346097 .0242248 14.29 0.000 .2982922 .3939018
_cons -61.84403 6.621354 -9.34 0.000 -74.91049 -48.77758

rho_ar .54131231
sigma_u 90.893572
sigma_e 41.592151
rho_fov .82686297 (fraction of variance due to u_i)

F test that all u_i=0: F(9,178) = 19.73 Prob > F = 0.0000

Technical note
The tscorr estimator of ρ is bounded in [−1, 1 ]. The other estimators of ρ are not. In samples

with short panels, the estimates of ρ produced by the other estimators of ρ may be outside [−1, 1 ]. If
this happens, use the tscorr estimator. However, simulations have shown that the tscorr estimator
is biased toward zero. dw is the default because it performs well in Monte Carlo simulations. In the
example above, the estimate of ρ produced by tscorr is much smaller than the one produced by dw.

Example 2

xtregar will complain if you try to run xtregar on a dataset that has not been xtset:

. xtset, clear

. xtregar invest mvalue kstock, fe
must specify panelvar and timevar; use xtset
r(459);

You must xtset your data to ensure that xtregar understands the nature of your time variable.
Suppose that our observations were taken quarterly instead of annually. We will get the same results
with the quarterly variable t2 that we did with the annual variable year.

. generate t = year - 1934

. generate t2 = tq(1934q4) + t

. format t2 %tq
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. list year t2 in 1/5

year t2

1. 1935 1935q1
2. 1936 1935q2
3. 1937 1935q3
4. 1938 1935q4
5. 1939 1936q1

. xtset company t2
panel variable: company (strongly balanced)
time variable: t2, 1935q1 to 1939q4

delta: 1 quarter

. xtregar invest mvalue kstock, fe

FE (within) regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: within = 0.5927 Obs per group: min = 19
between = 0.7989 avg = 19.0
overall = 0.7904 max = 19

F(2,178) = 129.49
corr(u_i, Xb) = -0.0454 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0949999 .0091377 10.40 0.000 .0769677 .113032
kstock .350161 .0293747 11.92 0.000 .2921935 .4081286
_cons -63.22022 5.648271 -11.19 0.000 -74.36641 -52.07402

rho_ar .67210608
sigma_u 91.507609
sigma_e 40.992469
rho_fov .8328647 (fraction of variance due to u_i)

F test that all u_i=0: F(9,178) = 11.53 Prob > F = 0.0000

In all the examples thus far, we have assumed that εit is first-order autoregressive. Testing the
hypothesis of ρ = 0 in a first-order autoregressive process produces test statistics with extremely
complicated distributions. Bhargava, Franzini, and Narendranathan (1982) extended the Durbin–
Watson statistic to the case of balanced, equally spaced panel datasets. Baltagi and Wu (1999) modify
their statistic to account for unbalanced panels with unequally spaced data. In the same article, Baltagi
and Wu (1999) derive the locally best invariant test statistic of ρ = 0. Both these test statistics have
extremely complicated distributions, although Bhargava, Franzini, and Narendranathan (1982) did
publish some critical values in their article. Specifying the lbi option to xtregar causes Stata to
calculate and report the modified Bhargava et al. Durbin–Watson and the Baltagi–Wu LBI.

Example 3

In this example, we calculate the modified Bhargava et al. Durbin–Watson statistic and the Baltagi–
Wu LBI. We exclude periods 9 and 10 from the sample, thereby reproducing the results of Baltagi
and Wu (1999, 822). p-values are not reported for either statistic. Although Bhargava, Franzini, and
Narendranathan (1982) published critical values for their statistic, no tables are currently available
for the Baltagi–Wu (LBI). Baltagi and Wu (1999) did derive a normalized version of their statistic,
but this statistic cannot be computed for datasets of moderate size.
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. xtregar invest mvalue kstock if year !=1934 & year !=1944, fe lbi

FE (within) regression with AR(1) disturbances Number of obs = 180
Group variable: company Number of groups = 10

R-sq: within = 0.5954 Obs per group: min = 18
between = 0.7952 avg = 18.0
overall = 0.7889 max = 18

F(2,168) = 123.63
corr(u_i, Xb) = -0.0516 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0941122 .0090926 10.35 0.000 .0761617 .1120627
kstock .3535872 .0303562 11.65 0.000 .2936584 .4135161
_cons -64.82534 5.946885 -10.90 0.000 -76.56559 -53.08509

rho_ar .6697198
sigma_u 93.320452
sigma_e 41.580712
rho_fov .83435413 (fraction of variance due to u_i)

F test that all u_i=0: F(9,168) = 11.55 Prob > F = 0.0000
modified Bhargava et al. Durbin-Watson = .71380994
Baltagi-Wu LBI = 1.0134522

The random-effects model
In the random-effects model, the νi are assumed to be realizations of an i.i.d. process with mean 0

and variance σ2
ν . Furthermore, the νi are assumed to be independent of both the εit and the covariates

xit. The latter of these assumptions can be strong, but inference is not conditional on the particular
realizations of the νi in the sample. See Mundlak (1978) for a discussion of this point.

Example 4

By specifying the re option, we obtain the Baltagi–Wu GLS estimator of the random-effects model.
This estimator can accommodate unbalanced panels and unequally spaced data. We run this model
on the Grunfeld dataset:
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. xtregar invest mvalue kstock if year !=1934 & year !=1944, re lbi

RE GLS regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: within = 0.7707 Obs per group: min = 19
between = 0.8039 avg = 19.0
overall = 0.7958 max = 19

Wald chi2(3) = 351.37
corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .0947714 .0083691 11.32 0.000 .0783683 .1111746
kstock .3223932 .0263226 12.25 0.000 .2708019 .3739845
_cons -45.21427 27.12492 -1.67 0.096 -98.37814 7.949603

rho_ar .6697198 (estimated autocorrelation coefficient)
sigma_u 74.662876
sigma_e 42.253042
rho_fov .75742494 (fraction of variance due to u_i)

theta .66973313

modified Bhargava et al. Durbin-Watson = .71380994
Baltagi-Wu LBI = 1.0134522

The modified Bhargava et al. Durbin–Watson and the Baltagi–Wu LBI are the same as those reported
for the fixed-effects model because the formulas for these statistics do not depend on fitting the
fixed-effects model or the random-effects model.
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Saved results
xtregar, re saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(d1) Bhargava et al. Durbin–Watson
e(LBI) Baltagi–Wu LBI statistic
e(N LBI) number of obs used in e(LBI)
e(Tcon) 1 if T is constant
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of ηit
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(chi2) χ2

e(rho ar) autocorrelation coefficient
e(rho fov) ui fraction of variance
e(thta min) minimum θ

e(thta 5) θ, 5th percentile
e(thta 50) θ, 50th percentile
e(thta 95) θ, 95th percentile
e(thta max) maximum θ

e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtregar
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) re
e(rhotype) method of estimating ρar
e(dw) LBI, if requested
e(chi2type) Wald; type of model χ2 test
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) VCE for random-effects model

Functions
e(sample) marks estimation sample
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xtregar, fe saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(mss) model sum of squares
e(rss) residual sum of squares
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(d1) Bhargava et al. Durbin–Watson
e(LBI) Baltagi–Wu LBI statistic
e(N LBI) number of obs used in e(LBI)
e(Tcon) 1 if T is constant
e(corr) corr(ui, Xb)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2 a) adjusted R-squared
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(rho ar) autocorrelation coefficient
e(rho fov) ui fraction of variance
e(F) F statistic
e(F f) F for ui=0

e(df r) residual degrees of freedom
e(df a) degrees of freedom for absorbed effect
e(df b) numerator degrees of freedom for F statistic
e(rmse) root mean squared error
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtregar
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(wtype) weight type
e(wexp) weight expression
e(model) fe
e(rhotype) method of estimating ρar
e(dw) LBI, if requested
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample



492 xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

Methods and formulas
xtregar is implemented as an ado-file.

Consider a linear panel-data model described by (1) and (2). The data can be unbalanced and
unequally spaced. Specifically, the dataset contains observations on individual i at times tij for
j = 1, . . . , ni.

Methods and formulas are presented under the following headings:

Estimating ρ
Transforming the data to remove the AR(1) component
The within estimator of the fixed-effects model
The Baltagi–Wu GLS estimator
The test statistics

Estimating ρ

The estimate of ρ is always obtained after removing the group means. Let ỹit = yit − yi, let
x̃it = xit − xi, and let ε̃it = εit − εi.

Then, except for the onestep method, all the estimates of ρ are obtained by running Stata’s prais
on

ỹit = x̃itβ+ ε̃it

See [TS] prais for the formulas for each of the methods.

When onestep is specified, a regression is run on the above equation, and the residuals are
obtained. Let eitij be the residual used to estimate the error ε̃itij . If tij − ti,j−1 > 1, eitij is set to
zero. Given this series of residuals

ρ̂onestep =
n

mc

∑N
i=1

∑T
t=2 eitei,t−1∑N

i=1

∑T
t=1 e

2
it

where n is the number of nonzero elements in e and mc is the number of consecutive pairs of nonzero
eits.

Transforming the data to remove the AR(1) component

After estimating ρ, Baltagi and Wu (1999) derive a transformation of the data that removes the
AR(1) component. Their Ci(ρ) can be written as

y∗itij =


(1− ρ2)1/2yitij if tij = 1

(1− ρ2)1/2

[
yi,tij

{
1

1−ρ2(tij−ti,j−1)

}1/2

− yi,ti,j−1

{
ρ2(tij−ti,j−1)

1−ρ2(ti,j−ti,j−1)

}1/2
]

if tij > 1

Using the analogous transform on the independent variables generates transformed data without
the AR(1) component. Performing simple OLS on the transformed data leaves behind the residuals µ∗.
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The within estimator of the fixed-effects model

To obtain the within estimator, we must transform the data that come from the AR(1) transform.
For the within transform to remove the fixed effects, the first observation of each panel must be
dropped. Specifically, let

y̆itij = y∗itij − y∗i + y
∗ ∀j > 1

x̆itij = x∗itij − x∗i + x∗ ∀j > 1

ε̆itij = ε∗itij − ε∗i + ε
∗ ∀j > 1

where

y∗i =

∑ni−1
j=2 y∗itij
ni − 1

y
∗ =

∑N
i=1

∑ni−1
j=2 y∗itij∑N

i=1 ni − 1

x∗i =

∑ni−1
j=2 x∗itij
ni − 1

x∗ =

∑N
i=1

∑ni−1
j=2 x∗itij∑N

i=1 ni − 1

ε∗i =

∑ni−1
j=2 ε∗itij
ni − 1

ε
∗ =

∑N
i=1

∑ni−1
j=2 ε∗itij∑N

i=1 ni − 1

The within estimator of the fixed-effects model is then obtained by running OLS on

y̆itij = α+ x̆itijβ+ ε̆itij

Reported as R2 within is the R2 from the above regression.

Reported as R2 between is
{

corr(xiβ̂ , yi)
}2

.

Reported as R2 overall is
{

corr(xitβ̂ , yit)
}2

.

The Baltagi–Wu GLS estimator

The residuals µ∗ can be used to estimate the variance components. Translating the matrix formulas
given in Baltagi and Wu (1999) into summations yields the following variance-components estimators:
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σ̂2
ω =

N∑
i=1

(µ∗′i gi)
2

(g′igi)

σ̂2
ε =

[∑N
i=1(µ∗′i µ

∗
i )−

∑N
i=1

{
(µ∗′i gi)

2

(g′
i
gi)

}]
∑N
i=1(ni − 1)

σ̂2
µ =

[∑N
i=1

{
(µ∗′i gi)

2

(g′
i
gi)

}
−Nσ̂2

ε

]
∑N
i=1(g′igi)

where

gi =

1,

{
1− ρ(ti,2−ti,1)

}{
1− ρ2(ti,2−ti,1)

} 1
2
, . . . ,

{
1− ρ(ti,ni−ti,ni−1)

}
{

1− ρ2(ti,ni−ti,ni−1)
} 1

2

′

and µ∗i is the ni × 1 vector of residuals from µ∗ that correspond to person i.

Then

θ̂i = 1−
(
σ̂µ
ω̂i

)
where

ω̂2
i = g′igiσ̂

2
µ + σ̂2

ε

With these estimates in hand, we can transform the data via

z∗∗itij = z∗itij − θ̂igij
∑ni
s=1 gisz

∗
itis∑ni

s=1 g
2
is

for z ∈ {y,x}.
Running OLS on the transformed data y∗∗,x∗∗ yields the feasible GLS estimator of α and β.

Reported as R2 between is
{

corr(xiβ̂ , yi)
}2

.

Reported as R2 within is
{

corr
{

(xit − xi)β̂ , yit − yi
}}2

.

Reported as R2 overall is
{

corr(xitβ̂ , yit)
}2

.
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The test statistics
The Baltagi–Wu LBI is the sum of terms

d∗ = d1 + d2 + d3 + d4

where

d1 =

∑N
i=1

∑ni
j=1{z̃iti,j−1 − z̃itijI(tij − ti,j−1 = 1)}2∑N

i=1

∑ni
j=1 z̃

2
itij

d2 =

∑N
i=1

∑ni−1
j=1 z̃2

iti,j−1
{1− I(tij − ti,j−1 = 1)}2∑N

i=1

∑ni
j=1 z̃

2
itij

d3 =
∑N
i=1 z̃

2
iti1∑N

i=1

∑ni
j=1 z̃

2
itij

d4 =

∑N
i=1 z̃

2
itini∑N

i=1

∑ni
j=1 z̃

2
itij

I() is the indicator function that takes the value of 1 if the condition is true and 0 otherwise. The
z̃iti,j−1 are residuals from the within estimator.

Baltagi and Wu (1999) also show that d1 is the Bhargava et al. Durbin–Watson statistic modified
to handle cases of unbalanced panels and unequally spaced data.
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Also see
[XT] xtregar postestimation — Postestimation tools for xtregar

[XT] xtset — Declare data to be panel data

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtgls — Fit panel-data models by using GLS

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[TS] newey — Regression with Newey–West standard errors

[TS] prais — Prais–Winsten and Cochrane–Orcutt regression

[U] 20 Estimation and postestimation commands



Title

xtregar postestimation — Postestimation tools for xtregar

Description
The following postestimation commands are available after xtregar:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after xtregar, re.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

xb xitb, linear prediction; the default
ue ui + eit, the combined residual
∗u ui, the fixed- or random-error component
∗e eit, the overall error component

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction, xitβ.

ue calculates the prediction of ui + eit.

u calculates the prediction of ui, the estimated fixed or random effect.

e calculates the prediction of eit.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[U] 20 Estimation and postestimation commands



Title

xtset — Declare data to be panel data

Syntax
Declare data to be panel

xtset panelvar

xtset panelvar timevar
[
, tsoptions

]
Display how data are currently xtset

xtset

Clear xt settings

xtset, clear

In the declare syntax, panelvar identifies the panels and the optional timevar identifies the times
within panels. tsoptions concern timevar.

tsoptions Description

unitoptions specify units of timevar
deltaoption specify periodicity of timevar

noquery suppress summary calculations and output

noquery is not shown in the dialog box.

unitoptions Description

(default) timevar’s units to be obtained from timevar’s display format
clocktime timevar is %tc: 0 = 1jan1960 00:00:00.000, 1 = 1jan1960 00:00:00.001, . . .
daily timevar is %td: 0 = 1jan1960, 1 = 2jan1960, . . .
weekly timevar is %tw: 0 = 1960w1, 1 = 1960w2, . . .
monthly timevar is %tm: 0 = 1960m1, 1 = 1960m2, . . .
quarterly timevar is %tq: 0 = 1960q1, 1 = 1960q2,. . .
halfyearly timevar is %th: 0 = 1960h1, 1 = 1960h2,. . .
yearly timevar is %ty: 1960 = 1960, 1961 = 1961, . . .
generic timevar is %tg: 0 = ?, 1 = ?, . . .

format(% fmt) specify timevar’s format and then apply default rule

In all cases, negative timevar values are allowed.
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deltaoption specifies the period between observations in timevar units and may be specified as

deltaoption Example

delta(#) delta(1) or delta(2)
delta((exp)) delta((7*24))

delta(# units) delta(7 days) or delta(15 minutes) or delta(7 days 15 minutes)

delta((exp) units) delta((2+3) weeks)

Allowed units for %tc and %tC timevars are

seconds secs sec
minutes mins min
hours hour
days day
weeks week

and for all other %t timevars are
days day
weeks week

Menu
Statistics > Longitudinal/panel data > Setup and utilities > Declare dataset to be panel data

Description
xtset declares the data in memory to be a panel. You must xtset your data before you can use

the other xt commands. If you save your data after xtset, the data will be remembered to be a
panel and you will not have to xtset again.

There are two syntaxes for setting the data:

xtset panelvar
xtset panelvar timevar

In the first syntax—xtset panelvar—the data are set to be a panel and the order of the observations
within panel is considered to be irrelevant. For instance, panelvar might be country and the observations
within might be city.

In the second syntax—xtset panelvar timevar—the data are to be a panel and the order of
observations within panel are considered ordered by timevar. For instance, in data collected from
repeated surveying of the same people over various years, panelvar might be person and timevar, year.
When you specify timevar, you may then use Stata’s time-series operators such as L. and F. (lag and
lead) in other commands. The operators will be interpreted as lagged and lead values within panel.

xtset without arguments—xtset—displays how the data are currently xtset. If the data are set
with a panelvar and a timevar, xtset also sorts the data by panelvar timevar. If the data are set
with a panelvar only, the sort order is not changed.

xtset, clear is a rarely used programmer’s command to declare that the data are no longer to
be considered a panel.
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Options
unitoptions clocktime, daily, weekly, monthly, quarterly, halfyearly, yearly, generic,

and format(% fmt) specify the units in which timevar is recorded, if timevar is specified.

timevar will often simply be a variable that counts 1, 2, . . . , and is to be interpreted as first year
of survey, second year, . . . , or first month of treatment, second month, . . . . In these cases, you
do not need to specify a unitoption.

In other cases, timevar will be a year variable or the like such as 2001, 2002, . . . , and is to be
interpreted as year of survey or the like. In those cases, you do not need to specify a unitoption.

In still other, more complicated cases, timevar will be a full-blown %t variable; see [D] datetime.
If timevar already has a %t display format assigned to it, you do not need to specify a unitoption;
xtset will obtain the units from the format. If you have not yet bothered to assign the appropriate
%t format to the %t variable, however, you can use the unitoptions to tell xtset the units. Then
xtset will set timevar’s display format for you. Thus, the unitoptions are convenience options;
they allow you to skip formatting the time variable. The following all have the same net result:

Alternative 1 Alternative 2 Alternative 3

format t %td (t not formatted) (t not formatted)
xtset pid t xtset pid t, daily xtset pid t, format(%td)

Understand that timevar is not required to be a %t variable; it can be any variable of your own
concocting so long as it takes on integer values. When you xtset a time variable that is not
%t, the display format does not change unless you specify the unitoption generic or use the
format() option.

delta() specifies the periodicity of timevar and is commonly used when timevar is %tc. delta()
is only sometimes used with the other %t formats or with generic time variables.

If delta() is not specified, delta(1) is assumed. This means that at timevar = 5, the previous
time is timevar = 5 − 1 = 4 and the next time would be timevar = 5 + 1 = 6. Lag and lead
operators, for instance, would work this way. This would be assumed regardless of the units of
timevar.

If you specified delta(2), then at timevar = 5, the previous time would be timevar = 5− 2 = 3
and the next time would be timevar = 5 + 2 = 7. Lag and lead operators would work this way.
In the observation with timevar = 5, L.income would be the value of income in the observation
for which timevar = 3 and F.income would be the value of income in the observation for
which timevar = 7. If you then add an observation with timevar = 4, the operators will still work
appropriately; that is, at timevar = 5, L.income will still have the value of income at timevar = 3.

There are two aspects of timevar: its units and its periodicity. The unitoptions set the units.
delta() sets the periodicity. You are not required to specify one to specify the other. You might
have a generic timevar but it counts in 12: 0, 12, 24, . . . . You would skip specifying unitoptions
but would specify delta(12).

We mentioned that delta() is commonly used with %tc timevars because Stata’s %tc variables
have units of milliseconds. If delta() is not specified and in some model you refer to L.bp,
you will be referring to the value of bp 1 ms ago. Few people have data with periodicity of a
millisecond. Perhaps your data are hourly. You could specify delta(3600000). Or you could
specify delta((60*60*1000)), because delta() will allow expressions if you include an
extra pair of parentheses. Or you could specify delta(1 hour). They all mean the same thing:
timevar has periodicity of 3,600,000 ms. In an observation for which timevar = 1,489,572,000,000
(corresponding to 15mar2007 10:00:00), L.bp would be the observation for which timevar =
1,489,572,000,000− 3,600,000 = 1,489,568,400,000 (corresponding to 15mar2007 9:00:00).
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When you xtset the data and specify delta(), xtset verifies that all the observations follow
the specified periodicity. For instance, if you specified delta(2), then timevar could contain any
subset of {. . . ,−4,−2, 0, 2, 4, . . . } or it could contain any subset of {. . . ,−3,−1, 1, 3, . . . }. If
timevar contained a mix of values, xtset would issue an error message. The check is made on
each panel independently, so one panel might contain timevar values from one set and the next,
another, and that would be fine.

clear—used in xtset, clear—makes Stata forget that the data ever were xtset. This is a rarely
used programmer’s option.

The following option is available with tsset but is not shown in the dialog box:

noquery prevents tsset from performing most of its summary calculations and suppresses output.
With this option, only the following results are posted:

r(tdelta) r(tsfmt)
r(panelvar) r(unit)
r(timevar) r(unit1)

Remarks
xtset declares the dataset in memory to be panel data. You need to do this before you can use

the other xt commands. The storage types of both panelvar and timevar must be numeric, and both
variables must contain integers only.

Technical note

In previous versions of Stata there was no xtset command. The other xt commands instead had
the i(panelvar) and t(timevar) options. Older commands still have those options, but they are no
longer documented and, if you specify them, they just perform the xtset for you. Thus, do-files that
you previously wrote will continue to work. Modern usage, however, is to xtset the data first.

Technical note
xtset is related to the tsset command, which declares data to be time series. One of the syntaxes

of tsset is tsset panelvar timevar, which is identical to one of xtset’s syntaxes, namely, xtset
panelvar timevar. Here they are in fact the same command, meaning that xtsetting your data is
sufficient to allow you to use the ts commands and tssetting your data is sufficient to allow you
to use the xt commands. You do not need to set both, but it will not matter if you do.

xtset and tsset are different, however, when you set just a panelvar—you type xtset panelvar—
or when you set just a timevar—you type tsset panelvar.

Example 1

Many panel datasets contain a variable identifying panels but do not contain a time variable. For
example, you may have a dataset where each panel is a family, and the observations within panel are
family members, or you may have a dataset in which each person made a decision multiple times but
the ordering of those decisions is unimportant and perhaps unknown. In this latter case, if the time
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of the decision were known, we would advise you to xtset it. The other xt statistical commands
do not do something different because timevar has been set—they will ignore timevar if timevar is
irrelevant to the statistical method that you are using. You should always set everything that is true
about the data.

In any case, let’s consider the case where there is no timevar. We have data on U.S. states and
cities within states:

. list state city in 1/10, sepby(state)

state city

1. Alabama Birmingham
2. Alabama Mobile
3. Alabama Montgomery
4. Alabama Huntsville

5. Alaska Anchorage
6. Alaska Fairbanks

7. Arizona Phoenix
8. Arizona Tucson

9. Arkansas Fayetteville
10. Arkansas Fort Smith

Here we do not type xtset state city because city is not a time variable. Instead, we type xtset
state:

. xtset state
varlist: state: string variable not allowed
r(109);

You cannot xtset a string variable. We must make a numeric variable from our string variable and
xtset that. One alternative is

. egen statenum = group(state)

. list state statenum in 1/10, sepby(state)

state statenum

1. Alabama 1
2. Alabama 1
3. Alabama 1
4. Alabama 1

5. Alaska 2
6. Alaska 2

7. Arizona 3
8. Arizona 3

9. Arkansas 4
10. Arkansas 4

. xtset statenum
panel variable: statenum (unbalanced)
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Perhaps a better alternative is

. encode state, gen(st)

. list state st in 1/10, sepby(state)

state st

1. Alabama Alabama
2. Alabama Alabama
3. Alabama Alabama
4. Alabama Alabama

5. Alaska Alaska
6. Alaska Alaska

7. Arizona Arizona
8. Arizona Arizona

9. Arkansas Arkansas
10. Arkansas Arkansas

encode (see [D] encode) produces a numeric variable with a value label, so when we list the result,
new variable st looks just like our original. It is, however, numeric:

. list state st in 1/10, nolabel sepby(state)

state st

1. Alabama 1
2. Alabama 1
3. Alabama 1
4. Alabama 1

5. Alaska 2
6. Alaska 2

7. Arizona 3
8. Arizona 3

9. Arkansas 4
10. Arkansas 4

We can xtset new variable st:

. xtset st
panel variable: st (unbalanced)

Example 2

Some panel datasets do contain a time variable. Dataset abdata.dta contains labor demand data
from a panel of firms in the United Kingdom. Here are wage data for the first two firms in the dataset:
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. use http://www.stata-press.com/data/r12/abdata, clear

. list id year wage if id==1 | id==2, sepby(id)

id year wage

1. 1 1977 13.1516
2. 1 1978 12.3018
3. 1 1979 12.8395
4. 1 1980 13.8039
5. 1 1981 14.2897
6. 1 1982 14.8681
7. 1 1983 13.7784

8. 2 1977 14.7909
9. 2 1978 14.1036

10. 2 1979 14.9534
11. 2 1980 15.491
12. 2 1981 16.1969
13. 2 1982 16.1314
14. 2 1983 16.3051

To declare this dataset as a panel dataset, you type

. xtset id year, yearly
panel variable: id (unbalanced)
time variable: year, 1976 to 1984

delta: 1 year

The output from list shows that the last observations for these two firms are for 1983, but xtset
shows that for some firms data are available for 1984 as well. If one or more panels contain data for
nonconsecutive periods, xtset will report that gaps exist in the time variable. For example, if we
did not have data for firm 1 for 1980 but did have data for 1979 and 1981, xtset would indicate
that our data have a gap.

For yearly data, we could omit the yearly option and just type xtset id year because years
are stored and listed just like regular integers.

Having declared our data to be a panel dataset, we can use time-series operators to obtain lags:

. list id year wage L.wage if id==1 | id==2, sepby(id)

id year wage L.wage

1. 1 1977 13.1516 .
2. 1 1978 12.3018 13.1516

(output omitted )
6. 1 1982 14.8681 14.2897
7. 1 1983 13.7784 14.8681

8. 2 1977 14.7909 .
9. 2 1978 14.1036 14.7909

(output omitted )
13. 2 1982 16.1314 16.1969
14. 2 1983 16.3051 16.1314

L.wage is missing for 1977 in both panels because we have no wage data for 1976. In observation
8, the lag operator did not incorrectly reach back into the previous panel.
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Technical note
The terms balanced and unbalanced are often used to describe whether a panel dataset is missing

some observations. If a dataset does not contain a time variable, then panels are considered balanced
if each panel contains the same number of observations; otherwise, the panels are unbalanced.

When the dataset contains a time variable, panels are said to be strongly balanced if each panel
contains the same time points, weakly balanced if each panel contains the same number of observations
but not the same time points, and unbalanced otherwise.

Example 3

If our data are observed more than once per year, applying time-series formats to the time variable
can improve readability.

We have a dataset consisting of individuals who joined a gym’s weight-loss program that began in
January 2005 and ended in December 2005. Each participant’s weight was recorded once per month.
Some participants did not show up for all the monthly weigh-ins, so we do not have all 12 months’
records for each person. The first two people’s data are

. use http://www.stata-press.com/data/r12/gymdata

. list id month wt if id==1 | id==2, sepby(id)

id month wt

1. 1 1 145
2. 1 2 144

(output omitted )
11. 1 11 124
12. 1 12 120

13. 2 1 144
14. 2 2 143

(output omitted )
23. 2 11 122
24. 2 12 118

To set these data, we can type

. xtset id month
panel variable: id (unbalanced)
time variable: month, 1 to 12, but with gaps

delta: 1 unit

The note “but with gaps” above is no cause for concern. It merely warns us that, within some panels,
some time values are missing. We already knew that about our data—some participants did not show
up for the monthly weigh-ins.

The rest of this example concerns making output more readable. Month numbers such as 1, 2,
. . . , 12 are perfectly readable here. In another dataset, where month numbers went to, say 127, they
would not be so readable. In such cases, we can make a more readable date—2005m1, 2005m2,
. . .—by using Stata’s %t variables. For a discussion, see [D] datetime. We will go quickly here. One
of the %t formats is %tm—monthly—and it says that 1 means 1960m1. Thus, we need to recode our
month variable so that, rather than taking on values from 1 to 12, it takes on values from 540 to 551.
Then we can put a %tm format on that variable. Working out 540–551 is subject to mistakes. Stata
function tm(2005m1) tells us the %tm month corresponding to January of 2005, so we can type
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. generate month2 = month + tm(2005m1) - 1

. format month2 %tm

New variable month2 will work just as well as the original month in an xtset, and even a little
better, because output will be a little more readable:

. xtset id month2
panel variable: id (unbalanced)
time variable: month2, 2005m1 to 2005m12, but with gaps

delta: 1 month

By the way, we could have omitted typing format month2 %tm and then, rather than typing xtset
id month2, we would have typed xtset id month2, monthly. The monthly option specifies that
the time variable is %tm. When we did not specify the option, xtset determined that it was monthly
from the display format we had set.

Example 4: Clock times

We have data from a large hotel in Las Vegas that changes the reservation prices for its room
reservations hourly. A piece of the data looks like

. list in 1/5

roomtype time price

1. 1 02.13.2007 08:00 140
2. 1 02.13.2007 09:00 155
3. 1 02.13.2007 10:00 160
4. 1 02.13.2007 11:00 155
5. 1 02.13.2007 12:00 160

The panel variable is roomtype and, although you cannot see it from the output above, it takes on 1,
2, . . . , 20. Variable time is a string variable. The first step in making this dataset xt is to translate
the string to a numeric variable:

. generate double t = clock(time, "MDY hm")

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1.487e+12
2. 1 02.13.2007 09:00 155 1.487e+12
3. 1 02.13.2007 10:00 160 1.487e+12
4. 1 02.13.2007 11:00 155 1.487e+12
5. 1 02.13.2007 12:00 160 1.487e+12

See [D] datetime translation for an explanation of what is going on here. clock() is the function
that converts strings to datetime (%tc) values. We typed clock(time, "MDY hm") to convert string
variable time, and we told clock() that the values in time were in the order month, day, year,
hour, and minute. We stored new variable t as a double because time values are large and that is
required to prevent rounding. Even so, the resulting values 1.487e+12 look rounded, but that is only
because of the default display format for new variables. We can see the values better if we change
the format:
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. format t %20.0gc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1,486,972,800,000
2. 1 02.13.2007 09:00 155 1,486,976,400,000
3. 1 02.13.2007 10:00 160 1,486,980,000,000
4. 1 02.13.2007 11:00 155 1,486,983,600,000
5. 1 02.13.2007 12:00 160 1,486,987,200,000

Even better, however, would be to change the format to %tc—Stata’s clock-time format:

. format t %tc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 13feb2007 08:00:00
2. 1 02.13.2007 09:00 155 13feb2007 09:00:00
3. 1 02.13.2007 10:00 160 13feb2007 10:00:00
4. 1 02.13.2007 11:00 155 13feb2007 11:00:00
5. 1 02.13.2007 12:00 160 13feb2007 12:00:00

We could now drop variable time. New variable t contains the same information as time and t
is better because it is a Stata time variable, the most important property of which being that it is
numeric rather than string. We can xtset it. Here, however, we also need to specify the periodicity
with xtset’s delta() option. Stata’s time variables are numeric, but they record milliseconds since
01jan1960 00:00:00. By default, xtset uses delta(1), and that means the time-series operators
would not work as we want them to work. For instance, L.price would look back only 1 ms (and
find nothing). We want L.price to look back 1 hour (3,600,000 ms):

. xtset roomtype t, delta(1 hour)
panel variable: roomtype (strongly balanced)
time variable: t,

13feb2007 08:00:00 to 31mar2007 18:00:00,
but with gaps

delta: 1 hour

. list t price l.price in 1/5

t price L.price

1. 13feb2007 08:00:00 140 .
2. 13feb2007 09:00:00 155 140
3. 13feb2007 10:00:00 160 155
4. 13feb2007 11:00:00 155 160
5. 13feb2007 12:00:00 160 155
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Example 5: Clock times must be double

In the previous example, it was of vital importance that when we generated the %tc variable t,

. generate double t = clock(time, "MDY hm")

we generated it as a double. Let’s see what would have happened had we forgotten and just typed
generate t = clock(time, "MDY hm"). Let’s go back and start with the same original data:

. list in 1/5

roomtype time price

1. 1 02.13.2007 08:00 140
2. 1 02.13.2007 09:00 155
3. 1 02.13.2007 10:00 160
4. 1 02.13.2007 11:00 155
5. 1 02.13.2007 12:00 160

Remember, variable time is a string variable, and we need to translate it to numeric. So we translate,
but this time we forget to make the new variable a double:

. generate t = clock(time, "MDY hm")

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1.49e+12
2. 1 02.13.2007 09:00 155 1.49e+12
3. 1 02.13.2007 10:00 160 1.49e+12
4. 1 02.13.2007 11:00 155 1.49e+12
5. 1 02.13.2007 12:00 160 1.49e+12

We see the first difference—t now lists as 1.49e+12 rather than 1.487e+12 as it did previously—but
this is nothing that would catch our attention. We would not even know that the value is different.
Let’s continue.

We next put a %20.0gc format on t to better see the numerical values. In fact, that is not something
we would usually do in an analysis. We did that in the example to emphasize to you that the t values
were really big numbers. We will repeat the exercise just to be complete, but in real analysis, we
would not bother.

. format t %20.0gc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1,486,972,780,544
2. 1 02.13.2007 09:00 155 1,486,976,450,560
3. 1 02.13.2007 10:00 160 1,486,979,989,504
4. 1 02.13.2007 11:00 155 1,486,983,659,520
5. 1 02.13.2007 12:00 160 1,486,987,198,464

Okay, we see big numbers in t. Let’s continue.

Next we put a %tc format on t, and that is something we would usually do, and you should
always do. You should also list a bit of the data, as we did:
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. format t %tc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 13feb2007 07:59:40
2. 1 02.13.2007 09:00 155 13feb2007 09:00:50
3. 1 02.13.2007 10:00 160 13feb2007 09:59:49
4. 1 02.13.2007 11:00 155 13feb2007 11:00:59
5. 1 02.13.2007 12:00 160 13feb2007 11:59:58

By now, you should see a problem: the translated datetime values are off by a second or two. That
was caused by rounding. Dates and times should be the same, not approximately the same, and when
you see a difference like this, you should say to yourself, “The translation is off a little. Why is
that?” and then you should think, “Of course, rounding. I bet that I did not create t as a double.”

Let’s assume, however, that you do not do this. You instead plow ahead:

. xtset roomtype t, delta(1 hour)
time values with periodicity less than delta() found
r(451);

And that is what will happen when you forget to create t as a double. The rounding will cause
uneven periodicity, and xtset will complain.

By the way, it is important only that clock times (%tc and %tC variables) be stored as doubles.
The other date values %td, %tw, %tm, %tq, %th, and %ty are small enough that they can safely be
stored as floats, although forgetting and storing them as doubles does no harm.

Technical note
Stata provides two clock-time formats, %tc and %tC. %tC provides a clock with leap seconds. Leap

seconds are occasionally inserted to account for randomness of the earth’s rotation, which gradually
slows. Unlike the extra day inserted in leap years, the timing of when leap seconds will be inserted
cannot be foretold. The authorities in charge of such matters announce a leap second approximately
6 months before insertion. Leap seconds are inserted at the end of the day, and the leap second is
called 23:59:60 (that is, 11:59:60 pm), which is then followed by the usual 00:00:00 (12:00:00 am).
Most nonastronomers find these leap seconds vexing. The added seconds cause problems because
of their lack of predictability—knowing how many seconds there will be between 01jan2012 and
01jan2013 is not possible—and because there are not necessarily 24 hours in a day. If you use a leap
second–adjusted clock, most days have 24 hours, but a few have 24 hours and 1 second. You must
look at a table to find out.

From a time-series analysis point of view, the nonconstant day causes the most problems. Let’s
say that you have data on blood pressure for a set of patients, taken hourly at 1:00, 2:00, . . . , and that
you have xtset your data with delta(1 hour). On most days, L24.bp would be blood pressure at
the same time yesterday. If the previous day had a leap second, however, and your data were recorded
using a leap second–adjusted clock, there would be no observation L24.bp because 86,400 seconds
before the current reading does not correspond to an on-the-hour time; 86,401 seconds before the
current reading corresponds to yesterday’s time. Thus, whenever possible, using Stata’s %tc encoding
rather than %tC is better.

When times are recorded by computers using leap second–adjusted clocks, however, avoiding %tC
is not possible. For performing most time-series analysis, the recommended procedure is to map the
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%tC values to %tc and then xtset those. You must ask yourself whether the process you are studying
is based on the clock—the nurse does something at 2 o’clock every day—or the true passage of
time—the emitter spits out an electron every 86,400,000 ms.

When dealing with computer-recorded times, first find out whether the computer (and its time-
recording software) use a leap second–adjusted clock. If it does, translate that to a %tC value. Then
use function cofC() to convert to a %tc value and xtset that. If variable T contains the %tC value,

. generate double t = cofC(T)

. format t %tc

. xtset panelvar t, delta(. . . )

Function cofC() moves leap seconds forward: 23:59:60 becomes 00:00:00 of the next day.

Saved results
xtset saves the following in r():

Scalars
r(imin) minimum panel ID
r(imax) maximum panel ID
r(tmin) minimum time
r(tmax) maximum time
r(tdelta) delta

Macros
r(panelvar) name of panel variable
r(timevar) name of time variable
r(tdeltas) formatted delta
r(tmins) formatted minimum time
r(tmaxs) formatted maximum time
r(tsfmt) %fmt of time variable
r(unit) units of time variable: Clock, clock, daily, weekly, monthly, quarterly,

halfyearly, yearly, or generic
r(unit1) units of time variable: C, c, d, w, m, q, h, y, or ""
r(balanced) unbalanced, weakly balanced, or strongly balanced; a set of panels

are strongly balanced if they all have the same time values, otherwise
balanced if same number of time values, otherwise unbalanced

Methods and formulas
xtset is implemented as an ado-file.

Also see
[XT] xtdescribe — Describe pattern of xt data

[XT] xtsum — Summarize xt data

[TS] tsset — Declare data to be time-series data

[TS] tsfill — Fill in gaps in time variable



Title

xtsum — Summarize xt data

Syntax

xtsum
[

varlist
] [

if
]

A panel variable must be specified; use xtset; see [XT] xtset.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [D] by.

Menu
Statistics > Longitudinal/panel data > Setup and utilities > Summarize xt data

Description

xtsum, a generalization of summarize (see [R] summarize), reports means and standard deviations
for panel data; it differs from summarize in that it decomposes the standard deviation into between
and within components.

Remarks
If you have not read [XT] xt, please do so.

xtsum provides an alternative to summarize. For instance, in the nlswork dataset described in
[XT] xt, hours contains the usual hours worked:

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. summarize hours

Variable Obs Mean Std. Dev. Min Max

hours 28467 36.55956 9.869623 1 168

. xtsum hours

Variable Mean Std. Dev. Min Max Observations

hours overall 36.55956 9.869623 1 168 N = 28467
between 7.846585 1 83.5 n = 4710
within 7.520712 -2.154726 130.0596 T-bar = 6.04395

xtsum provides the same information as summarize and more. It decomposes the variable xit into
a between (xi) and within (xit − xi + x, the global mean x being added back in make results
comparable). The overall and within are calculated over 28,467 person-years of data. The between is
calculated over 4,710 persons, and the average number of years a person was observed in the hours
data is 6.

512
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xtsum also reports minimums and maximums. Hours worked last week varied between 1 and
(unbelievably) 168. Average hours worked last week for each woman varied between 1 and 83.5.
“Hours worked within” varied between −2.15 and 130.1, which is not to say that any woman actually
worked negative hours. The within number refers to the deviation from each individual’s average,
and naturally, some of those deviations must be negative. Then the negative value is not disturbing
but the positive value is. Did some woman really deviate from her average by +130.1 hours? No. In
our definition of within, we add back in the global average of 36.6 hours. Some woman did deviate
from her average by 130.1− 36.6 = 93.5 hours, which is still large.

The reported standard deviations tell us something that may surprise you. They say that the variation
in hours worked last week across women is nearly equal to that observed within a woman over time.
That is, if you were to draw two women randomly from our data, the difference in hours worked is
expected to be nearly equal to the difference for the same woman in two randomly selected years.

If a variable does not vary over time, its within standard deviation will be zero:

. xtsum birth_yr

Variable Mean Std. Dev. Min Max Observations

birth_yr overall 48.08509 3.012837 41 54 N = 28534
between 3.051795 41 54 n = 4711
within 0 48.08509 48.08509 T-bar = 6.05689

Methods and formulas
xtsum is implemented as an ado-file.

Also see
[XT] xtdescribe — Describe pattern of xt data

[XT] xttab — Tabulate xt data



Title

xttab — Tabulate xt data

Syntax
xttab varname

[
if
]

xttrans varname
[

if
] [

, freq
]

A panel variable must be specified; use xtset; see [XT] xtset.
by is allowed with xttab and xttrans; see [D] by.

Menu
xttab

Statistics > Longitudinal/panel data > Setup and utilities > Tabulate xt data

xttrans

Statistics > Longitudinal/panel data > Setup and utilities > Report transition probabilities

Description
xttab, a generalization of tabulate (see [R] tabulate oneway), performs one-way tabulations

and decomposes counts into between and within components in panel data.

xttrans, another generalization of tabulate (see [R] tabulate oneway), reports transition
probabilities (the change in one categorical variable over time).

Option

� � �
Main �

freq, allowed with xttrans only, specifies that frequencies as well as transition probabilities be
displayed.

Remarks
If you have not read [XT] xt, please do so.

Example 1: xttab

Using the nlswork dataset described in [XT] xt, variable msp is 1 if a woman is married and her
spouse resides with her, and 0 otherwise:

514
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. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xttab msp

Overall Between Within
msp Freq. Percent Freq. Percent Percent

0 11324 39.71 3113 66.08 62.69
1 17194 60.29 3643 77.33 75.75

Total 28518 100.00 6756 143.41 69.73
(n = 4711)

The overall part of the table summarizes results in terms of person-years. We have 11,324 person-years
of data in which msp is 0 and 17,194 in which it is 1—in 60.3% of our data, the woman is married
with her spouse present. Between repeats the breakdown, but this time in terms of women rather than
person-years; 3,113 of our women ever had msp 0 and 3,643 ever had msp 1, for a grand total of
6,756 ever having either. We have in our data, however, only 4,711 women. This means that there
are women who sometimes have msp 0 and at other times have msp 1.

The within percent tells us the fraction of the time a woman has the specified value of msp. If we
take the first line, conditional on a woman ever having msp 0, 62.7% of her observations have msp 0.
Similarly, conditional on a woman ever having msp 1, 75.8% of her observations have msp 1. These
two numbers are a measure of the stability of the msp values, and, in fact, msp 1 is more stable
among these younger women than msp 0, meaning that they tend to marry more than they divorce.
The total within of 69.75% is the normalized between weighted average of the within percents, that
is, (3113× 62.69 + 3643× 75.75)/6756. It is a measure of the overall stability of the msp variable.

A time-invariant variable will have a tabulation with within percents of 100:

. xttab race

Overall Between Within
race Freq. Percent Freq. Percent Percent

1 20180 70.72 3329 70.66 100.00
2 8051 28.22 1325 28.13 100.00
3 303 1.06 57 1.21 100.00

Total 28534 100.00 4711 100.00 100.00
(n = 4711)

Example 2: xttrans

xttrans shows the transition probabilities. In cross-sectional time-series data, we can estimate
the probability that xi,t+1 = v2 given that xit = v1 by counting transitions. For instance

. xttrans msp

1 if
married, 1 if married, spouse

spouse present
present 0 1 Total

0 80.49 19.51 100.00
1 7.96 92.04 100.00

Total 37.11 62.89 100.00
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The rows reflect the initial values, and the columns reflect the final values. Each year, some 80% of
the msp 0 persons in the data remained msp 0 in the next year; the remaining 20% became msp 1.
Although msp 0 had a 20% chance of becoming msp 1 in each year, the msp 1 had only an 8%
chance of becoming (or returning to) msp 0. The freq option displays the frequencies that go into
the calculation:

. xttrans msp, freq

1 if
married, 1 if married, spouse

spouse present
present 0 1 Total

0 7,697 1,866 9,563
80.49 19.51 100.00

1 1,133 13,100 14,233
7.96 92.04 100.00

Total 8,830 14,966 23,796
37.11 62.89 100.00

Technical note
The transition probabilities reported by xttrans are not necessarily the transition probabilities in

a Markov sense. xttrans counts transitions from each observation to the next once the observations
have been put in t order within i. It does not normalize for missing periods. xttrans does pay
attention to missing values of the variable being tabulated, however, and does not count transitions
from nonmissing to missing or from missing to nonmissing. Thus if the data are fully rectangularized,
xttrans produces (inefficient) estimates of the Markov transition matrix. fillin will rectangularize
datasets; see [D] fillin. Thus the Markov transition matrix could be estimated by typing

. fillin idcode year

. xttrans msp
(output omitted )

Saved results
xttab saves the following in r():

Scalars
r(n) number of panels

Matrices
r(results) results matrix

Methods and formulas
xttab and xttrans are implemented as ado-files.
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Also see
[XT] xtdescribe — Describe pattern of xt data

[XT] xtsum — Summarize xt data



Title

xttobit — Random-effects tobit models

Syntax
xttobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(varname | #) left-censoring variable/limit
ul(varname | #) right-censoring variable/limit
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE

vce(vcetype) vcetype may be oim, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

tobit perform likelihood-ratio test comparing against pooled tobit model
noskip perform overall model test as a likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intmethod(intmethod) integration method; intmethod may be mvaghermite, aghermite,
or ghermite; default is intmethod(mvaghermite)

intpoints(#) use # quadrature points; default is intpoints(12)

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

A panel variable must be specified; use xtset; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Longitudinal/panel data > Censored outcomes > Tobit regression (RE)

Description
xttobit fits random-effects tobit models. There is no command for a parametric conditional fixed-

effects model, as there does not exist a sufficient statistic allowing the fixed effects to be conditioned
out of the likelihood. Honoré (1992) has developed a semiparametric estimator for fixed-effect tobit
models. Unconditional fixed-effects tobit models may be fit with the tobit command with indicator
variables for the panels; the indicators can be created with the factor-variable syntax described in
[U] 11.4.3 Factor variables. However, unconditional fixed-effects estimates are biased.

Options

� � �
Model �

noconstant; see [R] estimation options.

ll(varname|#) and ul(varname|#) indicate the censoring points. You may specify one or both. ll()
indicates the lower limit for left-censoring. Observations with depvar≤ ll() are left-censored,
observations with depvar≥ ul() are right-censored, and remaining observations are not censored.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [XT] vce options.

� � �
Reporting �

level(#); see [R] estimation options.

tobit specifies that a likelihood-ratio test comparing the random-effects model with the pooled (tobit)
model be included in the output.

noskip; see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod), intpoints(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with xttobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Consider the linear regression model with panel-level random effects

yit = xitβ+ νi + εit

for i = 1, . . . , n panels, where t = 1, . . . , ni. The random effects, νi, are i.i.d., N(0, σ2
ν), and εit

are i.i.d. N(0, σ2
ε ) independently of νi.

The observed data, yoit, represent possibly censored versions of yit. If they are left-censored, all
that is known is that yit ≤ yoit. If they are right-censored, all that is known is that yit ≥ yoit. If
they are uncensored, yit = yoit. If they are left-censored, yoit is determined by ll(). If they are
right-censored, yoit is determined by ul(). If they are uncensored, yoit is determined by depvar.

Example 1

Using the nlswork data described in [XT] xt, we fit a random-effects tobit model of adjusted
(log) wages. We use the ul() option to impose an upper limit on the recorded log of wages. We use
the intpoints(25) option to increase the number of integration points to 25 from 12, which aids
convergence of this model.

. use http://www.stata-press.com/data/r12/nlswork3
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xttobit ln_wage union age grade not_smsa south##c.year, ul(1.9) intpoints(25)
> tobit

(output omitted )

Random-effects tobit regression Number of obs = 19224
Group variable: idcode Number of groups = 4148

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 4.6
max = 12

Wald chi2(7) = 2924.91
Log likelihood = -6814.4638 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

union .1430525 .0069719 20.52 0.000 .1293878 .1567172
age .009913 .0017517 5.66 0.000 .0064797 .0133463

grade .0784843 .0022767 34.47 0.000 .074022 .0829466
not_smsa -.1339973 .0092061 -14.56 0.000 -.1520409 -.1159536
1.south -.3507181 .0695557 -5.04 0.000 -.4870447 -.2143915

year -.0008283 .0018372 -0.45 0.652 -.0044291 .0027725

south#c.year
1 .0031938 .0008606 3.71 0.000 .0015071 .0048805

_cons .5101968 .1006681 5.07 0.000 .312891 .7075025

/sigma_u .3045995 .0048346 63.00 0.000 .2951239 .314075
/sigma_e .2488682 .0018254 136.34 0.000 .2452904 .2524459

rho .599684 .0084097 .5831174 .6160733

Likelihood-ratio test of sigma_u=0: chibar2(01)= 6650.63 Prob>=chibar2 = 0.000

Observation summary: 0 left-censored observations
12334 uncensored observations
6890 right-censored observations
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The output includes the overall and panel-level variance components (labeled sigma e and sigma u,
respectively) together with ρ (labeled rho)

ρ =
σ2
ν

σ2
ε + σ2

ν

which is the percent contribution to the total variance of the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is
not different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of
the output. This test formally compares the pooled estimator (tobit) with the panel estimator.

Technical note
The random-effects model is calculated using quadrature, which is an approximation whose accuracy

depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xttobit likelihood function is calculated by Gauss–Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.



522 xttobit — Random-effects tobit models

Saved results
xttobit saves the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(N cd) number of completely determined observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(rho) ρ

e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(n quad) number of quadrature points
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xttobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(ivar) variable denoting groups
e(llopt) contents of ll(), if specified
e(ulopt) contents of ul(), if specified
e(k aux) number of auxiliary parameters
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(offset1) offset
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimator

Functions
e(sample) marks estimation sample

Methods and formulas
xttobit is implemented as an ado-file.

Assuming a normal distribution,N(0, σ2
ν), for the random effects νi, we have the joint (unconditional

of νi) density of the observed data from the ith panel

f(yoi1, . . . , y
o
ini |xi1, . . . ,xini) =

∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yoit,xitβ+ νi)

}
dνi

where

F (yoit,∆it) =



(√
2πσε

)−1
e−(yoit−∆it)

2/(2σ2
ε ) if yoit ∈ C

Φ
(
yoit−∆it

σε

)
if yoit ∈ L

1− Φ
(
yoit−∆it

σε

)
if yoit ∈ R

where C is the set of noncensored observations, L is the set of left-censored observations, R is the
set of right-censored observations, and Φ() is the cumulative normal distribution.

The panel level likelihood li is given by

li =
∫ ∞
−∞

e−ν
2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yoit,xitβ+ νi)

}
dνi

≡
∫ ∞
−∞

g(yoit, xit, νi)dνi

This integral can be approximated with M -point Gauss–Hermite quadrature

∫ ∞
−∞

e−x
2
h(x)dx ≈

M∑
m=1

w∗mh(a∗m)

This is equivalent to ∫ ∞
−∞

f(x)dx ≈
M∑
m=1

w∗m exp
{

(a∗m)2
}
f(a∗m)

where the w∗m denote the quadrature weights and the a∗m denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel level likelihoods li.



524 xttobit — Random-effects tobit models

The default approximation of the log likelihood is by adaptive Gauss–Hermite quadrature, which
approximates the panel level likelihood with

li ≈
√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}
g(yoit, xit,

√
2σ̂ia∗m + µ̂i)

where σ̂i and µ̂i are the adaptive parameters for panel i. Therefore, with the definition of g(yoit, xit, νi),
the total log likelihood is approximated by

L ≈
n∑
i=1

wi log
[√

2σ̂i
M∑
m=1

w∗m exp
{

(a∗m)2
}exp

{
−(
√

2σ̂ia∗m + µ̂i)2/2σ2
ν

}
√

2πσν

ni∏
t=1

F (yoit, xitβ+
√

2σ̂ia∗m + µ̂i)
]

where wi is the user-specified weight for panel i; if no weights are specified, wi = 1.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for µ̂i and σ̂i by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with σ̂i,0 = 1 and µ̂i,0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for li we use

li,k ≈
M∑
m=1

√
2σ̂i,k−1w

∗
m exp

{
a∗m)2

}
g(yoit, xit,

√
2σ̂i,k−1a

∗
m + µ̂i,k−1)

Letting
τi,m,k−1 =

√
2σ̂i,k−1a

∗
m + µ̂i,k−1

µ̂i,k =
M∑
m=1

(τi,m,k−1)

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yoit, xit, τi,m,k−1)

li,k

and

σ̂i,k =
M∑
m=1

(τi,m,k−1)2

√
2σ̂i,k−1w

∗
m exp

{
(a∗m)2

}
g(yoit, xit, τi,m,k−1)

li,k
− (µ̂i,k)2

and this is repeated until µ̂i,k and σ̂i,k have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

One can instead use the adaptive quadrature method of Liu and Pierce (1994), the int-
method(aghermite) option, which uses the mode and curvature of the mode as approximations for
the mean and variance. We take the integrand

g(yoit, xit, νi) =
e−ν

2
i /2σ

2
ν

√
2πσν

{
ni∏
t=1

F (yoit,xitβ+ νi)

}
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and find αi the mode of g(yoit, xit, νi). We calculate

γi = − ∂2

∂ν2
i

log{g(yoit, xit, νi)}
∣∣
νi=αi

Then∫ ∞
−∞

g(yoit, xit, νi)dνi ≈
(

2
γi

)1/2 M∑
m=1

w∗m exp
{

(a∗m)2
}
g

{
yoit, xit,

(
2
γi

)1/2

a∗m + αi

}

This adaptation is performed on the first iteration only; that is, the αi and γi are calculated once at
the first iteration and then held constant throughout later iterations.

The log likelihood can also be calculated by nonadaptive Gauss–Hermite quadrature, the int-
method(ghermite) option:

L =
n∑
i=1

wi log
{

Pr(yi1, . . . , yini |xi1, . . . ,xini)
}

≈
n∑
i=1

wi log

[
1√
π

M∑
m=1

w∗m

ni∏
t=1

F
{
yoit,xitβ+

√
2σνa∗m

}]

All three quadrature formulas require that the integrated function be well approximated by a
polynomial of degree equal to the number of quadrature points. The number of periods (panel size)
can affect whether

ni∏
t=1

F (yoit,xitβ+ νi)

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can
become less accurate. For large ρ, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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Also see
[XT] xttobit postestimation — Postestimation tools for xttobit

[XT] quadchk — Check sensitivity of quadrature approximation

[XT] xtintreg — Random-effects interval-data regression models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[R] tobit — Tobit regression

[U] 20 Estimation and postestimation commands



Title

xttobit postestimation — Postestimation tools for xttobit

Description
The following postestimation commands are available after xttobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

xb linear prediction assuming νi = 0, the default
stdp standard error of the linear prediction
stdf standard error of the linear forecast
pr0(a,b) Pr(a < y < b) assuming νi = 0
e0(a,b) E(y | a < y < b) assuming νi = 0
ystar0(a,b) E(y∗), y∗ = max{a,min(y, b)} assuming νi = 0

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction. It can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the
prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast. This is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress.

pr0(a,b) calculates estimates of Pr(a < y < b | x = xit, νi = 0), which is the probability that y
would be observed in the interval (a, b), given the current values of the predictors, xit, and given
a zero random effect. In the discussion that follows, these two conditions are implied.

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr0(20,30) calculates Pr(20 < y < 30);
pr0(lb,ub) calculates Pr(lb < y < ub); and
pr0(20,ub) calculates Pr(20 < y < ub).

a missing (a ≥ .) means −∞; pr0(.,30) calculates Pr(−∞ < y < 30);
pr0(lb,30) calculates Pr(−∞ < y < 30) in observations for which lb ≥ .
(and calculates Pr(lb < y < 30) elsewhere).

b missing (b ≥ .) means +∞; pr0(20,.) calculates Pr(+∞ > y > 20);
pr0(20,ub) calculates Pr(+∞ > y > 20) in observations for which ub ≥ .
(and calculates Pr(20 < y < ub) elsewhere).

e0(a,b) calculates estimates of E(y | a < y < b,x = xit, νi = 0), which is the expected value of
y conditional on y being in the interval (a, b), meaning that y is truncated. a and b are specified
as they are for pr0().

ystar0(a,b) calculates estimates of E(y∗ | x = xit, νi = 0), where y∗ = a if y ≤ a, y∗ = b if
y ≥ b, and y∗ = y otherwise, meaning that y∗ is the censored version of y. a and b are specified
as they are for pr0().

nooffset is relevant only if you specify offset(varname) for xttobit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xitβ
rather than xitβ+ offsetit.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands



Title

xtunitroot — Panel-data unit-root tests

Syntax
Levin–Lin–Chu test

xtunitroot llc varname
[

if
] [

in
] [

, LLC options
]

Harris–Tzavalis test

xtunitroot ht varname
[

if
] [

in
] [

, HT options
]

Breitung test

xtunitroot breitung varname
[

if
] [

in
] [

, Breitung options
]

Im–Pesaran–Shin test

xtunitroot ips varname
[

if
] [

in
] [

, IPS options
]

Fisher-type tests (combining p-values)

xtunitroot fisher varname
[

if
] [

in
]
, {dfuller | pperron} lags(#)[

Fisher options
]

Hadri Lagrange multiplier stationarity test

xtunitroot hadri varname
[

if
] [

in
] [

, Hadri options
]

LLC options Description

trend include a time trend
noconstant suppress panel-specific means
demean subtract cross-sectional means
lags(lag spec) specify lag structure for augmented Dickey–Fuller (ADF) regressions
kernel(kernel spec) specify method to estimate long-run variance

lag spec is either a nonnegative integer or one of aic, bic, or hqic followed by a positive integer.
kernel spec takes the form kernel maxlags, where kernel is one of bartlett, parzen, or quadraticspectral

and maxlags is either a positive number or one of nwest or llc.

HT options Description

trend include a time trend
noconstant suppress panel-specific means
demean subtract cross-sectional means
altt make small-sample adjustment to T
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Breitung options Description

trend include a time trend
noconstant suppress panel-specific means
demean subtract cross-sectional means
robust allow for cross-sectional dependence
lags(#) specify lag structure for prewhitening

IPS options Description

trend include a time trend
demean subtract cross-sectional means
lags(lag spec) specify lag structure for ADF regressions

lag spec is either a nonnegative integer or one of aic, bic, or hqic followed by a positive integer.

Fisher options Description

∗dfuller use ADF unit-root tests
∗pperron use Phillips–Perron unit-root tests
∗lags(#) specify lag structure for prewhitening
demean subtract cross-sectional means
dfuller opts any options allowed by the dfuller command
pperron opts any options allowed by the pperron command

∗Either dfuller or pperron is required.
∗lags(#) is required.

Hadri options Description

trend include a time trend
demean subtract cross-sectional means
robust allow for cross-sectional dependence
kernel(kernel spec) specify method to estimate long-run variance

kernel spec takes the form kernel
[

#
]

, where kernel is one of bartlett, parzen, or quadraticspectral

and # is a positive number.

Menu
Statistics > Longitudinal/panel data > Unit-root tests
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Description
xtunitroot performs a variety of tests for unit roots (or stationarity) in panel datasets. The Levin–

Lin–Chu (2002), Harris–Tzavalis (1999), Breitung (2000; Breitung and Das 2005), Im–Pesaran–Shin
(2003), and Fisher-type (Choi 2001) tests have as the null hypothesis that all the panels contain a unit
root. The Hadri (2000) Lagrange multiplier (LM) test has as the null hypothesis that all the panels
are (trend) stationary. The top of the output for each test makes explicit the null and alternative
hypotheses. Options allow you to include panel-specific means (fixed effects) and time trends in the
model of the data-generating process.

Options

LLC options

trend includes a linear time trend in the model that describes the process by which the series is
generated.

noconstant suppresses the panel-specific mean term in the model that describes the process by
which the series is generated. Specifying noconstant imposes the assumption that the series has
a mean of zero for all panels.

lags(lag spec) specifies the lag structure to use for the ADF regressions performed in computing
the test statistic.

Specifying lags(#) requests that # lags of the series be used in the ADF regressions. The default
is lags(1).

Specifying lags(aic #) requests that the number of lags of the series be chosen such that the
Akaike information criterion (AIC) for the regression is minimized. xtunitroot llc will fit ADF
regressions with 1 to # lags and choose the regression for which the AIC is minimized. This process
is done for each panel so that different panels may use ADF regressions with different numbers of
lags.

Specifying lags(bic #) is just like specifying lags(aic #), except that the Bayesian information
criterion (BIC) is used instead of the AIC.

Specifying lags(hqic #) is just like specifying lags(aic #), except that the Hannan–Quinn
information criterion is used instead of the AIC.

kernel(kernel spec) specifies the method used to estimate the long-run variance of each panel’s
series. kernel spec takes the form kernel maxlags. kernel is one of bartlett, parzen, or
quadraticspectral. maxlags is a number, nwest to request the Newey and West (1994)
bandwidth selection algorithm, or llc to request the lag truncation algorithm in Levin, Lin, and
Chu (2002).

Specifying, for example, kernel(bartlett 3) requests the Bartlett kernel with 3 lags.

Specifying kernel(bartlett nwest) requests the Bartlett kernel with the maximum number of
lags determined by the Newey and West bandwidth selection algorithm.

Specifying kernel(bartlett llc) requests the Bartlett kernel with a maximum lag determined
by the method proposed in Levin, Lin, and Chu’s (2002) article:

maxlags = int
(

3.21T 1/3
)

where T is the number of observations per panel. This is the default.
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demean requests that xtunitroot first subtract the cross-sectional averages from the series. When
specified, for each time period xtunitroot computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the
impact of cross-sectional dependence.

HT options

trend includes a linear time trend in the model that describes the process by which the series is
generated.

noconstant suppresses the panel-specific mean term in the model that describes the process by
which the series is generated. Specifying noconstant imposes the assumption that the series has
a mean of zero for all panels.

altt requests that xtunitroot use T − 1 instead of T in the formulas for the mean and variance
of the test statistic under the null hypothesis. When the number of time periods, T , is small (less
than 10 or 15), the test suffers from severe size distortions when fixed effects or time trends are
included; in these cases, using altt results in much improved size properties at the expense of
significantly less power.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When
specified, for each time period xtunitroot computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the
impact of cross-sectional dependence.

Breitung options

trend includes a linear time trend in the model that describes the process by which the series is
generated.

noconstant suppresses the panel-specific mean term in the model that describes the process by
which the series is generated. Specifying noconstant imposes the assumption that the series has
a mean of zero for all panels.

lags(#) specifies the number of lags used to remove higher-order autoregressive components of the
series. The Breitung test assumes the data are generated by an AR(1) process; for higher-order
processes, the first-differenced and lagged-level data are replaced by the residuals from regressions
of those two series on the first # lags of the first-differenced data. The default is to not perform
this prewhitening step.

robust requests a variant of the test that is robust to cross-sectional dependence.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When
specified, for each time period xtunitroot computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the
impact of cross-sectional dependence.

IPS options

trend includes a linear time trend in the model that describes the process by which the series is
generated.

lags(lag spec) specifies the lag structure to use for the ADF regressions performed in computing
the test statistic. With this option, xtunitroot reports Im, Pesaran, and Shin’s (2003) Wt-bar
statistic that is predicated on T going to infinity first, followed by N going to infinity. By default,
no lags are included, and xtunitroot instead reports Im, Pesaran, and Shin’s t̃-bar and Z

t̃-bar
statistics that assume T is fixed while N goes to infinity, as well as the t-bar statistic and exact
critical values that assume both N and T are fixed.
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Specifying lags(#) requests that # lags of the series be used in the ADF regressions. By default,
no lags are included.

Specifying lags(aic #) requests that the number of lags of the series be chosen such that the
AIC for the regression is minimized. xtunitroot llc will fit ADF regressions with 1 to # lags
and choose the regression for which the AIC is minimized. This process is done for each panel so
that different panels may use ADF regressions with different numbers of lags.

Specifying lags(bic #) is just like specifying lags(aic #), except that BIC is used instead of
the AIC.

Specifying lags(hqic #) is just like specifying lags(aic #), except that the Hannan–Quinn
information criterion is used instead of the AIC.

If you specify lags(0), then xtunitroot reports the Wt-bar statistic instead of the Zt-bar,
Z
t̃-bar, and t-bar statistics.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When
specified, for each time period xtunitroot computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the
impact of cross-sectional dependence.

Fisher options

dfuller requests that xtunitroot conduct ADF unit-root tests on each panel by using the dfuller
command. You must specify either the dfuller or the pperron option.

pperron requests that xtunitroot conduct Phillips–Perron unit-root tests on each panel by using
the pperron command. You must specify either the pperron or the dfuller option.

lags(#) specifies the number of lags used to remove higher-order autoregressive components of
the series. The Fisher test assumes the data are generated by an AR(1) process; for higher-order
processes, the first-differenced and lagged-level data are replaced by the residuals from regressions
of those two series on the first # lags of the first-differenced data. lags(#) is required.

dfuller opts are any options accepted by the dfuller command, including noconstant, trend,
drift, and lags(). Because xtunitroot calls dfuller quietly, the dfuller option regress
has no effect. See [TS] dfuller.

pperron opts are any options accepted by the pperron command, including noconstant, trend,
and lags(). Because xtunitroot calls pperron quietly, the pperron option regress has
no effect. See [TS] pperron.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When
specified, for each time period xtunitroot computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the
impact of cross-sectional dependence.

Hadri options

trend includes a linear time trend in the model that describes the process by which the series is
generated.

robust requests a variant of the test statistic that is robust to heteroskedasticity across panels.

kernel(kernel spec) requests a variant of the test statistic that is robust to serially correlated errors.
kernel spec specifies the method used to estimate the long-run variance of each panel’s series.
kernel spec takes the form kernel

[
#
]
. Three kernels are supported: bartlett, parzen, and

quadraticspectral.
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Specifying, for example, kernel(bartlett 3) requests the Bartlett kernel with 3 lags.

If # is not specified, then 1 lag is used.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When
specified, for each time period xtunitroot computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the
impact of cross-sectional dependence.

Remarks
Remarks are presented under the following headings:

Overview
Levin–Lin–Chu test
Harris–Tsavalis test
Breitung test
Im–Pesaran–Shin test
Fisher-type tests
Hadri LM test

Overview

We consider a simple panel-data model with a first-order autoregressive component:

yit = ρiyi,t−1 + z′itγi + εit (1)

where i = 1, . . . , N indexes panels; t = 1, . . . , Ti indexes time; yit is the variable being tested;
and εit is a stationary error term. The zit term can represent panel-specific means, panel-specific
means and a time trend, or nothing, depending on the options specified to xtunitroot. By default,
zit = 1, so that the term z′itγi represents panel-specific means (fixed effects). If trend is specified,
z′it = (1, t) so that z′itγi represents panel-specific means and linear time trends. For tests that allow it,
specifying noconstant omits the z′itγi term. The Im–Pesaran–Shin (xtunitroot ips), Fisher-type
(xtunitroot fisher), and Hadri LM (xtunitroot hadri) tests allow unbalanced panels, while
the remaining tests require balanced panels so that Ti = T for all i.

Panel unit-root tests are used to test the null hypothesis H0 : ρi = 1 for all i versus the alternative
Ha : ρi < 1. Depending on the test, Ha may hold, for one i, a fraction of all i or all i; the output
of the respective test precisely states the alternative hypothesis. Equation (1) is often written as

∆yit = φiyi,t−1 + z′itγi + εit (1′)

so that the null hypothesis is then H0 : φi = 0 for all i versus the alternative Ha : φi < 0.

The Hadri LM test for panel stationarity instead assumes the null hypothesis that all panels are
stationary versus the alternative that at least some of the panels contain unit roots. We discuss the
Hadri LM test in detail later, though for now our remarks focus on tests whose null hypothesis is that
the panels contain unit roots.

The various panel unit-root tests implemented by xtunitroot differ in several key aspects. First, the
Levin–Lin–Chu (xtunitroot llc), Harris–Tsavalis (xtunitroot ht), and Breitung (xtunitroot
breitung) tests make the simplifying assumption that all panels share the same autoregressive
parameter so that ρi = ρ for all i. The other tests implemented by xtunitroot, however, allow the
autoregressive parameter to be panel specific. Maddala and Wu (1999) provide an example of testing
whether countries’ economic growth rates converge to a long-run value. Imposing the restriction that
ρi = ρ for all i implies that the rate of convergence would be the same for all countries, an implication
that is too restrictive in practice.
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Second, the various tests make differing assumptions about the rates at which the number of
panels, N , and the number of time periods, T , tend to infinity or whether N or T is fixed. For
microeconomic panels of firms, for example, increasing the sample size would involve gathering data
on more firms while holding the number of time periods fixed; here N tends to infinity whereas T is
fixed. In a macroeconomic analysis of OECD countries, one would typically assume that N is fixed
whereas T tends to infinity.

Related to the previous point, the size of one’s sample will in large part determine which test is
most appropriate in a given situation. If a dataset has a small number of panels and a large number
of time periods, then a panel unit-root test that assumes that N is fixed or that N tends to infinity at
a slower rate than T will likely perform better than one that is designed for cases where N is large.

Hlouskova and Wagner (2006) provide a good overview of the types of panel unit-root tests
available with xtunitroot, and they present exhaustive Monte Carlo simulations examining the
tests’ performance. Baltagi (2008, chap. 12) also concisely discusses the tests implemented by
xtunitroot.

The following table summarizes some of the key differences among the various tests:

Test Options Asymptotics ρ under Ha Panels

LLC noconstant
√
N/T → 0 common balanced

LLC N/T → 0 common balanced

LLC trend N/T → 0 common balanced

HT noconstant N →∞, T fixed common balanced

HT N →∞, T fixed common balanced

HT trend N →∞, T fixed common balanced

Breitung noconstant (T,N)→seq ∞ common balanced

Breitung (T,N)→seq ∞ common balanced

Breitung trend (T,N)→seq ∞ common balanced

IPS N →∞, T fixed panel-specific unbalanced

or N and T fixed

IPS trend N →∞, T fixed panel-specific unbalanced

or N and T fixed

IPS lags() (T,N)→seq ∞ panel-specific unbalanced

IPS trend lags() (T,N)→seq ∞ panel-specific unbalanced

Fisher-type T →∞, N finite panel-specific unbalanced

or infinite

Hadri LM (T,N)→seq ∞ (not applicable) balanced

Hadri LM trend (T,N)→seq ∞ (not applicable) balanced

The first column identifies the test procedure, where we use LLC to denote the Levin–Lin–Chu test,
HT to denote the Harris–Tsavalis test, and IPS to denote the Im–Pesaran–Shin test. The second column
indicates the deterministic components included in (1) or (1′). The column labeled “Asymptotics”
indicates the behavior of the number of panels, N , and time periods, T , required for the test statistic
to have a well-defined asymptotic distribution. For example, the LLC test without the noconstant
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option requires that T grow at a faster rate than N so that N/T approaches zero; with the noconstant
option, we need only for T to grow faster than the square root of N (so T could grow more slowly
than N ).

The HT tests and the IPS tests without accommodations for serial correlation assume that the
number of time periods, T , is fixed, whereas N tends to infinity; xtunitroot also reports critical
values for the IPS tests that are valid in finite samples (where N and T are fixed).

Many of the tests are justified using sequential limit theory, which we denote as (T,N)→seq ∞.
First, the time dimension goes to infinity, and then the number of panels goes to infinity. As a practical
matter, these tests work best with “large” T and at least “moderate” N . See Phillips and Moon (2000)
for an introduction to asymptotics that depend on both N and T and their relation to nonstationary
panels. Phillips and Moon (1999) contains a more technical discussion of “multi-indexed” asymptotics.

The fourth column refers to the parameter ρi in (1) and φi in (1′). As we mentioned previously, some
tests assume that all panels have the same autoregressive parameter under the alternative hypothesis
of stationarity (denoted “common” in the table), while others allow for panel-specific autoregressive
parameters (denoted “panel-specific” in the table). The Hadri LM tests are not framed in terms of an
equation like (1) or (1′), so the distinction based on ρ is not applicable.

The final column indicates whether the panel dataset must be strongly balanced, meaning each
panel has the same number of observations covering the same time span. Except for the Fisher tests,
all the tests require that there be no gaps in any panel’s series.

We now discuss each test in turn.

Levin–Lin–Chu test

The starting point for the Levin–Lin–Chu (LLC) test is (1′) with the restriction that all panels
share a common autoregressive parameter. In a regression model like (1), εit is likely to be plagued
by serial correlation, so to mitigate this problem, LLC augment the model with additional lags of the
dependent variable:

∆yit = φyi,t−1 + z′itγi +
p∑
j=1

θij∆yi,t−j + uit (2)

The number of lags, p, can be specified using the lags() option, or you can have xtunitroot llc
select the number of lags that minimizes one of several information criteria. The LLC test assumes
that εit is independently distributed across panels and follows a stationary invertible autoregressive
moving-average process for each panel. By including sufficient lags of ∆yi,t in (2), uit will be white
noise; the test does not require uit to have the same variance across panels.

Under the null hypothesis of a unit root, yit is nonstationary, so a standard OLS regression t statistic
for φ will have a nonstandard distribution that depends in part on the specification of the zit term.
Moreover, the inclusion of a fixed-effect term in a dynamic model like (2) causes the OLS estimate of
φ to be biased toward zero; see Nickell (1981). The LLC method produces a bias-adjusted t statistic,
which the authors denote as t∗δ , that has an asymptotically normal distribution.

The LLC test without panel-specific intercepts or time trends, requested by specifying the nocon-

stant option with xtunitroot llc, is justified asymptotically if
√
N/T → 0, allowing the time

dimension T to grow more slowly than the cross-sectional dimension N ; LLC (2002) mention that
this assumption is particularly relevant for panel datasets typically encountered in microeconomic
applications.

If model (2) includes panel-specific means (the default for xtunitroot llc) or time trends
(requested with the trend option), then you must assume that N/T → 0 for the t∗δ statistic to have
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an asymptotically standard normal distribution. This implies that the time dimension, T , must grow
faster than the cross-sectional dimension, N , a situation more plausible with macroeconomic datasets.

LLC (2002) recommend using their test with panels of “moderate” size, which they describe as
having between 10 and 250 panels and 25 to 250 observations per panel. Baltagi (2008, 280) mentions
that the requirement N/T → 0 implies that N should be small relative to T .

Technical note
Panel unit-root tests have frequently been used to test the purchasing power parity (PPP) hypothesis.

We use a PPP dataset to illustrate the xtunitroot command, but understanding PPP is not required
to understand how these tests are applied. Here we outline PPP and explain how to test it using panel
unit-root tests; uninterested readers can skip the remainder of this technical note. Our discussion and
examples are motivated by those in Oh (1996) and Patterson (2000, chap. 13). Also see Rogoff (1996)
for a broader introduction to PPP.

The PPP hypothesis is based on the Law of One Price, which stipulates that the price of a tradeable
good will be the same everywhere. Absolute PPP stipulates that the nominal exchange rate, E, is

E =
P

P ∗

where P is the price of a basket of goods in the home country and P ∗ is the price of the same basket
in the foreign country. The exchange rate, E, indicates the price of a foreign currency in terms of
our “home” currency or, equivalently, how many units of the home currency are needed to buy one
unit of the foreign currency.

Now consider the real exchange rate, λ, which tells us the prices of goods and services—things
we actually consume—in a foreign country relative to their prices at home. We have

λ =
EP ∗

P
(3)

λ in general does not equal unity for many reasons, including the fact that not all goods are tradeable
across countries (haircuts being the textbook example), trade barriers such as tariffs and quotas,
differences among countries in how price indices are constructed, and the Harrod–Balassa–Samuelson
effect, which links productivity and price levels; see Obstfeld and Rogoff (1996, 210–216).

Taking logs of both sides of (3), we have

y ≡ lnλ = lnE + lnP ∗ − lnP

PPP holds only if the real exchange rate reverts to its equilibrium value over time. Thus, to test for
PPP, we test whether y contains a unit root. If y does contain a unit root, we reject PPP.

The dataset pennxrate.dta contains real exchange-rate data based on the Penn World Table
version 6.2 (Heston, Summers, and Aten 2006). The data are a balanced panel consisting of 151
countries observed over 34 years, from 1970 through 2003. The United States was treated as the
domestic country and is therefore not included. The variable lnrxrate contains the log of the real
exchange rate and is the variable on which we conduct panel unit-root tests in the examples.

Two indicator variables are included in the dataset as well. The variable oecd flags 27 countries
aside from the United States that are members of the Organization for Economic Cooperation and
Development (OECD). (The Czech Republic and the Slovak Republic are excluded because they did
not become independent countries until 1993.) The variable g7 flags the six countries aside from the
United States that are members of the Group of Seven (G7) nations.
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Example 1

The dataset pennxrate.dta contains real exchange-rate data for a panel of countries observed
over 34 years. Here we use the LLC test to determine whether the series lnrxrate, the log of real
exchange rates, contains a unit root for six nations that are currently in the G7 group of advanced
economies. We do not have any reason to believe lnrxrate should exhibit a global trend, so we do
not include the trend option.

Looking at (2), we have no a priori knowledge of the number of lags, p, needed to ensure that
uit is white noise, so we let xtunitroot choose the number of lags for each panel by minimizing
the AIC, subject to a maximum of 10 lags.

We type

. use http://www.stata-press.com/data/r12/pennxrate

. xtunitroot llc lnrxrate if g7, lags(aic 10)

Levin-Lin-Chu unit-root test for lnrxrate

Ho: Panels contain unit roots Number of panels = 6
Ha: Panels are stationary Number of periods = 34

AR parameter: Common Asymptotics: N/T -> 0
Panel means: Included
Time trend: Not included

ADF regressions: 1.00 lags average (chosen by AIC)
LR variance: Bartlett kernel, 10.00 lags average (chosen by LLC)

Statistic p-value

Unadjusted t -6.7538
Adjusted t* -4.0277 0.0000

The header of the output summarizes the exact specification of the test and dataset. Because we
did not specify the noconstant option, the test allowed for panel-specific means. On average, p = 1
lag of the dependent variable of (2) were included as regressors in the ADF regressions. By default,
xtunitroot estimated the long-run variance of ∆lnrxrateit by using a Bartlett kernel with an
average of 10 lags.

The LLC bias-adjusted test statistic t∗δ = −4.0277 is significantly less than zero (p < 0.00005), so
we reject the null hypothesis of a unit-root [that is, that φ = 0 in (2)] in favor of the alternative that
lnrxrate is stationary (that is, that φ < 0). This conclusion supports the PPP hypothesis.

Labeled “Unadjusted t” in the output is a conventional t statistic for testing H0 : φ = 0. When
the model does not include panel-specific means or trends, this test statistic has a standard normal
limiting distribution and its p-value is shown in the output; the unadjusted statistic, tδ , diverges to
negative infinity if trends or panel-specific constants are included, so a p-value is not displayed in
those cases.

Because the G7 economies have many similarities, our results could be affected by cross-sectional
correlation in real exchange rates; O’Connell’s (1998) results showed that the LLC test exhibits
severe size distortions in the presence of cross-sectional correlation. LLC (2002) suggested removing
cross-sectional averages from the data to help control for this correlation. We can do this by specifying
the demean option to xtunitroot:
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. xtunitroot llc lnrxrate if g7, lags(aic 10) demean

Levin-Lin-Chu unit-root test for lnrxrate

Ho: Panels contain unit roots Number of panels = 6
Ha: Panels are stationary Number of periods = 34

AR parameter: Common Asymptotics: N/T -> 0
Panel means: Included
Time trend: Not included Cross-sectional means removed

ADF regressions: 1.50 lags average (chosen by AIC)
LR variance: Bartlett kernel, 10.00 lags average (chosen by LLC)

Statistic p-value

Unadjusted t -5.5473
Adjusted t* -2.0813 0.0187

Once we control for cross-sectional correlation by removing cross-sectional means, we can no
longer reject the null hypothesis of a unit root at the 1% significance level, though we can reject at
the 5% level.

Here we chose the number of lags based on the AIC criterion in an admission that we do not
know the true number of lags to include in (2). However, the test statistics are derived under the
assumption that the lag order, p, is known. If we happen to choose the wrong number of lags, then
the distribution of the test statistic will depart from its expected distribution that assumes p is known.

Harris–Tsavalis test
In many datasets, particularly in microeconomics, the time dimension, T , is small, so tests whose

asymptotic properties are established by assuming that T tends to infinity can lead to incorrect
inference. HT (1999) derived a unit-root test that assumes that the time dimension, T , is fixed. Their
simulation results suggest that the test has favorable size and power properties for N greater than
25, and they report (p. 213) that power improves faster as T increases for a given N than when N
increases for a given T .

The HT test statistic is based on the OLS estimator, ρ, in the regression model

yit = ρyi,t−1 + z′itγi + εit (4)

where the term z′itγi allows for panel-specific means and trends and was discussed in Overview.
Harris and Tsavalis assume that εit is independent and identically distributed (i.i.d.) normal with
constant variance across panels. Because of the bias induced by the inclusion of the panel means and
time trends in this model, the expected value of the OLS estimator is not equal to unity under the
null hypothesis. Harris and Tsavalis derived the mean and standard error of ρ̂ for (4) under the null
hypothesis H0 : ρ = 1 when neither panel-specific means nor time trends are included (requested with
the noconstant option), when only panel-specific means are included (the default), and when both
panel-specific means and time trends are included (requested with the trend option). The asymptotic
distribution of the test statistic is justified as N →∞, so you should have a relatively large number
of panels when using this test. Notice that, like the LLC test, the HT test assumes that all panels share
the same autoregressive parameter.
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Example 2

Because the HT test is designed for cases where N is relatively large, here we test whether the
series lnrxrate contains a unit root using all 151 countries in our dataset. We will again remove
cross-sectional means to help control for contemporaneous correlation. We type

. xtunitroot ht lnrxrate, demean

Harris-Tzavalis unit-root test for lnrxrate

Ho: Panels contain unit roots Number of panels = 151
Ha: Panels are stationary Number of periods = 34

AR parameter: Common Asymptotics: N -> Infinity
Panel means: Included T Fixed
Time trend: Not included Cross-sectional means removed

Statistic z p-value

rho 0.8184 -13.1239 0.0000

Here we strongly reject the null hypothesis of a unit root, again finding support for PPP. The point
estimate of ρ in (4) is 0.8184, and the z statistic is −13.12.

Can we directly compare the results from the LLC and HT tests? We used a subset of the data for
the LLC test but used all the data for the HT test. That leads to the obvious answer that no, our results
are not entirely comparable. However, a more subtle issue regarding the asymptotic properties of the
tests also warrants caution when comparing results.

The LLC test assumes that N/T → 0, so N should be small relative to T . Moreover, with our
exchange-rate dataset, we are much more likely to be able to add more years of data rather than
add more countries, because the number of countries in the world is for the most part fixed. Hence,
assuming T grows faster than N is certainly plausible.

On the other hand, the HT test assumes that T is fixed whereas N goes to infinity. Is that assumption
plausible for our dataset? As we just mentioned, T likely grows faster than N here, so using a test
that assumes T is fixed whereas N grows is hard to justify with our dataset.

In short, when selecting a panel unit-root test, you must consider the relative sizes of N and T
and the relative speeds at which they tend to infinity or whether either N or T is fixed.

Breitung test

Both the LLC and HT tests take the approach of first fitting a regression model and subsequently
adjusting the autoregressive parameter or its t statistic to compensate for the bias induced by having
a dynamic regressor and fixed effects in the model. The Breitung (2000; Breitung and Das 2005) test
takes a different tact, adjusting the data before fitting a regression model so that bias adjustments are
not needed.

In the LLC test, additional lags of the dependent variable could be included in (2) to control for serial
correlation. The Breitung procedure instead allows for a prewhitening of the series before computing
the test. If the trend option is not specified, we regress ∆yit and yi,t−1 on ∆yi,t−1, . . . ,∆yi,t−p
and use the residuals from those regressions in place of ∆yi,t and yi,t−1 in computing the test. You
specify the number of lags, p, to use by specifying lags(#). If the trend option is specified, then
the Breitung method uses a different prewhitening procedure that involves fitting only one (instead
of two) preliminary regressions; see Methods and formulas for details.
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Monte Carlo simulations by Breitung (2000) show that bias-corrected statistics such as LLC’s t∗δ
suffer from low power, particularly against alternative hypotheses with autoregressive parameters near
one and when panel-specific effects are included. In contrast, the Breitung (2000) test statistic exhibits
much higher power in these cases. Moreover, the Breitung test has good power even with small
datasets (N = 25, T = 25), though the power of the test appears to deteriorate when T is fixed and
N is increased.

The Breitung test assumes that the error term εit is uncorrelated across both i and t. xtunitroot
breitung optionally also reports a version of the statistic based on Breitung and Das (2005) that is
robust to cross-sectional correlation.

Example 3

Here we test whether lnrxrate contains a unit root for the subset of 27 OECD countries in our
dataset. We will use the robust option to obtain a test statistic that is robust to cross-sectional
correlation, so we will not subtract the cross-sectional means via the demean option. We type

. xtunitroot breitung lnrxrate if oecd, robust

Breitung unit-root test for lnrxrate

Ho: Panels contain unit roots Number of panels = 27
Ha: Panels are stationary Number of periods = 34

AR parameter: Common Asymptotics: T,N -> Infinity
Panel means: Included sequentially
Time trend: Not included Prewhitening: Not performed

Statistic p-value

lambda* -1.6794 0.0465

* Lambda robust to cross-sectional correlation

We can reject the null of a unit root at the 5% level but not at the 1% level.

Im–Pesaran–Shin test
All the tests we have discussed thus far assume that all panels share a common autoregressive

parameter, ρ. Cultural, institutional, and other factors make such an assumption tenuous for both
macro- and microeconometric panel datasets. IPS (2003) developed a set of tests that relax the
assumption of a common autoregressive parameter. Moreover, the IPS test does not require balanced
datasets, though there cannot be gaps within a panel. The starting point for the IPS test is a set of
Dickey–Fuller regressions of the form

∆yit = φiyi,t−1 + z′itγi + εit (5)

Notice that here φ is panel-specific, indexed by i, whereas in (2), φ is constant. Im, Pesaran, and
Shin assume that εit is independently distributed normal for all i and t, and they allow εit to have
heterogeneous variances σ2

i across panels.

As described by Maddala and Wu (1999), one way to view the key difference between the IPS and
LLC tests is that here we fit (5) to each panel separately and average the resulting t statistics, whereas
in the LLC test we pool the data before fitting an equation such as (2) (thus we impose a common
autoregressive parameter) and compute a test statistic based on the pooled regression results.
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Under the null hypothesis that all panels contain a unit root, we have φi = 0 for all i. The
alternative is that the fraction of panels that follow stationary processes is nonzero; that is, as N
tends to infinity, the fraction N1/N converges to a nonzero value, where N1 is the number of panels
that are stationary.

Whether you allow for serially correlated errors determines the test statistics produced, and because
there are substantive differences in the output, we consider the serially uncorrelated and serially
correlated cases separately. First, we consider the serially uncorrelated case, which xtunitroot
assumes when you do not specify the lags() option.

The IPS test allowing for heterogeneous panels with serially uncorrelated errors assumes that the
number of time periods, T , is fixed; xtunitroot ips produces statistics both for the case where
N is fixed and for the case where N → ∞. Under the null hypothesis of a unit root, the usual t
statistic, ti, for testing H0 : φi = 0 in (5) does not have a mean of zero. For the case where N is
fixed, IPS used simulation to tabulate “exact” critical values for the average of the ti statistics when
the dataset is balanced; these critical values are not available with unbalanced datasets. The critical
values are “exact” only when the error term is normally distributed and when T corresponds to one
of the sample sizes used in their simulation studies. For other values of T , xtunitroot ips linearly
interpolates the values in IPS (2003, table 2).

For the case where N → ∞, they used simulation to tabulate the mean and variance of ti for
various values of T under the null hypothesis and showed that a bias-adjusted average of the ti’s has
a standard normal limiting distribution. We illustrate the test with an example.

Example 4

Here we test whether lnrxrate contains a unit root for the subset of OECD countries. We type

. xtunitroot ips lnrxrate if oecd, demean

Im-Pesaran-Shin unit-root test for lnrxrate

Ho: All panels contain unit roots Number of panels = 27
Ha: Some panels are stationary Number of periods = 34

AR parameter: Panel-specific Asymptotics: T,N -> Infinity
Panel means: Included sequentially
Time trend: Not included Cross-sectional means removed

ADF regressions: No lags included

Fixed-N exact critical values
Statistic p-value 1% 5% 10%

t-bar -3.1327 -1.810 -1.730 -1.680
t-tilde-bar -2.5771
Z-t-tilde-bar -7.3911 0.0000

As with the other unit-root tests available with xtunitroot, the header of the output contains a
summary of the dataset’s dimensions and the null and alternative hypotheses. First, consider the
statistic labeled t-bar, which IPS denote as t-barNT . This statistic is appropriate when you assume
that both N and T fixed; exact critical values reported in IPS (2003) are reported immediately to
its right. Here, because t-barNT is less than even its 1% critical value, we strongly reject the null
hypothesis that all series contain a unit root in favor of the alternative that a nonzero fraction of the
panels represent stationary processes.

The statistic labeled t-tilde-bar is IPS’s t̃-barNT statistic and is similar to the t-barNT statistic,
except that a different estimator of the Dickey–Fuller regression error variance is used. A standardized
version of this statistic, Z

t̃-bar, is labeled Z-t-tilde-bar in the output and has an asymptotic standard
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normal distribution. Here the p-value corresponding to Z-t-tilde-bar is essentially zero, so we
strongly reject the null that all series contain a unit root.

Technical note

Just as the Z
t̃-bar statistic corresponds to t̃-barNT , IPS present a Zt-bar statistic corresponding to

t-barNT . However, the Zt-bar statistic does not have an asymptotic normal distribution, and so it is
not presented in the output. Zt-bar is available in the saved results as r(zt).

When serial correlation is present, we augment the Dickey–Fuller regression with further lags of
the dependent variable:

∆yit = φiyi,t−1 + z′itγi +
p∑
j=1

∆yi,t−j + εit (6)

where the number of lags, p, is specified using the lags() option, and if the trend option is
specified, we also include a time trend with panel-specific slope. You can either specify a number or
have xtunitroot choose the number of lags for each panel by minimizing an information criterion.
Here xtunitroot produces the IPS Wt-bar statistic, which has an asymptotically standard normal
distribution as T → ∞ followed by N → ∞. As a practical matter, this means you should have a
reasonably large number of both time periods and panels to use this test.

Part of the computation of the Wt-bar statistic involves retrieving expected values and variances of
the t statistic for βi in (6) in table 3 of IPS (2003). Because expected values have not been computed
beyond p = 8 lags in (6), you cannot request more than 8 lags in the lags() option.

Example 5

We again test whether lnrxrate contains a unit root for the subset of OECD countries, except we
allow for serially correlated errors. We will choose the number of lags for the ADF regressions by
minimizing the AIC criterion, subject to a maximum of 8 lags. We type

. xtunitroot ips lnrxrate if oecd, lags(aic 8) demean

Im-Pesaran-Shin unit-root test for lnrxrate

Ho: All panels contain unit roots Number of panels = 27
Ha: Some panels are stationary Number of periods = 34

AR parameter: Panel-specific Asymptotics: T,N -> Infinity
Panel means: Included sequentially
Time trend: Not included Cross-sectional means removed

ADF regressions: 1.48 lags average (chosen by AIC)

Statistic p-value

W-t-bar -7.3075 0.0000
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Fisher-type tests

In our discussion of the IPS test, we intimated that the test statistics could be viewed as averages
of bias-adjusted t statistics for each panel. As Maddala and Wu (1999, 635) describe the IPS test,
“. . . the IPS test is a way of combining the evidence on the unit-root hypothesis from the N unit-root
tests performed on the N cross-section units.” Fisher-type panel unit-root tests make this approach
explicit.

Meta-analysis, frequently used in biostatistics and medical sciences, is the combination of results
from multiple studies designed to test a similar hypothesis in order to yield a more decisive conclusion.
One type of meta-analysis, first proposed by R. A. Fisher, combines the p-values from independent
tests to obtain an overall test statistic and is frequently called a Fisher-type test. See Whitehead (2002,
sec. 9.8) for an introduction. In the context of panel data unit-root tests, we perform a unit-root test
on each panel’s series separately, then combine the p-values to obtain an overall test of whether the
panel series contains a unit root.

xtunitroot fisher performs either ADF or Phillips–Perron unit-root tests on each panel depending
on whether you specify the dfuller or pperron option. The actual tests are conducted by the dfuller
and pperron commands, and you can specify to xtunitroot fisher any options those commands
take; see [TS] dfuller and [TS] pperron.

xtunitroot fisher combines the p-values from the panel-specific unit-root tests using the four
methods proposed by Choi (2001). Three of the methods differ in whether they use the inverse χ2,
inverse normal, or inverse logit transformation of p-values, and the fourth is a modification of the
inverse χ2 transformation that is suitable for when N tends to infinity. The inverse normal and inverse
logit transformations can be used whether N is finite or infinite.

The null hypothesis being tested by xtunitroot fisher is that all panels contain a unit root.
For a finite number of panels, the alternative is that at least one panel is stationary. As N tends to
infinity, the number of panels that do not have a unit root should grow at the same rate as N under
the alternative hypothesis.

Example 6

Here we test for a unit root in lnrxrate using all 151 countries in our sample. We will use the
ADF test. As before, we do not include a trend in real exchange rates and will therefore not specify
the trend option. However, because the mean real exchange rate for any country is nonzero, we
will specify the drift option. We will use two lags in the ADF regressions, and we will remove
cross-sectional means by using demean. We type
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. xtunitroot fisher lnrxrate, dfuller drift lags(2) demean

Fisher-type unit-root test for lnrxrate
Based on augmented Dickey-Fuller tests

Ho: All panels contain unit roots Number of panels = 151
Ha: At least one panel is stationary Number of periods = 34

AR parameter: Panel-specific Asymptotics: T -> Infinity
Panel means: Included
Time trend: Not included Cross-sectional means removed
Drift term: Included ADF regressions: 2 lags

Statistic p-value

Inverse chi-squared(302) P 975.9130 0.0000
Inverse normal Z -19.6183 0.0000
Inverse logit t(759) L* -20.9768 0.0000
Modified inv. chi-squared Pm 27.4211 0.0000

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.

All four of the tests strongly reject the null hypothesis that all the panels contain unit roots. Choi’s
(2001) simulation results suggest that the inverse normal Z statistic offers the best trade-off between
size and power, and he recommends using it in applications. We have observed that the inverse
logit L∗ test typically agrees with the Z test. Under the null hypothesis, Z has a standard normal
distribution and L∗ has a t distribution with 5N + 4 degrees of freedom. Low values of Z and L∗

cast doubt on the null hypothesis.

When the number of panels is finite, the inverse χ2 P test is applicable; this statistic has a χ2

distribution with 2N degrees of freedom, and large values are cause to reject the null hypothesis.
Under the null hypothesis, as T → ∞ followed by N → ∞, P tends to infinity so that P has a
degenerate limiting distribution. For large panels, Choi (2001) therefore proposes the modified inverse
χ2 Pm test which converges to a standard normal distribution; a large value of Pm casts doubt on
the null hypothesis. Choi’s simulation results do not reveal a specific value of N over which Pm
should be preferred to P , though he mentions that N = 100 is still too small for Pm to have an
approximately normal distribution.

Hadri LM test
All the tests we have discussed so far take as the null hypothesis that the series contains a unit

root. Classical statistical methods are designed to reject the null hypothesis only when the evidence
against the null is sufficiently overwhelming. However, because unit-root tests typically are not very
powerful against alternative hypotheses of somewhat persistent but stationary processes, reversing
roles and testing the null hypothesis of stationarity against the alternative of a unit root is appealing.
For pure time series, the KPSS test of Kwiatkowski et al. (1992) is one such test.

The Hadri (2000) LM test uses panel data to test the null hypothesis that the data are stationary
versus the alternative that at least one panel contains a unit root. The test is designed for cases
with large T and moderate N . The motivation for the test is straightforward. Suppose we include
a panel-specific time trend (using the trend option with xtunitroot hadri) and write our series,
yit, as

yit = rit + βit+ εit
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where rit is a random walk,
rit = ri,t−1 + uit

and εit and uit are zero-mean i.i.d. normal errors. If the variance of uit were zero, then rit would
collapse to a constant; yit would therefore be trend stationary. Using this logic, the Hadri LM test
tests the hypothesis

H0 : λ =
σ2
u

σ2
ε

= 0 versus Ha : λ > 0

Two options to xtunitroot hadri allow you to relax the assumption that εit is i.i.d., though
normality is still required. You can specify the robust option to obtain a variant of the test that is
robust to heteroskedasticity across panels, or you can specify kernel() to obtain a variant that is
robust to serial correlation and heteroskedasticity. Asymptotically, the Hadri LM test is justified as
T →∞ followed by N →∞. As a practical matter, Hadri (2000) recommends this test for “large”
T and “moderate” N .

Example 7

We now test the null hypothesis that lnrxrate is stationary for the subset of OECD countries. To
control for serial correlation, we will use a Bartlett kernel with 5 lags. We type

. xtunitroot hadri lnrxrate if oecd, kernel(bartlett 5) demean

Hadri LM test for lnrxrate

Ho: All panels are stationary Number of panels = 27
Ha: Some panels contain unit roots Number of periods = 34

Time trend: Not included Asymptotics: T, N -> Infinity
Heteroskedasticity: Robust sequentially
LR variance: Bartlett kernel, 5 lags Cross-sectional means removed

Statistic p-value

z 9.6473 0.0000

We strongly reject the null hypothesis that all panels’ series are stationary in favor of the alternative
that at least one of them contains a unit root. In contrast, the previous examples generally rejected
the null hypothesis that all series contain unit roots in favor of the alternative that at least some
are stationary. For cautionary remarks on the use of panel unit-root tests in the examination of PPP,
see, for example, Banerjee, Marcellino, and Osbat (2005). In short, our results are qualitatively quite
similar to those reported in the literature, though Banerjee, Marcellino, and Osbat argue that because
of cross-unit cointegration and long-run relationships among countries, panel unit-root tests quite
often reject the null hypothesis even when true.
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Saved results
xtunitroot llc saves the following in r():

Scalars
r(N) number of observations
r(N g) number of groups
r(N t) number of time periods
r(sig adj) standard-deviation adjustment
r(mu adj) mean adjustment
r(delta) pooled estimate of δ
r(se delta) pooled standard error of δ̂
r(Var ep) variance of whitened differenced series
r(sbar) mean of ratio of long-run to innovation standard deviations
r(ttilde) observations per panel after lagging and differencing
r(td) unadjusted tδ statistic
r(p td) p-value for tδ
r(tds) adjusted t∗δ statistic
r(p tds) p-value for t∗δ
r(hac lags) lags used in HAC variance estimator
r(hac lagm) average lags used in HAC estimator
r(adf lags) lags used in ADF regressions
r(adf lagm) average lags used in ADF regressions

Macros
r(test) llc
r(hac kernel) kernel used in HAC variance estimator
r(hac method) HAC lag-selection algorithm
r(adf method) ADF regression lag-selection criterion
r(demean) demean, if the data were demeaned
r(deterministics) noconstant, constant, or trend

xtunitroot ht saves the following in r():

Scalars
r(N) number of observations
r(N g) number of groups
r(N t) number of time periods
r(rho) estimated ρ

r(Var rho) variance of ρ under H0

r(mean rho) mean of ρ under H0

r(z) z statistic
r(p) p-value

Macros
r(test) ht
r(demean) demean, if the data were demeaned
r(deterministics) noconstant, constant, or trend
r(altt) altt, if altt was specified
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xtunitroot breitung saves the following in r():

Scalars
r(N) number of observations
r(N g) number of groups
r(N t) number of time periods
r(lambda) test statistic λ
r(lrobust) robust test statistic λR
r(p) p-value for λ
r(p lrobust) p-value for λR
r(lags) lags used for prewhitening

Macros
r(test) breitung
r(demean) demean, if the data were demeaned
r(robust) robust, if specified
r(deterministics) noconstant, constant, or trend

xtunitroot ips saves the following in r():

Scalars
r(N) number of observations
r(N g) number of groups
r(N t) number of time periods
r(tbar) test statistic t-barNT
r(cv 10) exact 10% critical value for t-barNT
r(cv 5) exact 5% critical value for t-barNT
r(cv 1) exact 1% critical value for t-barNT
r(zt) test statistic Zt-bar
r(ttildebar) test statistic t̃-barNT
r(zttildebar) test statistic Z

t̃-bar
r(p zttildebar) p-value for Z

t̃-bar
r(wtbar) test statistic Wt-bar
r(p wtbar) p-value for Wt-bar
r(lags) lags used in ADF regressions
r(lagm) average lags used in ADF regressions

Macros
r(test) ips
r(demean) demean, if the data were demeaned
r(adf method) ADF regression lag-selection criterion
r(deterministics) constant or trend
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xtunitroot fisher saves the following in r():

Scalars
r(N) number of observations
r(N g) number of groups
r(N t) number of time periods
r(P) inverse χ2 P statistic
r(df P) P statistic degrees of freedom
r(p P) p-value for P statistic
r(L) inverse logit L statistic
r(df L) L statistic degrees of freedom
r(p L) p-value for L statistic
r(Z) inverse normal Z statistic
r(p Z) p-value for Z statistic
r(Pm) modified inverse χ2 Pm statistic
r(p Pm) p-value for Pm statistic

Macros
r(test) fisher
r(urtest) dfuller or pperron
r(options) options passed to dfuller or pperron
r(demean) demean, if the data were demeaned

xtunitroot hadri saves the following in r():

Scalars
r(N) number of observations
r(N g) number of groups
r(N t) number of time periods
r(var) variance of z under H0

r(mu) mean of z under H0

r(z) test statistic z
r(p) p-value for z
r(lags) lags used for HAC variance

Macros
r(test) hadri
r(demean) demean, if the data were demeaned
r(robust) robust, if specified
r(kernel) kernel used for HAC variance
r(deterministics) constant or trend

Methods and formulas
Methods and formulas are presented under the following headings:

Levin–Lin–Chu test
Harris–Tsavalis test
Breitung test

Breitung test without trend
Breitung test with trend

Im–Pesaran–Shin test
Fisher-type tests
Hadri LM test

xtunitroot is implemented as an ado-file.

We consider a simple panel-data model with a first-order autoregressive component:

yit = ρiyi,t−1 + z′itγi + εit
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where i = 1, . . . , N indexes panels and t = 1, . . . , T indexes time. For the IPS, Fisher-type, and
Hadri LM tests, we instead have t = 1, . . . , Ti, because they do not require balanced panels. εit is a
zero-mean error term; we discuss the assumptions about εit for each test below. Here we use N to
denote the number of panels, not the total number of observations. By default, zit = 1, so that the
term z′itγi represents panel-specific means (fixed effects). If noconstant is specified, z′itγi vanishes.
If trend is specified, z′it = (1, t) so that z′itγi represents panel-specific means and linear time trends.

Levin–Lin–Chu test
The starting point for the LLC test is the regression model

∆yit = φyi,t−1 + z′itγi +
pi∑
j=1

θij∆yi,t−j + uit (7)

In (1′), LLC assume εit is independently distributed across panels and follows a stationary invertible
process so that with sufficient lags of ∆yit included in (7), uit will be white noise with potentially
heterogeneous variance across panels. If lags(#) is specified with xtunitroot llc, then we set
pi = # for all panels i = 1, . . . , N . Otherwise, we fit (7) for each panel individually for lags
1 . . . pmax and choose the lag length, pi, that minimizes the information criterion requested by the
user. During this step, we restrict estimation to the subset of observations that are valid when pmax

lags are included. Information criteria are defined as follows:

AIC = (−2 lnL+ 2k)/M
BIC = (−2 lnL+ k lnM)/M

HQIC = (−2 lnL+ 2k ln lnM)/M

where lnL is the log likelihood assuming Gaussian errors, M = T − pmax− 2, and k is the number
of parameters in (7).

With the lag orders, pi, in hand, the test proceeds in three main steps, the first of which is to use
panel-by-panel OLS regressions to obtain the orthogonalized residuals

êit = ∆yit −
pi∑
j=1

θ̂ij∆yij − z′itγ̂i (8)

and

v̂i,t−1 = yi,t−1 −
pi∑
j=1

θ̃ij∆yij − zitγ̃i (9)

To control for panel-level heterogeneity, compute

ẽit = êit/σ̂εi and ṽi,t−1 = v̂i,t−1/σ̂εi

where

σ̂2
εi =

1
T − pi − 1

T∑
t=pi

(
êit − δ̂iv̂i,t−1

)2

and δ̂i is the OLS coefficient from a regression of êit on v̂i,t−1. If time trends are included (by
specifying the trend option), then a linear time trend is included in regressions (7), (8), and (9).
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In the second step, we estimate the ratio of long-run to short-run variances. Under the null
hypothesis of a unit root, the long-run variance of the model without panel-specific intercepts or time
trends (zit = {∅}) can be estimated as

σ̂2
yi =

1
T − 1

T∑
t=2

∆y2
it +

2
T − 1

m∑
j=1

K(j,m)

 T∑
t=j+2

∆yit∆yi,t−j


where m is the maximum number of lags and K(j,m) is the kernel weight function. Define
z = j/(m+ 1). If kernel is bartlett, then

K(j,m) =
{ 1− z 0 ≤ z ≤ 1

0 otherwise

If kernel is parzen, then

K(j,m) =

{
1− 6z2 + 6z3 0 ≤ z ≤ 0.5
2(1− z)3 0.5 < z ≤ 1
0 otherwise

If kernel is quadraticspectral, then

K(j,m) =
{

1 z = 0
3{sin(θ)/θ − cos(θ)}/θ2 otherwise

where θ = 6πz/5. If the user requests automatic bandwidth (lag) selection using the Newey–West
algorithm, then we use the method documented in Methods and formulas of [R] ivregress with
zi = h = 1. If automatic lag selection with the LLC algorithm is chosen, then m = int(3.21T 1/3).

If panel-specific intercepts are included (by not specifying noconstant), then in the formula for
σ̂2
yi we replace ∆yit with ∆yit−∆yit, where ∆yit is the panel-level mean of ∆yit for panel i. Let

ŝi = σ̂yi/σ̂εi, and denote ŜN = N−1
∑
i ŝi.

In the third step, we run the OLS regression

ẽit = δṽi,t−1 + ε̃it

Called the “Basic test statistic” in the output of xtunitroot llc is the standard t statistic for δ
computed as

tδ = δ̂/se
(δ̂)
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where

se
(δ̂)

= σ̂
ε̃

(
N∑
i=1

T∑
t=pi+2

ṽ2
i,t−1

)−1/2

σ̂2

ε̃
=

1

NT̃

N∑
i=1

∑
t=pi+2

(ẽit − δṽi,t−1)2

and T̃ = T − p− 1 with p the average of p1, . . . , pN .

The adjusted test statistic is then computed as

t∗δ =
tδ −NT̃ ŜN se

(δ̂)
µ∗
T̃

σ∗
T̃

where µ∗
T̃

and σ∗
T̃

are obtained by linearly interpolating the values in LLC (2002, table 2). t∗δ is
asymptotically N(0, 1), with very negative values casting doubt on H0. If noconstant is specified,
then the asymptotic properties hold as

√
N/T →∞. Otherwise, T must grow at a faster rate so that

N/T →∞.

Harris–Tsavalis test
The starting point for the HT test is (4), where εit is assumed to be i.i.d. normal with constant

variance across panels. Denote by ρ̂ the least-squares estimate of ρ.

HT show that
√
N(ρ̂− µ) D→ N(0, σ2) as N →∞ with T fixed, where µ and σ2 depend on the

specification of the deterministic component:

Option µ σ2

noconstant 1 2
T (T−1)

none 1− 3
T+1

3(17T 2−20T+17)
5(T−1)(T+1)3

trend 1− 15
2(T+2)

15(193T 2−728T+1147)
112(T+2)3(T−2)

Breitung test

Suppose the data are generated by an AR(1) process so that we can express yit as

yit = z′itγi + xit

where
xit = α1xi,t−1 + α2xi,t−2 + εit

where εit is an error term. A prewhitening step is available to correct for serial correlation. The
nonrobust version assumes that εit is uncorrelated across panels, whereas the robust version allows
for the panels to be contemporaneously correlated with covariance matrix Ω.
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Under the null hypothesis that yit contains a unit root, that is, that yit is difference stationary,
α1 + α2 = 1. Under the alternative that yit is stationary, α1 + α2 < 1. Some of the time indices
and summation limits of the formulas below appear more complex than those in Breitung (2000) and
Breitung and Das (2005) because our formulas make explicit the loss of observations because of the
prewhitening step.

Breitung test without trend

Let y`i,t = yi,t−1 − yi,p+1 unless noconstant is specified, in which case let y`i,t = yi,t−1. If the
lags() option is specified with xtunitroot breitung, then we replace ∆yit and y`i,t in the following
description with the residuals from running regressions of ∆yit and y`i,t on ∆yi,t−1, . . . ,∆yi,t−p,
where p is the lag order specified in lags().

Define

σ2
i =

1
T − p− 2

T∑
t=p+2

(∆yit)2

Then

λ =

∑N
i=1

∑T
t=p+2 y

`
it ·∆yit/σ2

i√∑N
i=1

∑T
t=p+2(y`it)2/σ2

i

λ is asymptotically distributed N(0, 1) as T → ∞ followed by N → ∞; small values of λ cast
doubt on H0.

For the robust version of the test statistic, let

φ =

∑N
i=1

∑T
t=p+2 y

`
it ·∆yit/σ2

i∑N
i=1

∑T
t=p+2(y`it)2/σ2

i

and define uit = ∆yit−φy`it. Let ui = (ui,p+2, . . . , uiT )′ and let the N ×N matrix Ω have typical
element u′iuj/(T − p− 2). Let ∆yt = (∆y1t, . . . ,∆yNt)′ and y`t = (y1,t−1, . . . , yN,t−1)′. Then

λrobust =

∑T
t=p+2(∆yt)′y`t∑T
t=p+2(y`t)′Ωy`t

For Ω to be positive definite, we must have T −p−1 ≥ N . As a practical matter, for Ω to have good
finite-sample properties, we need T � N . λrobust is asymptotically distributed N(0, 1) as T →∞
followed by N →∞; very negative values of λrobust cast doubt on H0.

Breitung test with trend

Let p denote the number of lags requested in the lags() option. We fit the regression

∆yit = αi0 +
p∑
j=1

αij∆yi,t−j + νit

and compute the 1× (T − p− 1) vectors ∆ui and u`i with typical elements

∆uis = ∆yis −
p∑
j=1

α̂ij∆yi,s−j
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and

u`is = yi,s−1 −
p∑
j=1

α̂ijyi,s−j−1

for s = 1, . . . , T − p− 1. Let

σ2
i =

1
T − p− 2

T−p−1∑
s=1

(
∆uis −∆ui

)
∆uis

where ∆ui is the mean of ∆uis over s. Let ∆vi and v`i denote 1× (T − p− 1) vectors with typical
elements

∆vis =

√
T − p− s− 1
T − p− s

∆uis −
1

T − p− s− 1

T−p−1∑
j=s+1

∆uij


and

v`is = u`is − u`i1 − (T − p− 1)∆ui

Now

λ =
∑N
i=1

∑T−p−1
s=1 v`is∆vis/σ

2
i√∑N

i=1

∑T−p−1
s=1 (v`is)2/σ2

i

λ is asymptotically distributed N(0, 1) as T →∞ followed by N →∞; very negative values of λ
cast doubt on H0. The computation of the robust form of the statistic proceeds in a fashion entirely
analogous to the case without trend.

Im–Pesaran–Shin test

Write the model as
∆yit = φiyi,t−1 + z′itγi + εit

where εit is independently distributed normal for all i and t with panel-specific variance σ2
i . Denote

∆yi = (∆yi2, . . . ,∆yiT )′ and yi,−1 = (yi1, . . . , yi,T−1)′. Note that to be consistent with the
notation used in the rest of this documentation, we start the time index at t = 1 instead of t = 0 as in
IPS (2003). Also let τT be a conformable vector of ones, Mτ = I−τT (τ ′T τT )−1τ ′T , Xi = (τT ,yi,−1),
and MXi = I−Xi(X′iXi)−1X′i.

First, we consider the case of no serial correlation, where the user does not specify the lags()
option. Then

t̃-barNT =
1
N

N∑
i=1

t̃iT

where

t̃iT =
∆y′iMτyi,−1

σ̃iT
(
y′i,−1Mτyi,−1

)1/2
and

σ̃2
iT =

∆y′iMτ∆yi
T − 1
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Also

t-barNT =
1
N

N∑
i=1

tiT

where

tiT =
∆y′iMτyi,−1

σ̂iT
(
y′i,−1Mτyi,−1

)1/2
and

σ̃2
iT =

∆y′iMXi∆yi
T − 1

Now

Z
t̃-bar =

√
N
{
t̃-barNT −N−1

∑N
i=1E(t̃Ti)

}
√
N−1

∑
i Var(t̃Ti)

where E(t̃Ti) and Var(t̃Ti) are obtained by linearly interpolating the values shown in IPS (2003,
table 1). Z

t̃-bar has a standard normal limiting distribution for fixed T and N →∞; very negative
values cast doubt on H0. Similarly,

Zt-bar =

√
N
{
t-barNT −N−1

∑
iE(tTi)

}√
N−1

∑
i Var(tTi)

If the lags() option is specified, then we fit the ADF regressions

∆yit = φiyi,t−1 + z′itγi +
pi∑
j=1

ρij∆yi,t−j + εit

In matrix form, we can write this more compactly as

∆yi = φiyi,−1 + Qiθi + εi

where Qi = (τt,∆yi,−1, . . . ,∆yi,−pi) and θi = (αi, ρi1, . . . , ρipi)
′. Then

t-barNT =
1
N

N∑
i=1

tiT (pi)

where

tiT (pi) =

√
T − pi − 2(y′i,−1MQi∆yi)

(y′i,−1MQiyi,−1)1/2(∆y′i,−1MQi∆yi,−1)1/2

where MQi = I−Qi(Q′iQi)−1Q′i, MXi = I−Xi(X′iXi)−1X′i, and Xi = (yi,−1,Qi). Finally,

Wt-bar(p) =

√
N
[
t-barNT −N−1

∑N
i=1E {tiT (pi)}

]
√
N−1

∑N
i=1 Var {tiT (pi)}

where E {tiT (pi)} and Var {tiT (pi)} are obtained by linearly interpolating the values shown in
IPS (2003, table 3). Wt-bar(p) has a standard normal limiting distribution as T → ∞ followed by
N →∞; very negative values cast doubt on H0.
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Fisher-type tests

We use dfuller or pperron to perform unit-root tests on each panel; denote the p-value for the
respective test on the ith panel as pi. All these tests are predicated on T →∞ so that the unit-root
test for each panel is consistent. The P test is for finite N ; the other tests are valid whether N is
finite or infinite. Then

P = −2
N∑
i=1

ln(pi)

P ∼ χ2(2N) and large values cast doubt on H0.

Z =
1√
N

N∑
i=1

Φ−1(pi)

where Φ−1( ) is the inverse of the standard normal cumulative distribution function. Z ∼ N(0, 1);
very negative values of Z cast doubt on H0.

L =
N∑
i=1

ln
(

pi
1− pi

)
L∗ =

√
kL ∼ t(5N + 4) where

k =
3(5N + 4)

π2N(5N + 2)

Very negative values of L∗ cast doubt on H0. Finally,

Pm = − 1√
N

N∑
i=1

{ ln(pi) + 1}

Pm ∼ N(0, 1); very positive values of Pm cast doubt on H0.

Hadri LM test
As discussed in the main text, the Hadri LM test can be viewed as a test of H0 : σ2

u/σ
2
ε = 0,

where both uit and εit are normally distributed random errors.

Let ε̂it denote the residuals from a regression of yit on a panel-specific intercept or a panel-specific
intercept and time trend if trend is specified. Then

L̂M =
1
N

∑
i

1
T 2

∑
t S

2
it

σ̂2
ε

(10)

where

Sit =
t∑

j=1

ε̂ij

and

σ̂2
ε =

1
NT ′

N∑
i=1

T∑
t=1

ε̂2it
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where T ′ = T − 2 if trend is specified and T ′ = T − 1 otherwise. Then

Z =

√
N
(

L̂M− µ
)

σ

where µ = 1/15 and σ = 11/6300 if trend is specified and µ = 1/6 and σ = 1/45 otherwise.
Z ∼ N(0, 1) asymptotically as T →∞ followed by N →∞. Very positive values of Z cast doubt
on H0. If robust is specified, then we instead use

L̂M =
1
N

N∑
i=1

(∑T
t=1 S

2
it

T 2σ̂2
ε,i

)

where we calculate σ̂2
ε,i individually for each panel:

σ̂2
ε,i =

T∑
t=1

ε̂2it

If kernel() is specified, then we use (10) with

σ̂2
ε =

1
N

N∑
i=1

 1
T

T∑
t=p+1

ε̂2it +
2
T

m∑
j=1

K(j,m)
T∑

t=j+1

ε̂itε̂i,t−j


where m is the maximum number of lags and K(. , .) is the kernel function defined previously.
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Glossary

Arellano–Bond estimator. The Arellano–Bond estimator is a generalized method of moments (GMM)
estimator for linear dynamic panel-data models that uses lagged levels of the endogenous variables
as well as first differences of the exogenous variables as instruments. The Arellano–Bond estimator
removes the panel-specific heterogeneity by first-differencing the regression equation.

autoregressive process. In autoregressive processes, the current value of a variable is a linear function
of its own past values and a white-noise error term. For panel data, a first-order autoregressive
process, denoted as an AR(1) process, is yit = ρyi,t−1 + εit, where i denotes panels, t denotes
time, and εit is white noise.

balanced data. A longitudinal or panel dataset is said to be balanced if each panel has the same
number of observations. See also weakly balanced and strongly balanced.

between estimator. The between estimator is a panel-data estimator that obtains its estimates by
running OLS on the panel-level means of the variables. This estimator uses only the between-panel
variation in the data to identify the parameters, ignoring any within-panel variation. For it to
be consistent, the between estimator requires that the panel-level means of the regressors be
uncorrelated with the panel-specific heterogeneity terms.

BLUPs. BLUPs are best linear unbiased predictions of either random effects or linear combinations of
random effects. In linear models containing random effects, these effects are not estimated directly
but instead are integrated out of the estimation. Once the fixed effects and variance components
have been estimated, you can use these estimates to predict group-specific random effects. These
predictions are called BLUPs because they are unbiased and have minimal mean squared error
among all linear functions of the response.

canonical link. Corresponding to each family of distributions in a generalized linear model is a
canonical link function for which there is a sufficient statistic with the same dimension as the
number of parameters in the linear predictor. The use of canonical link functions provides the GLM
with desirable statistical properties, especially when the sample size is small.

conditional fixed-effects model. In general, including panel-specific dummies to control for fixed
effects in nonlinear models results in inconsistent estimates. For some nonlinear models, the fixed-
effect term can be removed from the likelihood function by conditioning on a sufficient statistic.
For example, the conditional fixed-effect logit model conditions on the number of positive outcomes
within each panel.

correlation structure. A correlation structure is a set of assumptions imposed on the within-panel
variance–covariance matrix of the errors in a panel-data model. See [XT] xtgee for examples of
different correlation structures.

crossed-effects model. A crossed-effects model is a mixed model in which the levels of random
effects are not nested. A simple crossed-effects model for cross-sectional time-series data would
contain a random effect to control for panel-specific variation and a second random effect to control
for time-specific random variation. Rather than being nested within panel, in this model a random
effect due to a given time is the same for all panels.

cross-sectional data. Cross-sectional data refers to data collected over a set of individuals, such as
households, firms, or countries sampled from a population at a given point in time.

cross-sectional time-series data. Cross-sectional time-series data is another name for panel data. The
term cross-sectional time-series data is sometimes reserved for datasets in which a relatively small
number of panels were observed over many periods. See also panel data.
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disturbance term. The disturbance term encompasses any shocks that occur to the dependent variable
that cannot be explained by the conditional (or deterministic) portion of the model.

dynamic model. A dynamic model is one in which prior values of the dependent variable or disturbance
term affect the current value of the dependent variable.

endogenous variable. An endogenous variable is a regressor that is correlated with the unobservable
error term. Equivalently, an endogenous variable is one whose values are determined by the
equilibrium or outcome of a structural model.

error-components model. The error-components model is another name for the random-effects model.
See also random-effects model.

exogenous variable. An exogenous variable is a regressor that is not correlated with any of the error
terms in the model. Equivalently, an exogenous variable is one whose values change independently
of the other variables in a structural model.

fixed-effects model. The fixed-effects model is a model for panel data in which the panel-specific
errors are treated as fixed parameters. These parameters are panel-specific intercepts and therefore
allow the conditional mean of the dependent variable to vary across panels. The linear fixed-
effects estimator is consistent, even if the regressors are correlated with the fixed effects. See also
random-effects model.

generalized estimating equations (GEE). The method of generalized estimating equations is used
to fit population-averaged panel-data models. GEE extends the GLM method by allowing the user
to specify a variety of different within-panel correlation structures.

generalized linear model (GLM). The generalized linear model is an estimation framework in which
the user specifies a distributional family for the dependent variable and a link function that relates
the dependent variable to a linear combination of the regressors. The distribution must be a member
of the exponential family of distributions. GLM encompasses many common models, including
linear, probit, and Poisson regression.

hierarchical model. A hierarchical model is one in which successively more narrowly defined groups
are nested within larger groups. For example, in a hierarchical model, patients may be nested
within doctors who are in turn nested within the hospital at which they practice.

idiosyncratic error term. In longitudinal or panel-data models, the idiosyncratic error term refers to
the observation-specific zero-mean random-error term. It is analogous to the random-error term of
cross-sectional regression analysis.

instrumental variables. Instrumental variables are exogenous variables that are correlated with one
or more of the endogenous variables in a structural model. The term instrumental variable is often
reserved for those exogenous variables that are not included as regressors in the model.

instrumental-variables (IV) estimator. An instrumental variables estimator uses instrumental variables
to produce consistent parameter estimates in models that contain endogenous variables. IV estimators
can also be used to control for measurement error.

interval data. Interval data are data in which the true value of the dependent variable is not observed.
Instead, all that is known is that the value lies within a given interval.

link function. In a GLM, the link function relates a linear combination of predictors to the expected
value of the dependent variable. In a linear regression model, the link function is simply the
identity function.

longitudinal data. Longitudinal data is another term for panel data. See also panel data.
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mixed model. A mixed model contains both fixed and random effects. The fixed effects are estimated
directly, whereas the random effects are summarized according to their (co)variances. Mixed models
are used primarily to perform estimation and inference on the regression coefficients in the presence
of complicated within-panel correlation structures induced by multiple levels of grouping.

negative binomial regression model. The negative binomial regression model is for applications
in which the dependent variable represents the number of times an event occurs. The negative
binomial regression model is an alternative to the Poisson model for use when the dependent
variable is overdispersed, meaning that the variance of the dependent variable is greater than its
mean.

one-level model. A one-level mixed model is a mixed model with one level of random variation.
Suppose that you have a panel dataset consisting of patients at hospitals; a one-level model would
contain a set of random effects “at the hospital level” to control for hospital-specific random
variation.

overidentifying restrictions. The order condition for model identification requires that the number
of exogenous variables excluded from the model be at least as great as the number of endogenous
regressors. When the number of excluded exogenous variables exceeds the number of endogenous
regressors, the model is overidentified, and the validity of the instruments can then be checked via
a test of overidentifying restrictions.

panel-corrected standard errors (PCSEs). The term panel-corrected standard errors refers to a class
of estimators for the variance–covariance matrix of the OLS estimator when there are relatively few
panels with many observations per panel. PCSEs account for heteroskedasticity, autocorrelation, or
cross-sectional correlation.

panel data. Panel data are data in which the same units were observed over multiple periods. The
units, called panels, are often firms, households, or patients who were observed at several points
in time. In a typical panel dataset, the number of panels is large, and the number of observations
per panel is relatively small.

Poisson regression model. The Poisson regression model is used when the dependent variable
represents the number of times an event occurs. In the Poisson model, the variance of the
dependent variable is equal to the conditional mean.

pooled estimator. A pooled estimator ignores the longitudinal or panel aspect of a dataset and treats
the observations as if they were cross-sectional.

population-averaged model. A population-averaged model is used for panel data in which the
parameters measure the effects of the regressors on the outcome for the average individual in the
population. The panel-specific errors are treated as uncorrelated random variables drawn from a
population with zero mean and constant variance, and the parameters measure the effects of the
regressors on the dependent variable after integrating over the distribution of the random effects.

predetermined variable. A predetermined variable is a regressor in which its contemporaneous and
future values are not correlated with the unobservable error term but past values are correlated
with the error term.

prewhiten. To prewhiten is to apply a transformation to a time series so that it becomes white noise.

production function. A production function describes the maximum amount of a good that can be
produced, given specified levels of the inputs.

quadrature. Quadrature is a set of numerical methods to evaluate an integral. Two types of quadrature
commonly used in fitting panel-data models are Gaussian and Gauss–Hermite quadrature.
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random-coefficients model. A random-coefficients model is a panel-data model in which group-
specific heterogeneity is introduced by assuming that each group has its own parameter vector,
which is drawn from a population common to all panels.

random-effects model. A random-effects model for panel data treats the panel-specific errors as
uncorrelated random variables drawn from a population with zero mean and constant variance.
The regressors must be uncorrelated with the random effects for the estimates to be consistent.

REML (restricted maximum likelihood). REML is a method of fitting linear mixed models that
involves transforming out the fixed effects so as to focus solely on variance-component estimation.

restricted maximum likelihood. See REML.

robust standard errors. Robust standard errors, also known as Huber/White or Taylor linearization
standard errors, are based on the sandwich estimator of variance. Robust standard errors can be
interpreted as representing the sample-to-sample variability of the parameter estimates, even when
the model is misspecified. See also semirobust standard errors.

semirobust standard errors. Semirobust standard errors are closely related to robust standard errors
and can be interpreted as representing the sample-to-sample variability of the parameter estimates,
even when the model is misspecified, as long as the mean structure of the model is specified
correctly. See also robust standard errors.

sequential limit theory. The sequential limit theory is a method of determining asymptotic properties
of a panel-data statistic in which one index, say, N , the number of panels, is held fixed, while T ,
the number of time periods, goes to infinity, providing an intermediate limit. Then one obtains a
final limit by studying the behavior of this intermediate limit as the other index (N here) goes to
infinity.

strongly balanced. A longitudinal or panel dataset is said to be strongly balanced if each panel has
the same number of observations, and the observations for different panels were all made at the
same times.

two-level model. A two-level mixed model is a mixed model with two levels of random variation.
Suppose that you have a dataset consisting of patients overseen by doctors at hospitals, and
each doctor practices at one hospital. Then a two-level model would contain a set of random
effects to control for hospital-specific variation and a second set of random effects to control for
doctor-specific random variation.

unbalanced data. A longitudinal or panel dataset is said to be unbalanced if each panel does not
have the same number of observations. See also weakly balanced and strongly balanced.

variance components. In a mixed model, the variance components refer to the variances and covari-
ances of the various random effects.

weakly balanced. A longitudinal or panel dataset is said to be weakly balanced if each panel has
the same number of observations but the observations for different panels were not all made at
the same times.

white noise. A variable, ut, represents a white-noise process if the mean of ut is zero, the variance
of ut is σ2, and the covariance between ut and us is zero for all s 6= t.

within estimator. The within estimator is a panel-data estimator that removes the panel-specific
heterogeneity by subtracting the panel-level means from each variable and then performing ordinary
least squares on the demeaned data. The within estimator is used in fitting the linear fixed-effects
model.
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Subject and author index
This is the subject and author index for the Longitudinal-
Data/Panel-Data Reference Manual. Readers interested in
topics other than cross-sectional time-series should see
the combined subject index (and the combined author
index) in the Quick Reference and Index.

Semicolons set off the most important entries from the
rest. Sometimes no entry will be set off with semicolons,
meaning that all entries are equally important.

A
abond, estat subcommand, [XT] xtabond

postestimation, [XT] xtdpd postestimation,
[XT] xtdpdsys postestimation

Abramowitz, M., [XT] xtmelogit, [XT] xtmepoisson
Aigner, D., [XT] xtfrontier
Albert, P. S., [XT] xtgee
Allison, P. D., [XT] xtlogit, [XT] xtpoisson, [XT] xtreg
Alvarez, J., [XT] xtabond
Amemiya, T., [XT] xthtaylor, [XT] xtivreg
Anderson, T. W., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xtivreg
Andrews, M., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed, [XT] xtreg
Arellano–Bond, [XT] xtdpd, [XT] xtdpdsys

estimator, [XT] Glossary, [XT] xtabond
Arellano–Bover estimator, [XT] xtdpd, [XT] xtdpdsys
Arellano, M., [XT] xtabond, [XT] xtdpd, [XT] xtdpd

postestimation, [XT] xtdpdsys, [XT] xtdpdsys
postestimation, [XT] xtivreg, [XT] xtreg

Arora, S. S., [XT] xtivreg, [XT] xtreg
Aten, B., [XT] xtunitroot
autocorrelation,

dynamic model, [XT] xtabond, [XT] xtdpd,
[XT] xtdpdsys

residual, [XT] xtgee, [XT] xtgls, [XT] xtpcse,
[XT] xtregar

test, [XT] xtabond, [XT] xtabond postestimation,
[XT] xtdpd postestimation, [XT] xtdpdsys,
[XT] xtdpdsys postestimation

autoregressive process, [XT] Glossary, [XT] xtabond,
[XT] xtdpd, [XT] xtdpdsys

B
balanced data, [XT] Glossary
Balestra, P., [XT] xtivreg
Baltagi, B. H., [XT] xt, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xthtaylor, [XT] xtivreg,
[XT] xtmixed, [XT] xtpoisson, [XT] xtprobit,
[XT] xtreg, [XT] xtreg postestimation,
[XT] xtregar, [XT] xtunitroot

Banerjee, A., [XT] xtunitroot
Basford, K. E., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
Bates, D. M., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed, [XT] xtmixed postestimation

Battese–Coelli parameterization, [XT] xtfrontier
Battese, G. E., [XT] xtfrontier
Baum, C. F., [XT] xtgls, [XT] xtreg, [XT] xtunitroot
Beck, N., [XT] xtgls, [XT] xtpcse
Bentham, G., [XT] xtmepoisson
Bera, A. K., [XT] xtreg, [XT] xtreg postestimation,

[XT] xtregar
between-cell means and variances, [XT] xtdescribe,

[XT] xtsum
between estimators, [XT] Glossary, [XT] xtivreg,

[XT] xtreg
Bhargava, A., [XT] xtregar
Blackburne, E. F., III, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys
Blackwell, J. L., III, [XT] xtgls, [XT] xtpcse,

[XT] xtreg
Blundell–Bond estimator, [XT] xtdpd, [XT] xtdpdsys
Blundell, R., [XT] xtdpd, [XT] xtdpdsys
BLUPs, [XT] Glossary
Bond, S., [XT] xtabond, [XT] xtdpd, [XT] xtdpd

postestimation, [XT] xtdpdsys, [XT] xtdpdsys
postestimation, [XT] xtivreg

bootstrap standard errors, [XT] vce options
Bornhorst, F., [XT] xtunitroot
Bottai, M., [XT] xtreg
Bover, O., [XT] xtdpd, [XT] xtdpdsys
Boyle, P., [XT] xtmepoisson
Breitung, J., [XT] xtunitroot
Breitung test, [XT] xtunitroot
breitung, xtunitroot subcommand, [XT] xtunitroot
Breslow, N. E., [XT] xtmelogit, [XT] xtmepoisson
Breusch–Pagan Lagrange multiplier test, [XT] xtreg

postestimation
Breusch, T. S., [XT] xtreg postestimation
Bruno, G. S. F., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xtreg
Bryk, A. S., [XT] xtmepoisson, [XT] xtmixed

C

Cameron, A. C., [XT] xt, [XT] xtmixed, [XT] xtnbreg,
[XT] xtpoisson

Canette, I., [XT] xtmixed
canonical link, [XT] Glossary
Carle, A. C., [XT] xtmixed
Carpenter, J. R., [XT] xtmelogit
Carroll, R. J., [XT] xtmixed
Carter, S., [XT] xt, [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
Casella, G., [XT] xtmixed
Caudill, S. B., [XT] xtfrontier
Chang, Y.-J., [XT] xtivreg, [XT] xtreg
Chao, E. C., [XT] xtmelogit, [XT] xtmelogit

postestimation, [XT] xtmepoisson,
[XT] xtmepoisson postestimation

Choi, I., [XT] xtunitroot
choice models, [XT] xtgee, [XT] xtlogit,

[XT] xtmelogit, [XT] xtprobit
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Chu, C.-S. J., [XT] xtunitroot
Clayton, D. G., [XT] xtmelogit, [XT] xtmepoisson
Cleland, J., [XT] xtmelogit
cluster estimator of variance, [XT] vce options

fixed-effects models,
linear, [XT] xtreg
Poisson, [XT] xtpoisson

linear dynamic panel-data models, [XT] xtabond,
[XT] xtdpd, [XT] xtdpdsys

multilevel mixed-effects models, [XT] xtmixed
population-averaged models, [XT] xtgee

cloglog, [XT] xtcloglog
logit, [XT] xtlogit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson
probit, [XT] xtprobit

random-effects models, linear, [XT] xtreg
Coelli, T. J., [XT] xtfrontier
complementary log-log regression, [XT] xtcloglog,

[XT] xtgee
conditional

fixed-effects model, [XT] Glossary
logistic regression, [XT] xtlogit

constrained estimation,
fixed-effects models

logit, [XT] xtlogit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson

random-effects models
cloglog, [XT] xtcloglog
interval-data regression, [XT] xtintreg
logit, [XT] xtlogit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson
probit, [XT] xtprobit
tobit, [XT] xttobit

stochastic frontier models for panel data,
[XT] xtfrontier

Conway, M. R., [XT] xtlogit, [XT] xtprobit
correlated error, see robust
correlation structure, [XT] Glossary
cost frontier model, [XT] xtfrontier
Cox, N. J., [XT] xtdescribe
crossed-effects model, [XT] Glossary
cross-sectional

data, [XT] Glossary
time-series data, [XT] Glossary

Cui, J., [XT] xtgee

D

Das, S., [XT] xtunitroot
data manipulation, [XT] xtset
data,

autocorrelated, see autocorrelation
range of, see range of data
summarizing, see summarizing data

data, continued
survival-time, see survival analysis

Davidson, R., [XT] xtgls, [XT] xtpcse
De Hoyos, R. E., [XT] xtreg
Demidenko, E., [XT] xtmixed
Dempster, A. P., [XT] xtmixed
descriptive statistics, displaying, [XT] xtsum,

[XT] xttab
dichotomous outcome model, [XT] xtcloglog,

[XT] xtgee, [XT] xtlogit, [XT] xtmelogit,
[XT] xtprobit

Diggle, P. J., [XT] xtmixed
DiNardo, J., [XT] xtrc
dispersion, measures of, [XT] xtsum
disturbance term, [XT] Glossary
Drukker, D. M., [XT] xt, [XT] xtmelogit,

[XT] xtmepoisson, [XT] xtmixed, [XT] xtregar
Dwyer, J. H., [XT] xtreg
dynamic

model, [XT] Glossary
panel-data regression, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys

E
endogenous

covariates, [XT] xtdpd, [XT] xtdpdsys,
[XT] xthtaylor, [XT] xtivreg

variable, [XT] Glossary
error-components model, [XT] Glossary,

[XT] xthtaylor
estat

abond command, [XT] xtabond postestimation,
[XT] xtdpd postestimation, [XT] xtdpdsys
postestimation

group command, [XT] xtmelogit, [XT] xtmelogit
postestimation, [XT] xtmepoisson,
[XT] xtmepoisson postestimation,
[XT] xtmixed, [XT] xtmixed postestimation

recovariance command, [XT] xtmelogit,
[XT] xtmelogit postestimation,
[XT] xtmepoisson, [XT] xtmepoisson
postestimation, [XT] xtmixed, [XT] xtmixed
postestimation

sargan command, [XT] xtabond postestimation,
[XT] xtdpd postestimation, [XT] xtdpdsys
postestimation

wcorrelation command, [XT] xtgee
postestimation

estimated generalized least squares (EGLS), [XT] xtgls,
[XT] xtivreg, [XT] xtreg

exogenous variable, [XT] Glossary

F
failure-time model, [XT] xtpoisson
feasible generalized least squares (FGLS), [XT] xtgls,

[XT] xtivreg, [XT] xtreg
Feinleib, M., [XT] xtreg
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first-differenced estimator, [XT] xtabond, [XT] xtdpd,
[XT] xtdpdsys, [XT] xtivreg

Fisher, M. R., [XT] xtcloglog, [XT] xtgee,
[XT] xtintreg, [XT] xtlogit, [XT] xtprobit,
[XT] xttobit

Fisher-type tests, [XT] xtunitroot
fisher, xtunitroot subcommand, [XT] xtunitroot
Fitzmaurice, G. M., [XT] xtmixed
fixed-effects model, [XT] Glossary, [XT] xtabond,

[XT] xtdpd, [XT] xtdpdsys, [XT] xtivreg,
[XT] xtlogit, [XT] xtnbreg, [XT] xtpoisson,
[XT] xtreg, [XT] xtregar

Ford, J. M., [XT] xtfrontier
Frank, M. W., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys
Franzese, R. J., Jr., [XT] xtpcse
Franzini, L., [XT] xtregar
Frechette, G. R., [XT] xtprobit
frequency table, [XT] xttab
frontier model, stochastic, [XT] xtfrontier

G
Galecki, A. T., [XT] xtmixed
Gange, S. J., [XT] xtcloglog, [XT] xtgee,

[XT] xtintreg, [XT] xtlogit, [XT] xtprobit,
[XT] xttobit

Gauss–Hermite quadrature, [XT] quadchk
GEE, see generalized estimating equations
generalized

estimating equations (GEE), [XT] Glossary,
[XT] xtgee

least squares,
estimated, see estimated generalized least squares
feasible, see feasible generalized least squares

linear model (GLM), [XT] Glossary, [XT] xtgee
method of moments (GMM), [XT] xtabond,

[XT] xtdpd, [XT] xtdpdsys
Ginther, O. J., [XT] xtmixed
GLM, see generalized linear model
GMM, see generalized method of moments
Goldman, N., [XT] xtmelogit
Goldstein, H., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
Goldstein, R., [XT] xtreg
Gould, W. W., [XT] xtfrontier
graphs, cross-sectional time-series data, [XT] xtdata,

[XT] xtline
Graubard, B. I., [XT] xtmixed
Greene, W. H., [XT] xt, [XT] xtgls, [XT] xtpcse,

[XT] xtpoisson, [XT] xtrc, [XT] xtreg
Griffiths, W. E., [XT] xtgls, [XT] xtpcse, [XT] xtrc,

[XT] xtreg
Griliches, Z., [XT] xtgls, [XT] xtnbreg, [XT] xtpcse,

[XT] xtpoisson, [XT] xtrc
Gropper, D. M., [XT] xtfrontier
group, estat subcommand, [XT] xtmelogit

postestimation, [XT] xtmepoisson
postestimation, [XT] xtmixed postestimation

Grunfeld, Y., [XT] xtgls, [XT] xtpcse, [XT] xtrc
Guilkey, D. K., [XT] xtprobit
Guimarães, P., [XT] xtnbreg
Gutierrez, R. G., [XT] xt, [XT] xtmelogit,

[XT] xtmepoisson, [XT] xtmixed

H
Hadri, K., [XT] xtunitroot
Hadri Lagrange multiplier stationarity test,

[XT] xtunitroot
hadri, xtunitroot subcommand, [XT] xtunitroot
Hall, B. H., [XT] xtnbreg, [XT] xtpoisson
Hansen, L. P., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys
Harbord, R. M., [XT] xtmelogit
Hardin, J. W., [XT] xtgee, [XT] xtmelogit

postestimation, [XT] xtmepoisson
postestimation, [XT] xtpoisson

Harris, R. D. F., [XT] xtunitroot
Harris–Tzavalis test, [XT] xtunitroot
Harville, D. A., [XT] xtmixed
Hauck, W. W., [XT] xtcloglog, [XT] xtlogit,

[XT] xtprobit
Hausman, J. A., [XT] xthtaylor, [XT] xtnbreg,

[XT] xtpoisson, [XT] xtreg postestimation
Hausman specification test, [XT] xtreg postestimation
Hausman–Taylor estimator, [XT] xthtaylor
Heagerty, P. J., [XT] xtmixed
Henderson, C. R., [XT] xtmixed
Heston, A., [XT] xtunitroot
heteroskedasticity, [XT] xtgls
hierarchical model, [XT] Glossary, [XT] xtmelogit,

[XT] xtmepoisson, [XT] xtmixed
Hilbe, J. M., [XT] xtgee, [XT] xtmelogit

postestimation, [XT] xtmepoisson
postestimation, [XT] xtpoisson

Hill, R. C., [XT] xtgls, [XT] xtpcse, [XT] xtrc,
[XT] xtreg

Hlouskova, J., [XT] xtunitroot
Hocking, R. R., [XT] xtmixed
Hoechle, D., [XT] xtgls, [XT] xtpcse, [XT] xtreg,

[XT] xtregar
Holmes, D. J., [XT] xtmixed
Holtz-Eakin, D., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys
Honoré, B. E., [XT] xttobit
Horton, N. J., [XT] xtmixed
Hosmer, D. W., Jr., [XT] xtgee
Hsiao, C., [XT] xt, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xtivreg, [XT] xtregar
ht, xtunitroot subcommand, [XT] xtunitroot
Center for Human Resource Research, [XT] xt
Huq, N. M., [XT] xtmelogit

I
idiosyncratic error term, [XT] Glossary
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Im, K. S., [XT] xtunitroot
Im–Pesaran–Shin test, [XT] xtunitroot
incidence-rate ratio, [XT] xtgee, [XT] xtmepoisson,

[XT] xtnbreg, [XT] xtpoisson
instrumental-variables, [XT] Glossary

estimator, [XT] Glossary
regression, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xthtaylor, [XT] xtivreg,
[XT] xtivreg postestimation

interval data, [XT] Glossary
interval regression, random-effects, [XT] xtintreg
ips, xtunitroot subcommand, [XT] xtunitroot
IRR, see incidence-rate ratio

J
jackknife standard errors, [XT] vce options
Joe, H., [XT] xtmelogit, [XT] xtmepoisson
Johnston, J., [XT] xtrc
Judge, G. G., [XT] xtgls, [XT] xtpcse, [XT] xtrc,

[XT] xtreg
Jung, B. C., [XT] xtmixed

K
Kadane, J. B., [XT] xtmelogit, [XT] xtmepoisson
Kalbfleisch, J. D., [XT] xtcloglog, [XT] xtlogit,

[XT] xtprobit
Katz, J. N., [XT] xtgls, [XT] xtpcse
Khanti-Akom, S., [XT] xthtaylor
Kiviet, J. F., [XT] xtabond
Klein, M., [XT] xtgee
Kleinbaum, D. G., [XT] xtgee
Kmenta, J., [XT] xtpcse
Korn, E. L., [XT] xtmixed
Kumbhakar, S. C., [XT] xtfrontier
Kwiatkowski, D., [XT] xtunitroot

L
Lahiri, K., [XT] xtgls
Laird, N. M., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
LaMotte, L. R., [XT] xtmixed
Langford, I. H., [XT] xtmepoisson
Layard, R., [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys,

[XT] xtivreg
Lee, J. W., [XT] xtmixed
Lee, L. F., [XT] xtreg
Lee, T.-C., [XT] xtgls, [XT] xtpcse, [XT] xtrc,

[XT] xtreg
Lemeshow, S., [XT] xtgee
Leonard, M., [XT] xtgee
Levin, A., [XT] xtunitroot
Levin–Lin–Chu test, [XT] xtunitroot
Leyland, A. H., [XT] xtmelogit, [XT] xtmepoisson
Li, Q., [XT] xtivreg, [XT] xtreg postestimation,

[XT] xtregar

Liang, K.-Y., [XT] xtcloglog, [XT] xtgee, [XT] xtlogit,
[XT] xtmelogit, [XT] xtmepoisson,
[XT] xtmixed, [XT] xtnbreg, [XT] xtpoisson,
[XT] xtprobit

limited dependent variables, [XT] xtcloglog, [XT] xtgee,
[XT] xtlogit, [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtnbreg, [XT] xtpoisson, [XT] xtprobit

Lin, C.-F., [XT] xtunitroot
Lin, X., [XT] xtmelogit, [XT] xtmepoisson
Lindstrom, M. J., [XT] xtcloglog, [XT] xtgee,

[XT] xtintreg, [XT] xtlogit, [XT] xtprobit,
[XT] xttobit

linear
mixed models, [XT] xtmixed
regression, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xtfrontier, [XT] xtgee,
[XT] xtgls, [XT] xthtaylor, [XT] xtintreg,
[XT] xtivreg, [XT] xtmixed, [XT] xtpcse,
[XT] xtrc, [XT] xtreg, [XT] xtregar,
[XT] xttobit

link function, [XT] Glossary, [XT] xtgee
Littell, R. C., [XT] xtmelogit
Liu, Q., [XT] xtcloglog, [XT] xtintreg, [XT] xtlogit,

[XT] xtmelogit, [XT] xtmepoisson,
[XT] xtpoisson, [XT] xtprobit, [XT] xttobit

llc, xtunitroot subcommand, [XT] xtunitroot
logistic and logit regression,

fixed-effects, [XT] xtlogit
generalized estimating equations, [XT] xtgee
mixed-effects, [XT] xtmelogit
population-averaged, [XT] xtlogit; [XT] xtgee
random-effects, [XT] xtlogit

longitudinal data, [XT] Glossary
Lovell, C. A. K., [XT] xtfrontier
Lütkepohl, H., [XT] xtgls, [XT] xtpcse, [XT] xtrc,

[XT] xtreg

M
MacKinnon, J. G., [XT] xtgls, [XT] xtpcse
MaCurdy, T. E., [XT] xthtaylor
Maddala, G. S., [XT] xtgls, [XT] xtunitroot
Mair, C. S., [XT] xtmepoisson
Marcellino, M., [XT] xtunitroot
Marchenko, Y. V., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
maximum restricted-likelihood, [XT] xtmixed
McCullagh, P., [XT] vce options, [XT] xtgee,

[XT] xtmelogit postestimation,
[XT] xtmepoisson postestimation,
[XT] xtpoisson

McCulloch, C. E., [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtmixed

McDonald, A., [XT] xtmepoisson
McLachlan, G. J., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
means, displaying, [XT] xtsum
Meeusen, W., [XT] xtfrontier
Merryman, S., [XT] xtunitroot
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Milliken, G. A., [XT] xtmelogit
mixed model, [XT] Glossary, [XT] xtmelogit,

[XT] xtmepoisson, [XT] xtmixed
model specification test, [XT] xtreg postestimation
Molenberghs, G., [XT] xtmixed
Moon, H. R., [XT] xtunitroot
multilevel models, [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
Mundlak, Y., [XT] xtivreg, [XT] xtregar
Munnell, A., [XT] xtmixed
Murphy, J. L., [XT] xtprobit
Murray, R. M., [XT] xtmelogit

N

Narendranathan, W., [XT] xtregar
Naylor, J. C., [XT] xtcloglog, [XT] xtintreg,

[XT] xtlogit, [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtpoisson, [XT] xtprobit, [XT] xttobit

negative binomial regression,
fixed-effects, [XT] xtnbreg
model, [XT] Glossary
population-averaged, [XT] xtnbreg; [XT] xtgee
random-effects, [XT] xtnbreg

Nelder, J. A., [XT] vce options, [XT] xtgee,
[XT] xtmelogit postestimation,
[XT] xtmepoisson postestimation,
[XT] xtpoisson

Neuhaus, J. M., [XT] xtcloglog, [XT] xtintreg,
[XT] xtlogit, [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtmixed, [XT] xtprobit

Newey, W. K., [XT] xtabond, [XT] xtdpd,
[XT] xtdpdsys, [XT] xtunitroot

Newton, H. J., [XT] xtgee
Newton, M. A., [XT] xtcloglog, [XT] xtgee,

[XT] xtintreg, [XT] xtlogit, [XT] xtprobit,
[XT] xttobit

Ng, E. S. W., [XT] xtmelogit
Nichols, A., [XT] xtmixed, [XT] xtrc, [XT] xtreg
Nickell, S. J., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xtivreg, [XT] xtunitroot

O

O’Connell, P. G. J., [XT] xtunitroot
O’Donnell, C. J., [XT] xtfrontier
Obstfeld, M., [XT] xtunitroot
odds ratio, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit,

[XT] xtmelogit
Oh, K.-Y., [XT] xtunitroot
OIM, [XT] vce options
one-level model, [XT] Glossary
OPG, [XT] vce options
Orsini, N., [XT] xtreg
Osbat, C., [XT] xtunitroot
Over, M., [XT] xtivreg

overidentifying restrictions, [XT] Glossary
tests of, [XT] xtabond, [XT] xtabond

postestimation, [XT] xtdpd, [XT] xtdpdsys,
[XT] xtdpdsys postestimation

P
Pagan, A. R., [XT] xtreg postestimation
Palta, M., [XT] xtcloglog, [XT] xtgee, [XT] xtintreg,

[XT] xtlogit, [XT] xtprobit, [XT] xttobit
panel data, [XT] Glossary
panel-corrected standard error (PCSE), [XT] Glossary,

[XT] xtpcse
panels, variable identifying, [XT] xtset
Pantazis, N., [XT] xtmixed
Paterson, L., [XT] xtmelogit
Patterson, K., [XT] xtunitroot
PCSE, see panel-corrected standard error
Pendergast, J. F., [XT] xtcloglog, [XT] xtgee,

[XT] xtintreg, [XT] xtlogit, [XT] xtprobit,
[XT] xttobit

Pesaran, M. H., [XT] xtunitroot
Pfeffermann, D., [XT] xtmixed
Phillips, P. C. B., [XT] xtunitroot
Pickles, A., [XT] xtgee, [XT] xtmelogit,

[XT] xtmepoisson, [XT] xtreg
Pierce, D. A., [XT] xtcloglog, [XT] xtintreg,

[XT] xtlogit, [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtpoisson, [XT] xtprobit, [XT] xttobit

Pierson, R. A., [XT] xtmixed
Pinheiro, J. C., [XT] xtmelogit, [XT] xtmelogit

postestimation, [XT] xtmepoisson,
[XT] xtmepoisson postestimation,
[XT] xtmixed, [XT] xtmixed postestimation

Pitblado, J. S., [XT] xtfrontier
Poi, B. P., [XT] xtfrontier, [XT] xtrc
Poisson regression

fixed-effects, [XT] xtpoisson
mixed-effects, [XT] xtmepoisson
model, [XT] Glossary
population-averaged, [XT] xtpoisson; [XT] xtgee
random-effects, [XT] xtpoisson

pooled estimator, [XT] Glossary
population-averaged model, [XT] Glossary,

[XT] xtcloglog, [XT] xtgee, [XT] xtlogit,
[XT] xtnbreg, [XT] xtpoisson, [XT] xtprobit,
[XT] xtreg

Prais–Winsten regression, [XT] xtpcse
predetermined variable, [XT] Glossary
Prentice, R. L., [XT] xtgee
prewhiten, [XT] Glossary
probit regression,

generalized estimating equations, [XT] xtgee
population-averaged, [XT] xtprobit; [XT] xtgee
random-effects, [XT] xtprobit
with panel data, [XT] xtprobit; [XT] xtgee
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production
frontier model, [XT] xtfrontier
function, [XT] Glossary

Prosser, R., [XT] xtmixed

Q

Qaqish, B., [XT] xtgee
quadchk command, [XT] quadchk
quadrature, [XT] Glossary, [XT] quadchk
qualitative dependent variables, [XT] xtcloglog,

[XT] xtgee, [XT] xtlogit, [XT] xtmelogit,
[XT] xtprobit

R

Rabe-Hesketh, S., [XT] xtcloglog, [XT] xtgee,
[XT] xtintreg, [XT] xtlogit, [XT] xtmelogit,
[XT] xtmelogit postestimation,
[XT] xtmepoisson, [XT] xtmepoisson
postestimation, [XT] xtmixed, [XT] xtpoisson,
[XT] xtprobit, [XT] xtreg, [XT] xttobit

random-coefficients
linear regression, [XT] xtrc
model, [XT] Glossary

random-effects model, [XT] Glossary, [XT] xtabond,
[XT] xtcloglog, [XT] xtdpd, [XT] xtdpdsys,
[XT] xtgee, [XT] xthtaylor, [XT] xtintreg,
[XT] xtivreg, [XT] xtlogit, [XT] xtnbreg,
[XT] xtpoisson, [XT] xtprobit, [XT] xtreg,
[XT] xtregar, [XT] xttobit

range of data, [XT] xtsum
Rao, C. R., [XT] xtmixed
Rao, D. S. P., [XT] xtfrontier
Rasbash, J., [XT] xtmelogit, [XT] xtmixed
Ratcliffe, S. J., [XT] xtgee
Raudenbush, S. W., [XT] xtmepoisson, [XT] xtmixed
recovariance, estat subcommand, [XT] xtmelogit

postestimation, [XT] xtmepoisson
postestimation, [XT] xtmixed postestimation

regression (in generic sense),
dummy variables, with, [XT] xtreg
fixed-effects, [XT] xtreg
instrumental variables, [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys, [XT] xthtaylor, [XT] xtivreg
random-effects, [XT] xtgee, [XT] xtreg

REML, see restricted maximum likelihood
restricted maximum likelihood (REML), [XT] Glossary
Revankar, N. S., [XT] xtfrontier
robust, Huber/White/sandwich estimator of variance,

[XT] vce options
fixed-effects models,

linear, [XT] xtreg
Poisson, [XT] xtpoisson

linear dynamic panel-data estimation, [XT] xtabond,
[XT] xtdpd, [XT] xtdpdsys

multilevel mixed-effects models, [XT] xtmixed
population-averaged models, [XT] xtgee

robust, Huber/White/sandwich estimator of variance,
population-averaged models, continued
cloglog, [XT] xtcloglog
logit, [XT] xtlogit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson
probit, [XT] xtprobit

random-effects models, linear, [XT] xtreg
robust standard errors, [XT] Glossary
Rodrı́guez, G., [XT] xtmelogit
Rogoff, K., [XT] xtunitroot
Roodman, D., [XT] xtdpd, [XT] xtdpdsys
Rosen, H. S., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys
Rubin, D. B., [XT] xtmixed
Ruppert, D., [XT] xtmixed

S

Sarafidis, V., [XT] xtreg
sargan, estat subcommand, [XT] xtabond

postestimation, [XT] xtdpd postestimation,
[XT] xtdpdsys postestimation

Sargan test, [XT] xtabond postestimation, [XT] xtdpd
postestimation, [XT] xtdpdsys postestimation

Schabenberger, O., [XT] xtmelogit
Schank, T., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed, [XT] xtreg
Schmidt, P., [XT] xtfrontier, [XT] xtunitroot
Searle, S. R., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
Self, S. G., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
semirobust standard errors, [XT] Glossary
sequential limit theory, [XT] Glossary
Shin, Y., [XT] xtunitroot
Shults, J., [XT] xtgee
Skinner, C. J., [XT] xtmixed
Skrondal, A., [XT] xtcloglog, [XT] xtgee,

[XT] xtintreg, [XT] xtlogit, [XT] xtmelogit,
[XT] xtmelogit postestimation,
[XT] xtmepoisson, [XT] xtmepoisson
postestimation, [XT] xtmixed, [XT] xtpoisson,
[XT] xtprobit, [XT] xttobit

Smans, M., [XT] xtmepoisson
Smith, A. F. M., [XT] xtcloglog, [XT] xtintreg,

[XT] xtlogit, [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtpoisson, [XT] xtprobit, [XT] xttobit

Song, S. H., [XT] xtmixed
Sosa-Escudero, W., [XT] xtreg, [XT] xtreg

postestimation, [XT] xtregar
specification test, [XT] xtreg postestimation
standard deviations, displaying, [XT] xtsum
standard errors,

bootstrap, see bootstrap standard errors
jackknife, see jackknife standard errors
panel-corrected, see panel-corrected standard error

(PCSE)
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standard errors, continued
robust, see robust standard errors
semirobust, see semirobust standard errors

Stegun, I. A., [XT] xtmelogit, [XT] xtmepoisson
Stewart, M. B., [XT] xtprobit
stochastic frontier model, [XT] xtfrontier
Stock, J. H., [XT] xthtaylor, [XT] xtreg
Stram, D. O., [XT] xtmixed
strongly balanced, [XT] Glossary
Stroup, W. W., [XT] xtmelogit
summarizing data, [XT] xtsum
Summers, R., [XT] xtunitroot
survival analysis, [XT] xtnbreg, [XT] xtpoisson
survival-time data, see survival analysis
Swamy, P. A. V. B., [XT] xtivreg, [XT] xtrc,

[XT] xtreg

T
table, frequency, see frequency table
Taub, A. J., [XT] xtreg
Taylor, C., [XT] xtgee, [XT] xtreg
Taylor, W. E., [XT] xthtaylor
test,

autocorrelation, see autocorrelation test
Breitung, [XT] xtunitroot
Breusch–Pagan Lagrange multiplier, see Breusch–

Pagan Lagrange multiplier test
Fisher-type, [XT] xtunitroot
Hadri Lagrange multiplier stationarity,

[XT] xtunitroot
Harris–Tzavalis, [XT] xtunitroot
Hausman specification, see Hausman specification

test
Im–Pesaran–Shin, [XT] xtunitroot
Levin–Lin–Chu, [XT] xtunitroot
model specification, see model specification test
overidentifying restrictions, see overidentifying

restrictions, tests of
quadrature, [XT] quadchk
unit root, [XT] xtunitroot

Thall, P. F., [XT] xtmepoisson
Thompson, W. A., Jr., [XT] xtmixed
Tierney, L., [XT] xtmelogit, [XT] xtmepoisson
tobit regression, random-effects, [XT] xttobit
Toulopoulou, T., [XT] xtmelogit
Touloumi, G., [XT] xtmixed
Trivedi, P. K., [XT] xt, [XT] xtmixed, [XT] xtnbreg,

[XT] xtpoisson
Twisk, J. W. R., [XT] xtgee, [XT] xtlogit, [XT] xtreg
two-level model, [XT] Glossary
two-stage least squares, [XT] xthtaylor, [XT] xtivreg
Tzavalis, E., [XT] xtunitroot

U
unbalanced data, [XT] Glossary
unit-root test, [XT] xtunitroot

Upward, R., [XT] xtmelogit, [XT] xtmepoisson,
[XT] xtmixed, [XT] xtreg

Ureta, M., [XT] xtreg

V
Vail, S. C., [XT] xtmepoisson
van den Broeck, J., [XT] xtfrontier
Varadharajan-Krishnakumar, J., [XT] xtivreg
variable identifying panels, [XT] xtset
variance,

displaying, [XT] xtsum
estimators, [XT] vce options

variance components, [XT] Glossary, also see mixed
model

vce() option, [XT] vce options
Verbeke, G., [XT] xtmixed

W
Wagner, M., [XT] xtunitroot
Wand, M. P., [XT] xtmixed
Ware, J. H., [XT] xtmelogit, [XT] xtmepoisson,

[XT] xtmixed
Watson, M. W., [XT] xtreg
wcorrelation, estat subcommand, [XT] xtgee

postestimation
weakly balanced, [XT] Glossary
Wedderburn, R. W. M., [XT] xtgee
Welch, K. B., [XT] xtmixed
West, B. T., [XT] xtmixed
West, K. D., [XT] xtunitroot
White, H., [XT] xtivreg
white noise, [XT] Glossary
Whitehead, A., [XT] xtunitroot
Whiting, P., [XT] xtmelogit
Windmeijer, F., [XT] xtabond, [XT] xtdpd,

[XT] xtdpdsys
within-cell means and variances, [XT] xtsum
within estimators, [XT] Glossary, [XT] xthtaylor,

[XT] xtivreg, [XT] xtreg, [XT] xtregar
Wolfinger, R. D., [XT] xtmelogit
Wolfram, S., [XT] xtmelogit postestimation
Wooldridge, J. M., [XT] xt, [XT] xtivreg,

[XT] xtpoisson, [XT] xtreg
Wright, J. H., [XT] xthtaylor
Wu, P. X., [XT] xtregar
Wu, S., [XT] xtunitroot

X
xtabond command, [XT] xtabond
xtcloglog command, [XT] xtcloglog; [XT] quadchk
xtdata command, [XT] xtdata
xtdescribe command, [XT] xtdescribe
xtdpd command, [XT] xtdpd
xtdpdsys command, [XT] xtdpdsys
xtfrontier command, [XT] xtfrontier
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xtgee command, [XT] xtgee
xtgls command, [XT] xtgls
xthtaylor command, [XT] xthtaylor
xtintreg command, [XT] xtintreg; [XT] quadchk
xtivreg command, [XT] xtivreg
xtline command, [XT] xtline
xtlogit command, [XT] xtlogit; [XT] quadchk
xtmelogit command, [XT] xtmelogit
xtmepoisson command, [XT] xtmepoisson
xtmixed command, [XT] xtmixed
xtnbreg command, [XT] xtnbreg
xtpcse command, [XT] xtpcse
xtpoisson command, [XT] xtpoisson; [XT] quadchk
xtprobit command, [XT] xtprobit; [XT] quadchk
xtrc command, [XT] xtrc
xtreg command, [XT] xtreg
xtregar command, [XT] xtregar
xtset command, [XT] xtset
xtsum command, [XT] xtsum
xttab command, [XT] xttab
xttest0 command, [XT] xtreg postestimation
xttobit command, [XT] xttobit; [XT] quadchk
xttrans command, [XT] xttab
xtunitroot command, [XT] xtunitroot

Y
Yogo, M., [XT] xthtaylor

Z
Zeger, S. L., [XT] xtcloglog, [XT] xtgee, [XT] xtlogit,

[XT] xtmixed, [XT] xtnbreg, [XT] xtpoisson,
[XT] xtprobit

Zellner, A., [XT] xtfrontier
Zhao, L. P., [XT] xtgee
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