CHAPTER 14
SOLUTIONS TO PROBLEMS

14.1 First, for each t > 1, Var(Aui) = Var(Uj; — Ui 1) = Var(Ui) + Var(Ujt.;) = 20'5, where we use
the assumptions of no serial correlation in {U;} and constant variance. Next, we find the
covariance between Auj; and Au;+;. Because these each have a zero mean, the covariance is
E(AUit AUig+1) = E[(Uit — Uit1)(Uite1 — Ui)] = E(Uitlit+1) — E(U; ) — B(Uig-1Uig1) + B(Uig-1Uip) =
—E(u; ) = —o, because of the no serial correlation assumption. Because the variance is constant
across t, by Problem 11.1, Corr(AUit, AUit+1) = Cov(AUit, AUit+1)/Var(AUy) = o, /(20.) = —.5.

14.3 (i) E(eir) = E(vit — AV, ) = E(vit) — AE(V; ) = 0 because E(vit) = 0 for all t.

(ii) Var(vit — AV ) = Var(Vi)) + A°Var(V, ) — 24-Cov(Vir, V. ) = o + 2> E(V?) — 24-E(ViV)).

-
Now, o, =E(V;)=0. +0; and E(VitV,) =T 'Y E(Vv,,) =T ' [0 + 07 + ... + (0, + 0,) +

s=1

.

... + 0.1= 0. + o, /T. Therefore, E(V’)=T"'> E(V,V}) = o, + o_/T. Now, we can collect
t=1

terms:

Var(Vii— AV,) = (0. +0,)+ A’ (0. +0, /T)=2A(0. +0. /T).
Now, it is convenient to write A= 1— /5 /[y , where = /T and y= o> + &2/T. Then
Var(vii— AV,) = ((TZ + 05)—21(02 + GUZ/T)+/12(GZ + ol /T)
= (o0 + 0p) =20 =y )+ (= Jn Iy Yy
= (62 +c2) —2p+2 -y +(A=2n/Jy +wpy
= (o7 + o) =2+ 20y (1 =2n/\y +upy
= (o2 +02) —2p+2 -y +r=2n-r +n

2
a

= (0, +0,) +n-y=o0.

This is what we wanted to show.
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(ii1) We must show that E(eji€;s) = 0 for t #S. Now E(ei€is) = E[(Vit — AV, )(Vis — AV, )] =
E(Vitvis) — AE(V, Vi) — AE(ViV. ) + ’E(V?) = 02 —24(o? + o2/T) + PB(V?) = o2 - 20(o? +

a

o2 /T)+ Ao + 2/T). The rest of the proof is very similar to part (ii):
E(eieis) = o2 —2Mo2 + o2/T)+ 2 (o2 + o2/T)
= o =20 =/ (= Jn iy iy
= o2 —2y+2n-\y +(A=2n/fy +nlny
= ol =2yt 2 n-Jy +( =2 n/Jy +aky
= o2 —2p+2 \/;\/; +7_2\/;.\/; +n

2
a

= o, +tn—y=0.

14.5 (i) For each student we have several measures of performance, typically three or four, the
number of classes taken by a student that have final exams. When we specify an equation for
each standardized final exam score, the errors in the different equations for the same student are
certain to be correlated: students who have more (unobserved) ability tend to do better on all

tests.
(i1) An unobserved effects model is
scorese = @ + Satndrtes, + Smajors. + SSATs + S1icUmGPA + as + Use,

where a; is the unobserved student effect. Because SAT score and cumulative GPA depend only
on the student, and not on the particular class he/she is taking, these do not have a ¢ subscript.
The attendance rates do generally vary across class, as does the indicator for whether a class is in
the student’s major. The term & denotes different intercepts for different classes. Unlike with a
panel data set, where time 1s the natural ordering of the data within each cross-sectional unit, and
the aggregate time effects apply to all units, intercepts for the different classes may not be
needed. If all students took the same set of classes then this is similar to a panel data set, and we
would want to put in different class intercepts. But with students taking different courses, the
class we label as “1” for student A need have nothing to do with class “1” for student B. Thus,
the different class intercepts based on arbitrarily ordering the classes for each student probably
are not needed. We can replace &; with £, an intercept constant across classes.

(ii1) Maintaining the assumption that the idiosyncratic error, Usc, is uncorrelated with all
explanatory variables, we need the unobserved student heterogeneity, as, to be uncorrelated with
atndrtes.. The inclusion of SAT score and cumulative GPA should help in this regard, as as, is
the part of ability that is not captured by SATs and CUMGPA;. In other words, controlling for
SAT; and cumGPA, could be enough to obtain the ceteris paribus effect of class attendance.
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(iv) If SATs and cumGPA; are not sufficient controls for student ability and motivation, a; is
correlated with atndrtes;, and this would cause pooled OLS to be biased and inconsistent. We
could use fixed effects instead. Within each student we compute the demeaned data, where, for
each student, the means are computed across classes. The variables SATs and cumGPA; drop out
of the analysis.

SOLUTIONS TO COMPUTER EXERCISES
C14.1 (i) This is done in Computer Exercise 13.5(1).
(i1) See Computer Exercise 13.5(ii).
(ii1) See Computer Exercise 13.5(iii).

(iv) This is the only new part. The fixed effects estimates, reported in equation form, are

log(rent,) = .386y90; + .072 log(popy) + .310 log(avginci) + .0112 petstuy,
(.037) (.088) (.066) (.0041)

N=264 T=2.

(There are N = 64 cities and T =2 years.) We do not report an intercept because it gets removed
by the time demeaning. The coefficient on y90; is identical to the intercept from the first
difference estimation, and the slope coefficients and standard errors are identical to first
differencing. We do not report an R-squared because none is comparable to the R-squared
obtained from first differencing.

C14.3 (1) 135 firms are used in the FE estimation. Because there are three years, we would have
a total of 405 observations if each firm had data on all variables for all three years. Instead, due
to missing data, we can use only 390 observations in the FE estimation. The fixed effects
estimates are

hrsemp, = —1.10d88; + 4.09d89; + 34.23 grant;
(1.98) (2.48) (2.86)
+  .504 granti.; — .176 log(employi)
(4.127) (4.288)

n=239, N=135 T = 3.
(i1) The coefficient on grant means that if a firm received a grant for the current year, it

trained each worker an average of 34.2 hours more than it would have otherwise. This is a
practically large effect, and the t statistic is very large.
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(ii1) Since a grant last year was used to pay for training last year, it is perhaps not surprising
that the grants does not carry over into more training this year. It would if inertia played a role in
training workers.

(iv) The coefficient on the employees variable is very small: a 10% increase in employ
increases predicted hours per employee by only about .018. [Recall: AhrsAemp ~ (.176/100)
(%Aemploy).] This is very small, and the t statistic is practically zero.

C14.5 (1) Different occupations are unionized at different rates, and wages also differ by
occupation. Therefore, if we omit binary indicators for occupation, the union wage differential
may simply be picking up wage differences across occupations. Because some people change
occupation over the period, we should include these in our analysis.

(i1) Because the nine occupational categories (occl through occ9) are exhaustive, we must
choose one as the base group. Of course the group we choose does not affect the estimated
union wage differential. The fixed effect estimate on union, to four decimal places, is .0804 with
standard error =.0194. There is practically no difference between this estimate and standard

error and the estimate and standard error without the occupational controls (/3’ =.0800, se =

.0193).
C14.7 (i) If there is a deterrent effect then ) < 0. The sign of £, is not entirely obvious,
although one possibility is that a better economy means less crime in general, including violent

crime (such as drug dealing) that would lead to fewer murders. This would imply £ > 0.

(i1) The pooled OLS estimates using 1990 and 1993 are

mrdrtex = —528 — 2.07d93, + .128 execyy + 2.53 unem;
4.43)  (2.14) (263) (0.78)

N=51, T=2, R®=.102

There is no evidence of a deterrent effect, as the coefficient on exec is actually positive (though
not statistically significant).

(ii1) The first-differenced equation is

Amrdrtes = 413 — .104 Aexec; — 067 Aunem
(209)  (.043) (.159)
n=51, R>=.110

Now, there is a statistically significant deterrent effect: 10 more executions is estimated to
reduce the murder rate by 1.04, or one murder per 100,000 people. Is this a large effect?
Executions are relatively rare in most states, but murder rates are relatively low on average, too.
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In 1993, the average murder rate was about 8.7; a reduction of one would be nontrivial. For the
(unknown) people whose lives might be saved via a deterrent effect, it would seem important.

(iv) The heteroskedasticity-robust standard error for Aexec; is .017. Somewhat surprisingly,
this is well below the nonrobust standard error. If we use the robust standard error, the statistical
evidence for the deterrent effect is quite strong (t = —6.1). See also Computer Exercise 13.12.

(v) Texas had by far the largest value of exec, 34. The next highest state was Virginia, with
11. These are three-year totals.

(vi) Without Texas in the estimation, we get the following, with heteroskedasticity-robust
standard errors in [-]:

Amrdrtes = 413 — 067 Aexec; — 070 Aunem
(211)  (.105) (.160)
[200] [.079] [.146]
n=50, R>=.013

Now the estimated deterrent effect is smaller. Perhaps more importantly, the standard error on
Aexec; has increased by a substantial amount. This happens because when we drop Texas, we
lose much of the variation in the key explanatory variable, Aexec;.

(vil) When we apply fixed effects using all three years of data and all states we get

mrdrtex = 1.73d90, + 1.70d93, — .054 execi + .395 unemi
(.75) (71) (.160) (.285)

N=51, T=3, R*=.068
The size of the deterrent effect is only about half as big as when 1987 is not used. Plus, the t
statistic, about —.34, is very small. The earlier finding of a deterrent effect is not robust to the
time period used. Oddly, adding another year of data causes the standard error on the exec

coefficient to markedly increase.

C14.9 (i) The OLS estimates are

pctstck = 128.54 + 11.74 choice + 14.34 pritshr + 1.45 female — 1.50 age

(55.17) (6.23) (7.23) (6.77) (.78)
+ .70educ - 15.29finc25 + .19finc35 —  3.86 finch0
(1.20) (14.23) (14.69) (14.55)

— 13.75finc75 — 2.69 finc100 — 25.05 fincl01 — .0026 wealth89
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(16.02) (15.72) (17.80) (.0128)

+  6.67stckinB9 —  7.50 irain89
(6.68) (6.38)

n=194, R>=.108

Investment choice is associated with about 11.7 percentage points more in stocks. The t statistic
is 1.88, and so it is marginal significant.

(i1) These variables are not very important. The F test for joint significant is 1.03. With 9
and 179 df, this gives p-value = .42. Plus, when these variables are dropped from the regression,
the coefficient on choice only falls to 11.15.

(i11) There are 171 different families in the sample.

(iv) I will only report the cluster-robust standard error for choice: 6.20. Therefore, it is
essentially the same as the usual OLS standard error. This is not very surprising because at least
171 of the 194 observations can be assumed independent of one another. The explanatory
variables may adequately capture the within-family correlation.

(v) There are only 23 families with spouses in the data set. Differencing within these families
gives

Amz 15.93 + 2.28 Achoice — 9.27Aprftshr + 21.55 Afemale — 3.57 Aage
(10.94) (15.00) (16.92) (21.49) (9.00)

—1.22 Aeduc
(3.43)

n=23, R*=.206, R?>= —.028

All of the income and wealth variables, and the stock and IRA indicators, drop out, as these are
defined at the family level (and therefore are the same for the husband and wife).

(vi) None of the explanatory variables is significant in part (v), and this is not too surprising.
We have only 23 observations, and we are removing much of the variation in the explanatory
variables (except the gender variable) by using within-family differences.

C14.11 (i) The robust standard errors on educ, married, and union are all quite a bit larger than
the usual OLS standard errors. In the case of educ, the robust standard error is about .0111,
compared with the usual OLS standard error .0052; this is more than a doubling. For married,
the robust standard error is about .0260, which again is much higher than the usual standard
error, .0157. A similar change is evident for union (from .0172 to .0274).
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(i1) For married, the usual FE standard error is .0183, and the fully robust one is .0210. For
union, these are .0193 and .0227, respectively. In both cases, the robust standard error is
somewhat higher.

(ii1) The relative increase in standard errors when we go from the usual standard error to the
robust version is much higher for pooled OLS than for FE. For FE, the increases are on the order
of 15%, or slightly higher. For pooled OLS, the increases for married and union are on the order
of at least 60%. Typically, the adjustment for FE has a smaller relative effect because FE
removes the main source of positive serial correlation: the unobserved effect, a;. Remember,
pooled OLS leaves a; in the error term. The usual standard errors for both pooled OLS and FE
are invalid with serial correlation in the idiosyncratic errors, Ui, but this correlation is usually of
a smaller degree. (And, in some applications, it is not unreasonable to think the uj; have no serial
correlation. However, if we are being careful, we allow this possibility in computing our
standard errors and test statistics.)
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