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CHAPTER 12 
 

SOLUTIONS TO PROBLEMS 
 
12.1 We can reason this from equation (12.4) because the usual OLS standard error is an 
estimate of / xSSTσ .  When the dependent and independent variables are in level (or log) form, 
the AR(1) parameter, ρ, tends to be positive in time series regression models.  Further, the 
independent variables tend to be positive correlated, so (xt − x )(xt+j − x ) – which is what 
generally appears in (12.4) when the {xt} do not have zero sample average – tends to be positive 
for most t and j.  With multiple explanatory variables the formulas are more complicated but 
have similar features. 
 If ρ < 0, or if the {xt} is negatively autocorrelated, the second term in the last line of (12.4) 
could be negative, in which case the true standard deviation of 1̂β  is actually less than 

/ xSSTσ . 
 
12.3 (i) Because U.S. presidential elections occur only every four years, it seems reasonable to 
think the unobserved shocks – that is, elements in ut – in one election have pretty much 
dissipated four years later.  This would imply that {ut} is roughly serially uncorrelated. 
 
 (ii) The t statistic for H0: ρ = 0 is −.068/.240 ≈ −.28, which is very small.  Further, the 
estimate ρ̂  = −.068 is small in a practical sense, too.  There is no reason to worry about serial 
correlation in this example. 
 
 (iii) Because the test based on ˆtρ  is only justified asymptotically, we would generally be 
concerned about using the usual critical values with n = 20 in the original regression.  But any 
kind of adjustment, either to obtain valid standard errors for OLS as in Section 12.5 or a feasible 
GLS procedure as in Section 12.3, relies on large sample sizes, too.  (Remember, FGLS is not 
even unbiased, whereas OLS is under TS.1 through TS.3.)  Most importantly, the estimate of ρ is 
practically small, too.  With ρ̂  so close to zero, FGLS or adjusting the standard errors would 
yield similar results to OLS with the usual standard errors. 
 
12.5 (i) There is substantial serial correlation in the errors of the equation, and the OLS standard 
errors almost certainly underestimate the true standard deviation in ˆ

EZβ .  This makes the usual 
confidence interval for βEZ and t statistics invalid. 
 
 (ii) We can use the method in Section 12.5 to obtain an approximately valid standard error.  
[See equation (12.43).]  While we might use g = 2 in equation (12.42), with monthly data we 
might want to try a somewhat longer lag, maybe even up to g = 12. 
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SOLUTIONS TO COMPUTER EXERCISES 
 
C12.1 Regressing ˆtu  on 1ˆtu − , using the 69 available observations, gives ρ̂ ≈ .292 and se( ρ̂ ) ≈ 
.118.  The t statistic is about 2.47, and so there is significant evidence of positive AR(1) serial 
correlation in the errors (even though the variables have been differenced).  This means we 
should view the standard errors reported in equation (11.27) with some suspicion. 
 
C12.3 (i) The test for AR(1) serial correlation gives (with 35 observations) ρ̂ ≈ –.110, se( ρ̂ )≈ 
.175.  The t statistic is well below one in absolute value, so there is no evidence of serial 
correlation in the accelerator model.  If we view the test of serial correlation as a test of dynamic 
misspecification, it reveals no dynamic misspecification in the accelerator model. 
 
 (ii) It is worth emphasizing that, if there is little evidence of AR(1) serial correlation, there is 
no need to use feasible GLS (Cochrane-Orcutt or Prais-Winsten). 
 
C12.5 (i) Using the data only through 1992 gives 
 
 demwins  = .441 − .473 partyWH + .479 incum + .059 partyWH ⋅gnews 
   (.107) (.354)  (.205)  (.036) 

      − .024 partyWH ⋅ inf 
    (.028) 

 n  =  20,   R2  =  .437,   2R  = .287. 
 
The largest t statistic is on incum, which is estimated to have a large effect on the probability of 
winning.  But we must be careful here.  incum is equal to 1 if a Democratic incumbent is running 
and –1 if a Republican incumbent is running.  Similarly, partyWH is equal to 1 if a Democrat is 
currently in the White House and –1 if a Republican is currently in the White House.  So, for an 
incumbent Democrat running, we must add the coefficients on partyWH and incum together, and 
this nets out to about zero. 
 The economic variables are less statistically significant than in equation (10.23).  The gnews 
interaction has a t statistic of about 1.64, which is significant at the 10% level against a one-sided 
alternative.  (Since the dependent variable is binary, this is a case where we must appeal to 
asymptotics.  Unfortunately, we have only 20 observations.)  The inflation variable has the 
expected sign but is not statistically significant. 
 
 (ii) There are two fitted values less than zero, and two fitted values greater than one. 
 
 (iii) Out of the 10 elections with demwins = 1, 8 of these are correctly predicted.  Out of the 
10 elections with demwins = 0, 7 are correctly predicted.  So 15 out of 20 elections through 1992 
are correctly predicted.  (But, remember, we used data from these years to obtain the estimated 
equation.) 
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 (iv) The explanatory variables are partyWH = 1, incum = 1, gnews = 3, and inf = 3.019.  
Therefore, for 1996, 
 

 demwins    =   .441  −  .473  +  .479  +  .059(3)  −  .024(3.019) ≈ .552. 
 
Because this is above .5, we would have predicted that Clinton would win the 1996 election, as 
he did. 
 
 (v) The regression of ˆtu  on 1ˆtu −  produces ρ̂  ≈ -.164 with heteroskedasticity-robust standard 
error of about .195.  (Because the LPM contains heteroskedasticity, testing for AR(1) serial 
correlation in an LPM generally requires a heteroskedasticity-robust test.)  Therefore, there is 
little evidence of serial correlation in the errors.  (And, if anything, it is negative.) 
 
 (vi) The heteroskedasticity-robust standard errors are given in [ ⋅ ] below the usual standard 
errors: 
 
 demwins   = .441   − .473 partyWH   + .479 incum  + .059 partyWH ⋅gnews 
  (.107) (.354) (.205) (.036) 
  [.086] [.301] [.185] [.030] 

      – .024 partyWH ⋅ inf 
    (.028) 
    [.019] 

 n  =  20,   R2  =  .437,   2R  = .287. 
 
In fact, all heteroskedasticity-robust standard errors are less than the usual OLS standard errors, 
making each variable more significant.  For example, the t statistic on partyWH ⋅gnews becomes 
about 1.97, which is notably above 1.64.  But we must remember that the standard errors in the 
LPM have only asymptotic justification.   With only 20 observations it is not clear we should 
prefer the heteroskedasticity-robust standard errors to the usual ones. 
 
C12.7 (i) The iterated Prais-Winsten estimates are given below.  The estimate of ρ is, to three 
decimal places, .293, which is the same as the estimate used in the final iteration of Cochrane-
Orcutt: 
 
 log( )chnimp    =  −37.08  +   2.94 log(chempi)  +   1.05 log(gas)  +   1.13 log(rtwex) 
  (22.78) (.63) (.98) (.51) 
 

− .016 befile6  −  .033 affile6  −  .577 afdec6 
 (.319) (.322) (.342) 

 
 n = 131,  R2 = .202 
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 (ii) Not surprisingly, the C-O and P-W estimates are quite similar.  To three decimal places, 
they use the same value of ρ̂  (to four decimal places it is .2934 for C-O and .2932 for P-W).  
The only practical difference is that P-W uses the equation for t = 1.  With n = 131, we hope this 
makes little difference. 
 
C12.9 (i) Here are the OLS regression results: 
 
  log( )avgprc   = −.073  −  .0040 t  −   .0101 mon  −   .0088 tues  +   .0376 wed  +  .0906 thurs 
  (.115) (.0014) (.1294) (.1273) (.1257) (.1257) 
 
  n = 97,  R2 = .086 
 
The test for joint significance of the day-of-the-week dummies is F = .23, which gives p-value = 
.92.  So there is no evidence that the average price of fish varies systematically within a week. 
 
 (ii) The equation is  
 
  log( )avgprc   =   −.920  −  .0012 t  −   .0182 mon  −   .0085 tues  +   .0500 wed  +  .1225 thurs 
  (.190) (.0014) (.1141) (.1121) (.1117) (.1110) 
 
  +  .0909 wave2  +   .0474 wave3 
  (.0218) (.0208) 
 
  n = 97,  R2 = .310 
 
Each of the wave variables is statistically significant, with wave2 being the most important.  
Rough seas (as measured by high waves) would reduce the supply of fish (shift the supply curve 
back), and this would result in a price increase.  One might argue that bad weather reduces the 
demand for fish at a market, too, but that would reduce price.  If there are demand effects 
captured by the wave variables, they are being swamped by the supply effects. 
 
 (iii) The time trend coefficient becomes much smaller and statistically insignificant.  We can 
use the omitted variable bias table from Chapter 3, Table 3.2 to determine what is probably going 
on.  Without wave2 and wave3, the coefficient on t seems to have a downward bias.  Since we 
know the coefficients on wave2 and wave3 are positive, this means the wave variables are 
negatively correlated with t.  In other words, the seas were rougher, on average, at the beginning 
of the sample period.  (You can confirm this by regressing wave2 on t and wave3 on t.) 
 
 (iv) The time trend and daily dummies are clearly strictly exogenous, as they are just 
functions of time and the calendar.  Further, the height of the waves is not influenced by past 
unexpected changes in log(avgprc). 
 
 (v) We simply regress the OLS residuals on one lag, getting ˆˆ ˆ.618,se( ) .081, 7.63.tρρ ρ= = =   
Therefore, there is strong evidence of positive serial correlation. 
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 (vi) The Newey-West standard errors are 2 3

ˆ ˆse( ) .0234 and se( ) .0195.wave waveβ β= =  Given the 
significant amount of AR(1) serial correlation in part (v), it is somewhat surprising that these 
standard errors are not much larger compared with the usual, incorrect standard errors.  In fact, 
the Newey-West standard error for 3

ˆ
waveβ is actually smaller than the OLS standard error. 

 
 (vii) The Prais-Winsten estimates are  
 
  log( )avgprc   =   −.658  −  .0007 t  +   .0099 mon  +   .0025 tues  +   .0624 wed  +  .1174 thurs 
  (.239) (.0029) (.0652) (.0744) (.0746) (.0621) 
 
  +  .0497 wave2  +   .0323 wave3 
  (.0174) (.0174) 
 
  n = 97,  R2 = .135 
 
The coefficient on wave2 drops by a nontrivial amount, but it still has a t statistic of almost 3.  
The coefficient on wave3 drops by a relatively smaller amount, but its t statistic (1.86) is 
borderline significant.  The final estimate of ρ is about .687. 
 
C12.11 (i) The average of 2ˆiu  over the sample is 4.44, with the smallest value being .0000074 
and the largest being 232.89.   
 
 (ii) This is the same as C12.4, part (ii): 
 
 2ˆiu  = 3.26 − .789 returnt-1 + .297 2

1treturn −  + residualt 
   (0.44)  (.196)  (.036) 

 n  =  689,  R2  =  .130. 
 
 (iii) The graph of the estimated variance function is 
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The variance is smallest when return-1 is about 1.33, and the variance is then about 2.74. 
 
 (iv) No. The graph in part (iii) makes this clear, as does finding that the smallest variance 
estimate is 2.74. 
 
 (v) The R-squared for the ARCH(1) model is .114, compared with .130 for the quadratic in 
return-1.  We should really compare adjusted R-squareds, because the ARCH(1) model contains 
only two total parameters.  For the ARCH(1) model, 2R  is about .112; for the model in part (ii), 

2R  = .128.  Therefore, after adjusting for the different df, the quadratic in return-1 fits better than 
the ARCH(1) model. 
 
 (vi) The coefficient on 2

2ˆtu −  is only .042, and its t statistic is barely above one (t = 1.09).  
Therefore, an ARCH(2) model does not seem warranted.  The adjusted R-squared is about .113, 
so the ARCH(2) fits worse than the model estimated in part (ii). 
 
C12.13 (i) The regression ˆtu  on 1ˆtu − , tunemΔ  gives a coefficient on 1ˆtu −  of .073 with t = .42. 
Therefore, there is very little evidence of first-order serial correlation.  
 
 (ii) The simple regression 2ˆ tu  on tunemΔ  gives a slope coefficient of about .452 with t = 
2.07, and so, at the 5% significance level, we find that there is heteroskedasticity. The variance 
of the error appears to be larger when the change in unemployment is larger. 
 
 (iii) The heteroskedasticity-robust standard error is about .223, compared with the usual OLS 
standard error of .182. So, the robust standard error is more than 20% larger than the usual OLS 
one. Of course, a larger standard error leads to a wider confidence interval for 1β . 
 


