Managerial Economics

Study Problems Chapter Ten

Name the following empirical specifications of production and cost functions:

 $TVC = aQ + bQ^2 + cQ^3$ a.

- $SMC = a + 2bO + 3cO^2$ b.
- c. $Q = aK^3L^3 + bK^2L^2$
- d. $AVC = a + bQ + cQ^2$
- e. $O = AL^3 + BL^2$
- What restrictions must be placed on the parameters in the empirical production and 2. cost functions in question 1 above?
- A firm estimates its long-run production function to be 3.

$$Q = -0.008K^3L^3 + 10K^2L^2$$

Suppose the firm employs 15 units of capital.

The equations for the product curves in the short run are:

AP = _____

- At _____ units of labor, marginal product of labor begins to diminish. b.
- At units of labor, average product of labor begins to diminish. c.
- Calculate the marginal product and average product of labor when 20 units of d. labor are employed.

 $MP_{L=20} =$ _____ $AP_{L=20} =$

A firm estimates its cubic production function of the following form 4.

$$Q = AL^3 + BL^2$$

and obtains the following estimation results:

DEPENDENT VARIABLE:	Q	R-SQUARE	F-RATIO	P-VALUE ON F	
OBSERVATIONS:	62	0.7032	142.175	0.0001	
VARIABLE		PARAMETER ESTIMATE	STANDARD ERROR	T-RATIO	P-VALUE
INTERCEPT					
L3		-0.050	0.013	-3.85	0.0003
L2		0.600	0.250	2.40	0.0195

The firm pays \$36 per unit for labor services.

a.	The estimated total, average, and marginal product functions are:						
	Q =						
	AP =						
	MP =						
b.	Are the parameters of the correct sign and are they significant? Discuss the p -values.						
c.	Average product reaches its maximum value at units of labor.						
d.	Average product reaches its maximum value at units of output.						
e.	At the output level for part d , $AVC = $ and $SMC = $						
f.	When labor usage is 7 units, $AVC = \$$ and $SMC = \$$.						

5. Consider a firm that estimates the following average variable cost function:

$$AVC = a + bQ + cQ^2$$

The computer printout for the regression analysis is:

DEPENDENT VARIABLE:	AVC	R-SQUARE	F-RATIO	P-VALUE ON F	
OBSERVATIONS:	16	0.9000	58.50	0.0001	
VARIABLE		PARAMETER ESTIMATE	STANDARD ERROR	T-RATIO	P-VALUE
INTERCEPT		75.00	25.00	3.00	0.0102
Q		-2.40	0.40	-6.00	0.0001
Q2		0.06	0.20	3.00	0.0102

- Determine whether the estimate values of the coefficients indicate a shaped AVC curve at the 5 percent level of significance.
- b. The marginal cost function associated with this AVC function is SMC =
- c. The total variable cost function associated with this function is TVC =
- d. AVC reaches its minimum value at $Q_m =$ _____.
- e. Minimum AVC = \$_____.

Answers

- 1. a. short-run cubic cost function
 - b. short-run cubic marginal cost function
 - e. long-run cubic production function
 - d. short-run cubic average variable cost function
 - e. short-run cubic production function
- 2. a. a > 0, b < 0, c > 0
 - b. same as part a
 - c. $A = a\overline{K}^3 < 0$ and $B = b\overline{K}^2 > 0$
 - d. same as part a
 - e. A < 0 B > 0
- 3. a. $TP = -0.008(15)^3 L^3 + 10(15)^2 L^2 = -27L^3 + 2,250L^2$ $AP = -27L^2 + 2,250L$ $MP = 3(-27)L^2 + 2(2,250)L = -81L^2 + 4,500L$
 - b. $L_m = -B/3A = -2{,}250/3(-27) = 27.78$ units of labor
 - c. $L_a = -B/2A = -2{,}250/2(-27) = 41.67$ units of labor
 - d. $MP_{L=20} = -81(20)^2 + 4,500(20) = 57,600$ $AP_{L=20} = -27(20)^2 + 2,250(20) = 34,200$
- 4. a. $Q = -0.05L^3 + 0.6L^2$ $AP = -0.05L^2 + 0.6L$ $MP = 3(-0.05)L^2 + 2(0.6)L = -0.15L^2 + 1.2L$
 - b. The signs of both parameters are correct: A is negative, B is positive. The p-values indicate significance at better than the 2 percent level for both parameter estimates.
 - e. $L_a = -B/2A = -0.6/-0.1 = 6$

AP reaches its maximum value when 6 units of labor are employed.

d. $Q = -0.05(6)^3 + 0.6(6)^2 = 10.8$

At 10.8 units of output, AP reaches its maximum value.

e. $AP_{max} = -0.05(6)^2 + 0.6(6) = 1.8 \text{ (or } AP_{max} = Q/L = 10.8/6 = 1.8)$ So, AVC = w/AP = 36/1.8 = \$20

Since AP = MP when AP is at its maximum value, AVC = SMC = \$20 at L = 6 and Q = 10.8.

- f. When L = 7, AP = 1.75 and MP = 1.05. Thus, AVC = 36/1.75 = \$20.57 and SMC = 36/1.05 = \$34.29.
- 5. a. The parameter restrictions are: a > 0, b < 0, and c > 0. In each case, the absolute value of the *t*-ratio is greater than the critical value of 2.160.
 - b. $SMC = 75 4.8Q + 0.18Q^2$
 - e. $TVC = 75Q 2.4Q^2 + 0.06Q^3$
 - d. $Q_m = -b/2c = 2.4/0.12 = 20$
 - f. $AVC_{min} = 75 2.4(20) + 0.06(20)^2 = 51$