Hydraulics 110401356

Shear stress: $\tau = \rho g(A/P)S_o$

Hydraulic radius: R = A/P

Chezy equation for velocity: $V = C \sqrt{R} \sqrt{S_o}$

Chezy coefficient: $C = \frac{1}{n} R^{1/6}$

Manning equation for velocity: $V = \frac{1}{n} R^{2/3} \sqrt{S_0}$

Manning equation for flow: $Q = \frac{1}{n}AR^{2/3}\sqrt{S_0}$

Flow rate: $Q = v \times A$

Circular channel flow area: $A = \left(\frac{\pi\theta}{180} - \sin\theta\right) \frac{D^2}{8}$ (θ in degrees)

Circular channel flow wet perimeter: $P = \frac{\pi \theta}{180} \frac{D}{2}$

Wide rectangular channel: R = h

Flow per unit width: q = Q/b

Manning *n* for composite section: $n_{avg} = (\sum_{i=1}^{n} P_i n_i^2 / P_{total})^{1/2}$

Best hydraulic section for rectangular channel: b = 2h

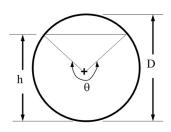
Best hydraulic section for trapezoidal channel: $b = 2h\sqrt{1 + s^2} - 2sh$

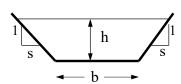
Best hydraulic section (Q_{max}) for circular channel: h = 0.95D

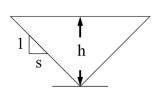
Best hydraulic section (V_{max}) for circular channel: h = 0.81D

Best hydraulic section for triangular channel: s = 1

Total energy (m): $E = z + \frac{p}{\rho g} + \frac{v^2}{2g}$


Specific energy (m): $E = h + \frac{v^2}{2g}$


At critical flow: $1 = \frac{Q^2 T_c}{g A_c^3}$


Froude #: $Fr^2 = \frac{Q^2T}{gA^3}$ or $Fr = \frac{v}{\sqrt{gh_m}}$

Mean hydraulic depth: $h_m = A/T$

For rectangular channel: $h_c = \left(\frac{q^2}{g}\right)^{1/3}$

Subcritical flow: $h > h_c$, $v < v_c$, $S_o < S_c$, Fr < 1

Critical flow: $h = h_c$, $v = v_c$, $S_o = S_c$, Fr = 1

Supercritical flow: $h < h_c$, $v > v_c$, $S_o > S_c$, Fr > 1


Broad crested weir: $Q = 1.705C_d \times b \times H^{3/2}$ and $C_d = Q/Q_{th}$

Jump height: $H = h_2 - h_1$

Conservation of momentum (Jump): $\rho Q v_1 + \bar{P}_1 A_1 = \rho Q v_2 + \bar{P}_2 A_2$

For rectangular channel, flow height after the jump: $h_2 = \frac{h_1}{2} \left(\sqrt{1 + 8Fr_1^2} - 1 \right)$

For rectangular channel, flow height before the jump: $h_1 = \frac{h_2}{2} \left(\sqrt{1 + 8Fr_2^2} - 1 \right)$

Non-uniform flow, slope of water surface: $\frac{\Delta h}{\Delta x} = \frac{S_0 - \bar{S}_f}{1 - Fr^2}$

The friction slope: $\overline{S}_f = \left(n \, \overline{v} / \overline{R}^{2/3} \right)^2$

Control points (CP): at transition from subcritical to supercritical, under sluice gate, above broad crested weir, at free over-fall, at dam site and at the entrance and exit of a lake.

Direct step method: $\Delta x = \frac{E_1 - E_2}{\bar{S}_f - S_0}$ and Δx is +ve with the flow direction

Standard step method: $E_2 = E_1 + (S_o - \overline{S_f}) \, \Delta x$ and $E_2 = h_2 + v_2^2/2g$

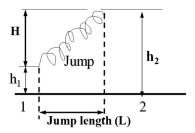
Darcy equation: $v = \sqrt{\frac{8g}{f}} \sqrt{R} \sqrt{S_f}$

Hydraulic grade line: $HGL = z + p/\rho g$

Pipe cross section area: $A = \frac{\pi}{4}D^2$

Energy loss (major loss) due to pipe friction: $h_L = \frac{fL}{D} \frac{v^2}{2g}$ or $h_L = \frac{fLQ^2}{12.1D^5}$

Minor energy loss due to sudden contraction: $h_L=0.5\,\frac{v_{after}^2}{2g}$

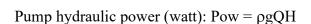

Minor energy loss due to sudden expansion: $h_L = \frac{(v_{before} - v_{after})^2}{2g}$

Minor energy loss due to pipe bend/fitting: $h_L = K \frac{v^2}{2g}$

Reynold #: Re = $\frac{vD}{v}$

Moody equation: $f = 0.0055 \left[1 + \left(20000 \frac{k_s}{D} + \frac{10^6}{Re} \right)^{1/3} \right]$

Hazen-William equation: $v = 0.849CR^{0.63}S_f^{0.54}$


V_{before} V_{after}

Pipe flow correction in network:
$$\Delta Q = \frac{-\sum h_L}{2\sum \frac{h_L}{Q}}$$

Head loss:
$$KQ|Q|$$
 and $K = \frac{fL}{12.1D^5}$

Flow through Venture meter:
$$Q = C_d A_1 \sqrt{\frac{2g(h_1 - h_2)}{(A_1/A_2)^2 - 1}}$$

Flow through small orifice:
$$Q = C_d A_1 \sqrt{\frac{2g(h_1 - h_2)}{(A_1/A_2)^2 - 1}}$$

Pump efficiency:
$$\varepsilon = \frac{\rho gQH}{Input power}$$

Specific speed for pump selection: Ns =
$$\frac{NQ^{1/2}}{H^{3/4}}$$

Pump typeNsCentrifugal
$$10-70$$
Mixed flow $70-170$ Axial flow 110 and above

Affinity laws (N is the variable):
$$\frac{Q_A}{N_A} = \frac{Q_B}{N_B}$$
 $\frac{H_A}{N_A^2} = \frac{H_B}{N_B^2}$ $\frac{Pow_A}{N_A^3} = \frac{Pow_B}{N_B^3}$

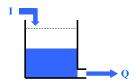
$$\frac{H_A}{N_A^2} = \frac{H_B}{N_B^2}$$

$$\frac{Pow_A}{N_A^3} = \frac{Pow_B}{N_B^3}$$

Affinity laws (D is the variable):
$$\frac{Q_A}{D_A^3} = \frac{Q_B}{D_B^3}$$
 $\frac{H_A}{D_A^2} = \frac{H_B}{D_B^2}$ $\frac{Pow_A}{D_A^5} = \frac{Pow_B}{D_B^5}$

$$\frac{H_A}{D_A^2} = \frac{H_B}{D_B^2}$$

$$\frac{Pow_A}{D_A^5} = \frac{Pow_B}{D_B^5}$$


Pump total head (only delivery pipe is considered): $H_t = H_s + \frac{f_d L_d Q^2}{12.1D_s^4}$

Net positive suction head: NPSH = $H_{atm} - H_{vap} - S_h - \Sigma h_{Lsuction}$

$H_{\text{vap}}(m)$	T(°C)
0	0
0.2	20
0.8	40

Change in reservoir volume: $\Delta V = Volume \text{ of } I - Volume \text{ of } Q$

If the input I = 0, the change in time:
$$\Delta t = \frac{-As}{Q} \Delta h$$

Time needed to empty reservoir of constant surface area through small orifice: $T = \frac{2As}{C_d a \sqrt{2g}} \left(H_1^{1/2} - H_2^{1/2} \right)$

Time needed to empty reservoir of constant surface area through weir:
$$T = \frac{2As}{(2/3)C_db\sqrt{2g}} \left(\frac{1}{H_2^{1/2}} - \frac{1}{H_1^{1/2}}\right)$$

Water surface profiles

	Zone1 : $h > h_c$ and h_N	Zone2 : h between h_c and h_N	Zone3 : $h < h_c$ and h_N
Horizontal slope	$\begin{array}{c} \bullet & h_N = \infty \\ \hline & None \\ \hline & h_c \end{array}$	$\begin{array}{c} H_2 \\ h_{N=\infty} \\ h_c \end{array}$	$\begin{array}{c c} h_{N=\infty} \\ h_c & H_3 \end{array}$
Mild slope	M ₁	h_{c} h_{c}	h _N h _c M ₃
Critical slope	C_1 $h_c = h_N$	C_2 (unstable) $h_c=h_N$	$h_c = h_N$ C_3
Steep slope	h_c h_N	h_c S_2 h_N	$\begin{array}{c c} h_c & h_N \\ \hline & S_3 \end{array}$
Adverse slope	None h _c	A_2 h_c	h_c

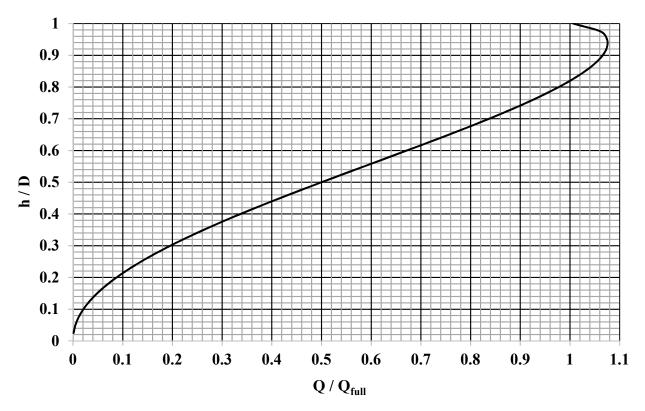


Fig. 1: Partial flow diagram for circular section.

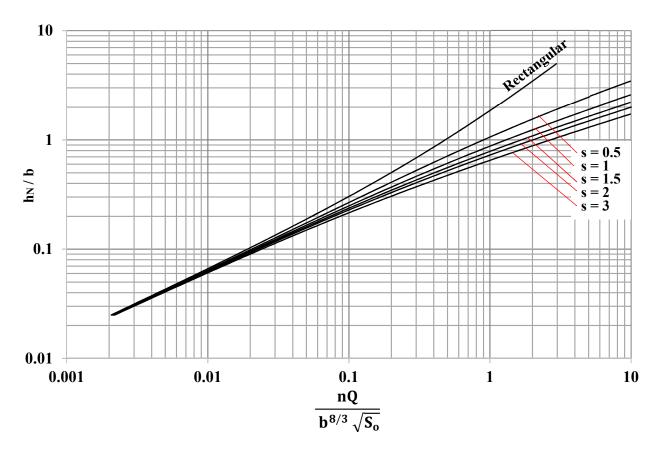


Fig. 2a: Normal depth for rectangular and trapezoidal sections.

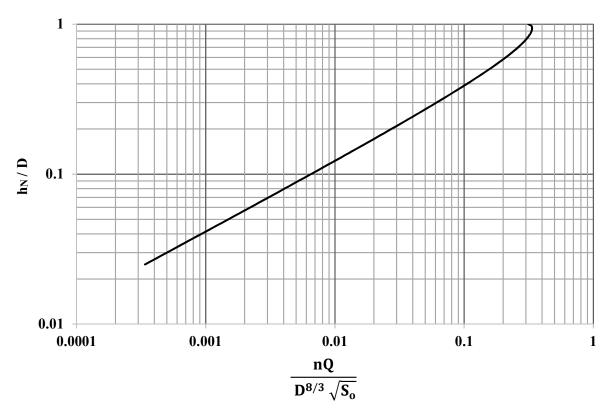


Fig. 2b: Normal depth for circular section.

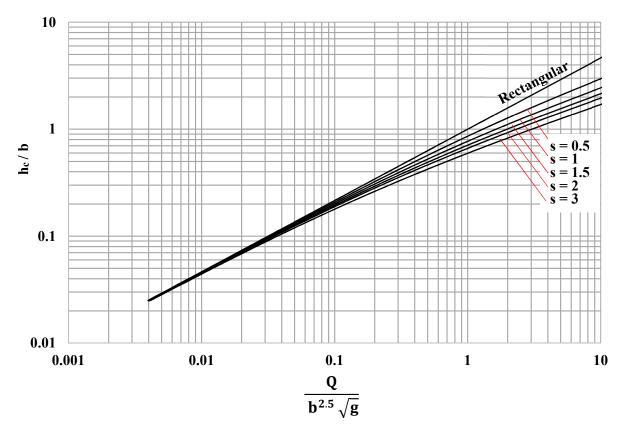


Fig. 3a: Critical depth for rectangular and trapezoidal sections.

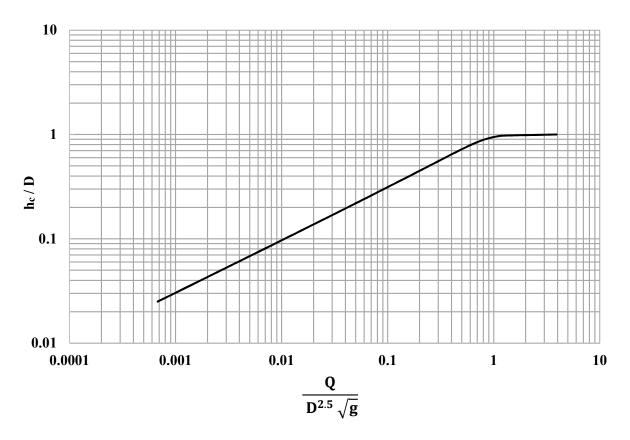


Fig. 3b: Critical depth for circular section.

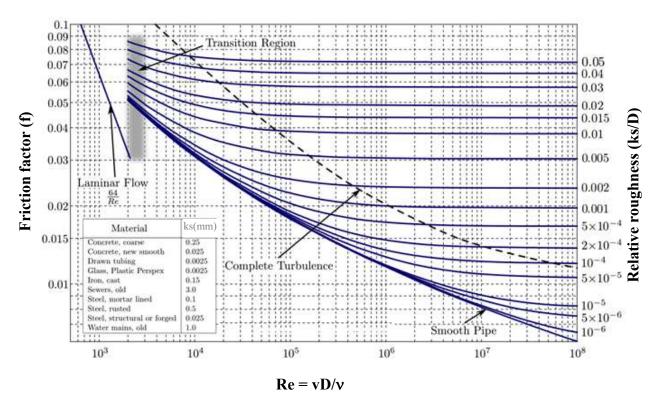


Fig.4: Moody diagram

Table 1. Unlined channel: stable side slope

Material	Side Slope (Horizontal:Vertical)
Rock	Nearly Vertical
Muck and peat soils	1/4:1
Stiff clay or earth with concrete lining	¹ / ₂ :1 to 1:1
Earth with stone lining or earth for large channels	1:1
Firm clay or earth for small ditches	11/2:1
Loose, sandy earth	2:1 to 4:1
Sandy loam or porous clay	3:1

Table2. Unlined channel: max permissible velocity

Channel Material	$V_{\rm max} ({\rm m/sec})$
Sand and Gravel	
Fine sand Coarse sand Fine gravel ^a	0.6 1.2 1.8
Earth	
Sandy silt Silt clay Clay	0.6 1.0 1.8