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1. Introduction: How Radicals Form 
and How They React

� Heterolysis

A B

ions

heterolytic

bond
cleavage

+A B
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� Homolysis

A B

radicals

homolytic

bond
cleavage

+A B

11A.A. Production of RadicalsProduction of Radicals

� Homolysis of covalent bonds

● Need heat or light (hν)

R O O R
heat

R O2

(alkoxyl radical)
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R O O R R O2

Cl Cl
hν

Cl2

(chlorine radical)

11B.B. Reactions of RadicalsReactions of Radicals

� Almost all small radicals are short-lived, 
highly reactive species

Cl + H CH3 Cl H + CH3
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Cl + H CH3 Cl H + CH3

R + C C C

R

C

2. Homolytic Bond Dissociation
Energies (DH°)

H + H HH

Cl + Cl ClCl

∆Ho = −436 kJ/mol Bond formation is 
an exothermic 
process.
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Cl + Cl ClCl

∆Ho = −243 kJ/mol

process.

H +H H H

Cl +Cl Cl Cl

∆Ho = +436 kJ/mol

∆Ho = +243 kJ/mol

Reactions in which 
only bond breaking 
occurs are always 
endothermic.



� The energies required to break 
covalent bonds homolytically are called 
homolytic bond dissociation 
energies, and they are usually 
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energies, and they are usually 
abbreviated by the symbol DH °

� Single-Bond Homolytic Dissociation 
Energies (DH°) at 25°C

Bond Broken kJ/mol

H–H 436

F–F 159
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F–F 159

Cl–Cl 243

Br–Br 193

I–I 151

� Single-Bond Homolytic Dissociation 
Energies (DH°) at 25°C

Bond Broken kJ/mol

H–F 570
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H–Cl 432

H–Br 366

H–I 298

� Single-Bond Homolytic Dissociation 
Energies (DH°) at 25°C

Bond Broken kJ/mol Bond Broken kJ/mol

H3C–H 440

H C–F 461
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H3C–F 461

H3C–Cl 352

H3C–Br 293 H3C–OH 387

H3C–I 240 H3C–OCH3 348

� Single-Bond Homolytic Dissociation 
Energies (DH°) at 25°C

Bond Broken kJ/mol Bond Broken kJ/mol

354 294Cl Br
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355 298

349 292

Cl

Cl

Br

Br

� Single-Bond Homolytic Dissociation 
Energies (DH°) at 25°C

Bond Broken kJ/mol Bond Broken kJ/mol

423 369H H
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413 465

400 474

375 547

H

H

Ph H

H

Ph H

C HHC



22A.A. Use Homolytic Bond DissociationUse Homolytic Bond Dissociation
Energies to Calculate Heats of ReactionEnergies to Calculate Heats of Reaction

H H Cl Cl+ H Cl2

(DH
o
= 436 kJ/mol)

(DH
o
= 243 kJ/mol)

(DH
o
= 432 kJ/mol) ☓ 2
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H H Cl Cl+ H Cl2

+679 kJ is required
to cleave 1 mol of

H2 bonds and
1 mol of Cl2 bonds

-864 kJ is evolved
in formation of

bonds in
2 mol of HCl

∆H
o

= −2 (432 kJ/mol) + (436 kJ/mol + 243 kJ/mol)
= −864 kJ/mol + 679 kJ/mol
= −185 kJ/mol
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� Overall, the reaction of 1 mol of H2 and 
1 mol of Cl2 to form 2 mol of HCl is 
exothermic

22B.B. Use Homolytic Bond DissociationUse Homolytic Bond Dissociation
Energies to Determine the RelativeEnergies to Determine the Relative
Stabilities of RadicalsStabilities of Radicals

+ H

∆Ho = +423 kJ/mol

H

Propyl radical
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∆Ho = +413 kJ/mol

H

+ H

(a 1o radical)

Isopropyl radical

(a 2o radical)

+ H

∆Ho = +400 kJ/mol

H

tert-Butyl radical

(a 3o radical)
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∆Ho = +422 kJ/mol

+ H

Isobutyl radical

(a 1o radical)

H

� Relative Stability

● Carbon radicals are considered to 
be electron deficient (similar to 
carbocations), thus electron 
donating groups stabilize radicals
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� 3
o
> 2

o
> 1

o

CH3

CCH3 CH3

H

CH H

H

CCH3 H

H

CCH3 CH3> > >

(positive inductive effect of alkyl groups stabilize radical)

3. The Reactions of Alkanes with
Halogens

� Alkanes have no functional group and 
are inert to many reagents and do not 
undergo many reactions

Ch. 10 - 18

� Halogenation of alkanes is one of the 
most typical free radical reactions 



� Alkanes react with molecular halogens 
to produce alkyl halides by a 
substitution reaction called radical 
halogenation

R H X2+ R X H X+
heat
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R H X2+ R X H X+
or

light (hν)

33A.A. Multiple Halogen SubstitutionMultiple Halogen Substitution

+ Cl2

H

CH H

H

+

H

CH Cl

H

Cl

CH Cl

H

Cl Cl

heat

or

light

Ch. 10 - 20

+ +

Cl

CCl Cl

H

+

Cl

CCl Cl

Cl

H Cl

33B.B. Lack of Chlorine SelectivityLack of Chlorine Selectivity

� Chlorination of most higher alkanes 
gives a mixture of isomeric monochloro 
products as well as more highly 
halogenated compounds

● Chlorine is relatively unselective; 
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● Chlorine is relatively unselective; 
it does not discriminate greatly 
among the different types of 
hydrogen atoms (primary, 
secondary, and tertiary) in an 
alkane

● Because alkane chlorinations 

Cl2
+ + + HClCl

light
Cl

Polichlorinated
products
(23%)

Isobutane Isobutyl
chloride
(48%)

tert-Butyl
chloride
(29%)
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● Because alkane chlorinations 
usually yield a complex mixture of 
products, they are not useful as 
synthetic methods when the goal is 
preparation of a specific alkyl 
chloride

● An exception is the halogenation of 
an alkane (or cycloalkane) whose 
hydrogen atoms are all equivalent. 
[Equivalent hydrogen atoms are 
defined as those which on 
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defined as those which on 
replacement by some other group 
(e.g., chlorine) yield the same 
compound.]

+ Cl2 + H Cl
heat

or
light

Cl

Neopentane

(excess)
Neopentyl

chloride

Ch. 10 - 24

● Bromine is generally less reactive 
toward alkanes than chlorine, and 
bromine is more selective in the 
site of attack when it does react



4. Chlorination of Methane:
Mechanism of Reaction

� Most radical reactions include 3 stages 
(steps)

(1) chain initiation

Ch. 10 - 25

(1) chain initiation

(2) chain propagation

(3) chain termination

� Mechanism of Free Radical Chlorination 
of CH4

(1) Chain initiation

Cl Cl
hν

(homolytic
2 Cl
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Cl Cl
(homolytic
cleavage)

2 Cl

● Radicals are created in this step

(2) Chain propagation
H

CH H

H

+H Cl   CH3

  CH + Cl Cl CH Cl +

(i)

(ii)

+Cl

Cl
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  CH3 + Cl Cl CH3Cl +(ii) Cl

● Repeating (i) and (ii) in a chain 
reaction provides the product CH3Cl 

● In chain propagation, one radical 
generates another and the process 
goes on 

(2) Chain propagation

Cl

● Other than CH3Cl, other  
chlorination products can be formed 
in the chain propagation step
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Cl

CH H

H

+H Cl   CH2Cl

  CH2Cl + Cl Cl CH2Cl2 +

(ia)

(iia)

+Cl

Cl

(2) Chain propagation
Cl

CH Cl

H

+H Cl   CHCl2

  CHCl2 + Cl Cl CHCl3 +

(ib)

(iib)

+Cl

Cl
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Cl

CH Cl

Cl

+H Cl   CCl3

  CCl3 + Cl Cl CCl4 +

(ic)

(iic)

+Cl

Cl

(3) Chain termination

Cl CH3  CH3

  CH3 +

+Cl

  CH3 H3C CH3

Ch. 10 - 30

CH2Cl2  CH2Cl+Cl

  CHCl2 +   CCl3 Cl2HC CCl3



(3) Chain termination

● Free radical reactions cannot be 
completed without chain 
termination 

● All radicals are quenched in this 
step 

Ch. 10 - 31

step 

● Radical reactions usually provide 
mixture of many different products 

● Synthesis of CH3Cl or CCl4 is 
possible using different amounts of 
reactants (CH4 and Cl2) 

e.g.:

CH4 (large excess)   +   Cl2

CH3Cl (mainly)
hν

Ch. 10 - 32

CH4 +   Cl2 (large excess)

CCl4 (mainly)
hν

5. Chlorination of Methane:
Energy Changes

� Chain initiation

Cl Cl 2 ClStep 1

(DHo = 243) o

Ch. 10 - 33

(DHo = 243)
∆Ho = +243 kJ/mol

� Chain propagation

Step 2 + ClH3C H H ClCH3 +

(DHo = 440) (DHo = 432)

Step 3 + ClH3C ClCl ClCH3 +

∆Ho = +8 kJ/mol
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Step 3 + ClH3C ClCl ClCH3 +

(DHo = 243) (DHo = 352)

∆Ho = −109 kJ/mol

� Chain termination

+ Cl H3C ClCH3

(DHo = 352)

+ H3C CH3CH3
o

CH3

∆Ho = −352 kJ/mol

∆Ho = −378 kJ/mol

Ch. 10 - 35

(DHo = 378)

+ Cl Cl Cl

(DHo = 243)

Cl ∆Ho = −243 kJ/mol

� The addition of the chain-propagation 
steps yields the overall equation for the 
chlorination of methane

+ ClH3C H H ClCH3 +

∆Ho = +8 kJ/mol

Ch. 10 - 36

+ ClH3C ClCl ClCH3 +

∆Ho = −109 kJ/mol

H3C H Cl Cl+ H3C Cl H Cl+

∆Ho = −101 kJ/mol



55A.A. The Overall FreeThe Overall Free--Energy ChangeEnergy Change

∆G o
= ∆H o

– T ∆S o

� For many reactions the entropy change 
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� For many reactions the entropy change 
is so small that the term T ∆S o

in the 
above expression is almost zero, and 
∆G o

is approximately equal to ∆H o

CH4 + Cl2 → CH3Cl + HCl

� 2 mol of the products are formed from the 
same number of moles of the reactants

● Thus the number of translational 
degrees of freedom available to 
products and reactants is the same

Ch. 10 - 38

products and reactants is the same

� CH3Cl is a tetrahedral molecule like CH4, and 
HCl is a diatomic molecule like Cl2
● This means that vibrational and 

rotational degrees of freedom available 
to products and reactants should also be 
approximately the same

� ∆S o
= +2.8 J K-1 mol-1

� At room temperature (298 K) the T∆S o

term is 0.8 kJ mol-1

CH4 + Cl2 → CH3Cl + HCl

Ch. 10 - 39

term is 0.8 kJ mol-1

� ∆H o
= −101 kJ mol-1

� ∆G o
= −102 kJ mol-1

55B.B. Activation EnergiesActivation Energies

� A low energy of activation means a reaction 
will take place rapidly; a high energy of 
activation means that a reaction will take 
place slowly

Chain initiation

Ch. 10 - 40

Chain initiation
Step 1 Cl2 → 2 Cl •

Chain propagation
Step 2 Cl • + CH4 → HCl + CH3

•

Step 3 Cl • + Cl2 → CH3Cl + Cl
•

Eact = +243 kJ/mol

Eact = +16 kJ/mol

Eact = ~8 kJ/mol

� Estimates of energies of activation
(1) Any reaction in which bonds are 

broken will have an energy of activation 
greater than zero. This will be true even 
if a stronger bond is formed and the 
reaction is exothermic. The reason: 
Bond formation and bond breaking do 

Ch. 10 - 41

Bond formation and bond breaking do 
not occur simultaneously in the 
transition state. Bond formation lags 
behind, and its energy is not all 
available for bond breaking

� Estimates of energies of activation
(2) Activation energies of endothermic 

reactions that involve both bond 
formation and bond rupture will be 
greater than the heat of reaction, ∆H o

+ ClH3C H H ClCH3 +

Ch. 10 - 42

+ ClH3C H H ClCH3 +

(DHo = 440) (DHo = 432)

+ BrH3C H H BrCH3 +

(DHo = 440) (DHo = 366)

∆H o
= +8 kJ/mol

Eact = +16 kJ/mol

∆H o
= +74 kJ/mol

Eact = +78 kJ/mol
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� Estimates of energies of activation
(3) The energy of activation of a gas-

phase reaction where bonds are broken 
homolytically but no bonds are formed 
is equal to ∆H o

2 ClCl Cl
o

∆H o
= +243 kJ/mol

E = +243 kJ/mol

Ch. 10 - 44

(DHo = 243)

∆

Eact = +243 kJ/mol

� Estimates of energies of activation
(4) The energy of activation for a gas-

phase reaction in which small radicals 
combine to form molecules is usually 
zero

2 CH3 H3C CH3
o

∆H o
= −378 kJ/mol

E = 0

Ch. 10 - 45

(DHo = 378)

∆ −

Eact = 0

55C.C. Reaction of Methane with OtherReaction of Methane with Other
HalogensHalogens

FLUORINATION

∆H o 

(kJ/mol)
Eact

(kJ/mol)

Chain initiation

Ch. 10 - 46

Chain initiation

F2 → 2 F • +159 +159

Chain propagation

F • + CH4 → HF + • CH3 −130 +5.0

• CH3 + F2 → CH3F + F
• −302 small

Overall ∆H o
= −432

CHLORINATION

∆H o 

(kJ/mol)
Eact

(kJ/mol)

Chain initiation

Cl2 → 2 Cl • +243 +243

Ch. 10 - 47

Chain propagation

Cl • + CH4 → HCl + • CH3 +8 +16

• CH3 + Cl2 → CH3Cl + Cl
• −109 small

Overall ∆H o
= −101

BROMINATION

∆H o 

(kJ/mol)
Eact

(kJ/mol)

Chain initiation

Br2 → 2 Br • +193 +193

Ch. 10 - 48

Chain propagation

Br • + CH4 → HBr + • CH3 +74 +78

• CH3 + Br2 → CH3Br + Br
• −100 small

Overall ∆H o
= −26



IODINATION

∆H o 

(kJ/mol)
Eact

(kJ/mol)

Chain initiation

I2 → 2 I • +151 +151

Ch. 10 - 49

Chain propagation

I • + CH4 → HI + • CH3 +142 +140

• CH3 + I2 → CH3I + I
• −89 small

Overall ∆H o
= +53

6. Halogenation of Higher Alkanes

� Mechanism for radical halogenation of 
ethane

Cl2 2 ClStep 1

Chain initiation
light

or heat

Ch. 10 - 50

+   ClStep 2

Chain propagation

Cl Cl

HCH3CH2 +CH3CH2 H  Cl

+CH3CH2 CH3CH2 Cl +   ClStep 3

or heat

Chain termination

+CH3CH2 CH3CH2 ClCl

Ch. 10 - 51

Cl Cl+   Cl

+CH3CH2 CH3CH2 CH2CH3CH3CH2

Cl

Cl

Cl

Cl2

light

25oC

+

Cl

Cl

Cl2

light

25oC

+

Ch. 10 - 52

25oC

Cl

Cl2

300oC

+Cl

Cl

Cl
+ +

66A.A. Selectivity of BromineSelectivity of Bromine

� Bromination is slower than chlorination 
because the 1st propagation step is 
more endothermic (overall still 
exothermic).  As a result, bromination 
is more selective than chlorination

Ch. 10 - 53

is more selective than chlorination

Br2H Br
H

Br
+ +

hν

(99%) (< 1%)

� Mechanism

Br Br

H
Br H Br

hν
2  Br

+

Ch. 10 - 54

H
Br H Br

H

H

(major; 3o radical more stable)

(minor; 1o radical less stable)

+



� Mechanism

Br

Br

(major)

Ch. 10 - 55

Br

H H

Br
(minor)

Br

Brhν

127oC

+
Br2

(trace) (> 99%)

Ch. 10 - 56

Cl

Clhν

25oC

+

(63%) (37%)

Cl2

7. The Geometry of Alkyl Radicals

R C
R

p-orbital

Ch. 10 - 57

� Planar, similar to carbocation

R C
R

sp2 hybridized

8. Reactions That Generate
Tetrahedral Chirality Centers

Cl
*

achiral
+

Cl

Pentane

Cl2

1-Chloropentane (  )-2-Chloropentane

Ch. 10 - 58

Pentane
(achiral)

1-Chloropentane
(achiral)

(  )-2-Chloropentane
(a racemic form)

+

3-Chloropentane

(achiral)

Cl

+ Cl+ Cl

� The Stereochemistry of chlorination at 
C2 of pentane

CH3CH2CH2CH2CH3

C2

Cl

CH

Ch. 10 - 59

Cl

CH2CH2CH3

CH3

H Cl

H3CH2CH2C

H3C

H

(R)-2-Chloropentane
(50%)

+ Cl+ Cl

(S)-2-Chloropentane
(50%)

enantiomers

CH3

C

H CH2CH2CH3

trigonal planar

radical (achiral)

(b)

Cl2

(a)

Cl2

hν

Cl2

Cl

2 3

H H

88A.A. Generation of a Second ChiralityGeneration of a Second Chirality
Center in a Radical HalogenationCenter in a Radical Halogenation

diastereomers
Cl

2 3

Cl

+

Cl

2 3

Cl

Ch. 10 - 60

(S)-2-
Chloropentane

(chiral)

H H

trigonal planar

Cl

H

(2S,3S)-
Dichloropentane

(chiral)

Cl

Cl2from bottom

face

(2S,3R)-
Dichloropentane

(chiral)

Cl

Cl2from top

face



� Note that other products are formed, 
of course, by chlorination at other 
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of course, by chlorination at other 
carbon atoms

9. Radical Addition to Alkenes: The 
Anti-Markovnikov Addition of 

Hydrogen Bromide
� Anti-Markovnikov addition of HBr to 

alkenes – peroxide effect

● Addition of HBr to alkenes usually 

Ch. 10 - 62

● Addition of HBr to alkenes usually 
follows Markovnikov’s rule

Br Br
HBr

H Hnot

● In the presence of peroxides (RO–
OR), anti-Markovnikov addition is 
observed

H H
HBr

Br Brnot

Ch. 10 - 63

H H
HBr

Br Brnot

RO OR
heat

� Mechanism

● Via a radical mechanism

RO OR 2  RO
heat

(homolytic cleavage)

Ch. 10 - 64

H Br ROH BrRO

(homolytic cleavage)

(chain initiation)

+ +

Br

Br +

Br

+not Br

(3
o
radical, more stable)

Ch. 10 - 65

+not Br

Br

H Br

Br

H

Br++

(1
o
radical, less stable)

� Synthetic application

HBr

Br

(via more stable

2o carbocation)

Ch. 10 - 66

RO-OR
heat

HBr Br

2  carbocation)

(via more stable

2o radical)



� Hydrogen bromide is the only hydrogen 
halide that gives anti-Markovnikov 
addition when peroxides are present

� Hydrogen fluoride, hydrogen chloride, 
and hydrogen iodide do not give anti-

Ch. 10 - 67

and hydrogen iodide do not give anti-
Markovnikov addition even when 
peroxides are present

10. Radical Polymerization of
Alkenes: Chain-Growth Polymers

CH2 CH2 CH2CH2

peroxide

heat

(monomer)

n

n

(polymer)

Ch. 10 - 68

(monomer) (polymer)

� Via radical mechanism

RO OR
∆

2  RO(i)

H2C CH2 RO CH2CH2

RO CH CH H C CH

RO +

+(iii)

(ii)

Ch. 10 - 69

RO CH2CH2 H2C CH2

RO CH2CH2CH2CH2

RO CH2CH2CH2CH2 H2C CH2

RO CH2CH2 CH2CH2

+(iii)

(iv) +

2

RO CH2CH2 CH2CH2OR

RO CH2CH2 CH2CH2 OR(v)
2

n

+

Ch. 10 - 70

RO CH2CH2 OR

RO CH2CH2 CH2CH2

RO CH2CH2 CH2CH2

x

(vi)
n

n
+

� Other common polymers

CH2 CHCH3 CH2CH

CH2 CHCl

CH3

CH2CH
ROOR

n

ROOR

∆
n

nPolypropylene

Ch. 10 - 71

CH2 CHCl

CF2 CF2 CF2CF2

CH2CH

Cl

n
ROOR

∆ n

∆
n

nPVC (plumbing polymer)

Polytetrafluroethene (Teflon)

� Other common polymers

CH2C

COOMe

CH3

CH2 C

COOMe

CH3
ROOR

∆

n

n

Polymethyl methacrylate
(windshield, contact lenses) 
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CH2 CHPh CH2CH

Ph

ROOR

∆

n

n

(windshield, contact lenses) 

Polysterene (styrofoam,
coffee cup, etc.) 
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���� END OF CHAPTER 10 ����


