Chapter 14 Aromatic Compounds

Nomenclature of Benzene Derivatives

➔ Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix

➔ For other monosubstituted benzenes, the presence of the substituent results in a new parent name

→ When two substituents are present their position may be indicated by the prefixes ortho, meta, and para (o, m and p) or by the corresponding numerical positions

CH₃

→ Dimethyl substituted benzenes are called xylenes

- → Numbers must be used as locants when more than two substituents are present
 - P The lowest possible set of numbers should be given to the substituents
 - P The substituents should be listed in alphabetical order
 - If one of the substituents defines a parent other than benzene, this substituent defines the parent name and should be designated position 1

1,2,3-Trichlorobenzene

1,2,4-Tribromobenzene (*not* 1,3,4-tribromobenzene)

3,5-Dinitrobenzoic acid

2,4-Difluorobenzenesulfonic acid

\rightarrow The C₆H₅- group is called phenyl when it is a substituent

- $\ref{eq:phenyl}$ Phenyl is abbreviated Ph or Φ
- A hydrocarbon with a saturated chain and a benzene ring is named by choosing the larger structural unit as the parent
- If the chain is unsaturated then it must be the parent and the benzene is then a phenyl substituent

Butylbenzene

(Z)-2-Phenyl-2-butene

C₆H₅ **2-Phenylheptane**

→ The phenylmethyl group is called a benyl (abbreviated Bz)

Benzyl chloride (phenylmethyl chloride or BzCl)

Chapter 14

Reactions of Benzene

Even though benzene is highly unsaturated it does not undergo any of the regular reactions of alkenes such as addition or oxidation

- → Benzene can be induced to react with bromine if a Lewis acid catalyst is present however the reaction is a substitution and not an addition
 - Benzene produces only one monobrominated compound, which indicates that all
 6 carbon-hydrogen bonds are equivalent in benzene

$$C_{6}H_{6} + Br_{2} \xrightarrow{\text{FeBr}_{3}} C_{6}H_{5}Br + HBr \qquad \text{Observed}$$

$$C_{6}H_{6} + Br_{2} \xrightarrow{\times} C_{6}H_{6}Br_{2} + C_{6}H_{6}Br_{4} + C_{6}H_{6}Br_{6} \qquad \text{Not observed}$$

The Kekule Structure for Benzene

Kekule was the first to formulate a reasonable representation of benzene

The Kekulé formula for benzene

- The Kekule structure suggests alternating double and single carbon-carbon bonds
 - Based on the Kekule structure one would expect there to be two different 1,2dibromobenzenes but there is only one
 - Kekule suggested an equilibrium between these compounds to explain this observation but it is now known no such equilibrium exists

Chapter 14

The Stability of Benzene

- → Benzene is much more stable than would be expected based on calculations for "cyclohexatriene"
 - A reasonable prediction for the heat of hydrogenation of hypothetical cyclohexatriene is -360 kJ mol⁻¹ (3 times that of cyclohexene, -120 kJ mol⁻¹)
 - The experimentally determined heat of hydrogenation for benzene is -280 mol⁻¹, 152 kJ mol⁻¹ more stable than hypothetical cyclohexatriene
 - P This difference is called the resonance energy

Modern Theories of the Structure of Benzene

• The Resonance Explanation of the Structure of Benzene

→ Structures I and II are equal resonance contributors to the real structure of benzene

- Benzene is particularly stable because it has two equivalent and important resonance structures
- Each carbon-carbon bond is 1.39 Å, which is between the length of a carboncarbon single bond between sp² carbons (1.47Å) and a carbon-carbon double bond (1.33 Å)
- ♥ Often the hybrid is represented by a circle in a hexagon (III)

• The Molecular Orbital Explanation of the Structure of Benzene

- → The carbons in benzene are sp² hybridized with p orbitals on all 6 carbons (a)
 - \ref{P} The *p* orbitals overlap around the ring (b) to form a bonding molecular orbital with electron density above and below the plane of the ring (c)

Chapter 14

• Huckel's Rule: The $4n+2\pi$ Electron Rule

- → Planar monocyclic rings with a continuous system of *p* orbitals and $4n + 2\pi$ electrons are aromatic (n = 0, 1, 2, 3 etc)
 - Aromatic compounds have substantial resonance stabilization
 - P Benzene is aromatic: it is planar, cyclic, has a *p* orbital at every carbon, and 6 π electrons (n=1)
- → There is a polygon-and-circle method for deriving the relative energies of orbitals of a system with a cyclic continuous array of p orbitals
 - A polygon corresponding to the ring is inscribed in a circle with one point of the polygon pointing directly down
 - \ref{P} A horizontal line is drawn where vertices of the polygon touch the circle each line corresponds to the energy level of the π MOs at those atoms
 - A dashed horizontal line half way up the circle indicates the separation of bonding and antibonding orbitals

→ Benzene has 3 bonding and 3 antibonding orbitals

All the bonding orbitals are full and there are no electrons in antibonding orbitals; benzene has a closed shell of delocalized electrons and is very stable

- Cyclooctatetraene has two nonbonding orbitals each with one electron
 - P This is an unstable configuration; cyclooctatetraene adopts a nonplanar conformation with localized π bonds to avoid this instability

• The Annulenes

→ Annulenes are monocyclic compounds with alternating double and single bonds

- Annulenes are named using a number in brackets that indicates the ring size
- P Benzene is [6]annulene and cyclooctatetraene is [8]annulene
- $\ref{eq: An annulene is aromatic if it has 4n+2\pi electrons and a planar carbon skeleton$

\rightarrow The [14]and [18]annulenes are aromatic (4n+2, where n= 3,4)

P The [16] annulene is not aromatic

→ The [10]annulenes below should be aromatic but none of them can be planar

None is aromatic because none is planar.

→ Cyclobutadiene is a [4]annulene and is not aromatic

- NMR Spectroscopy: Evidence for Electron Delocalization in Aromatic Compounds
 - → When benzene is placed in a strong magnetic field a π -electron ring current is induced which reinforces the applied magnetic field at the location of the protons
 - $\ref{eq:product}$ The net effect is that the protons of benzene are highly deshielded (their signal is a singlet at δ 7.27)

- → Generally protons at the periphery of aromatic compounds are highly deshielded
 - P Deshielding of these protons is physical evidence for aromaticity

The ring current of aromatic systems also provides regions of great sheilding

- P In large annulenes the internal protons tend to be highly sheilded
- P In [18]annulenes the protons along the outside of the ring (pink) appear at δ 9.3 whereas those on the inside of the ring (blue) appear at δ -3.0 (very highly shielded)

• Aromatic lons

→ Cyclopentadiene is unusually acidic ($_{p}K_{a}$ = 16) because it becomes the aromatic cyclopentadienyl anion when a proton is removed

𝔅 Cyclopentadienyl anion has 6 π electrons in a cyclic, continuous π-electron system, and hence follows the 4n + 2 rule for aromaticity

- → Cycloheptatriene is not aromatic because its π electrons are not delocalized around the ring (the sp³-hybridized CH₂ group is an "insulator")
 - P Lose of hydride produces the aromatic cycloheptatrienyl cation (tropylium cation)

17

• Aromatic, Antiaromatic, and Nonaromatic Compounds

→ A comparison of cyclic annulenes with their acyclic counterparts provides a measures of the stability conferred by aromaticity

- P If the ring has lower π -electron energy than the open chain, then it is <u>aromatic</u>
- P If the ring has the same π -electron energy as the open chain, then it is <u>nonaromatic</u>
- P If the ring has higher π -electron energy than the open chain, then it is <u>antiaromatic</u>

→ Benzene and cylcopentadientl anion are aromatic

- → Cyclobutadiene is antiaromatic
 - P Cyclooctatetraene, if it were planar, would be antiaromatic

Chapter 14

- Other Aromatic Compounds
 - Benzenoid Aromatic Compounds
 - ➔ Polycyclic benzenoid aromatic compounds have two or more benzene rings fused together

→ Naphthalene can be represented by three resonance structures

- **P** The most important resonance structure is shown below
- Υ Calculations show that the 10 π electrons of napthalene are delocalized and that it has substantial resonance energy

- → Pyrene has 16 π electrons, a non-Huckel number, yet is known to be aromatic
 - P Ignoring the central double bond, the periphery of pyrene has 14π electrons, a Huckel number, and on this basis it resembles the aromatic [14]annulene

[14]Annulene

trans-15,16-Dimethyldihydropyrene

Chapter 14

• Nonbenzenoid Aromatic Compounds

- → Nonbenzenoid aromatic compounds do not contain benzene rings
 - Examples are cyclopentadienyl anion and the aromatic annulenes (except [6] annulene)
- → Azulene has substantial resonance energy and also substantial separation of charge, as shown in the electrostatic potential map

Azulene

• Fullerenes

- → Buckminsterfullerene is a C₆₀ compound shaped like a soccer ball with interconnecting pentagons and hexagons
 - P Each carbon is *sp*² hybridized and has bonds to 3 other carbons
 - Buckminsterfullerene is aromatic
- \rightarrow Analogs of "Buckyballs" have been synthesized (*e.g.* C₇₀)

Heterocyclic Aromatic Compounds

- → Heterocyclic compounds have an element other than carbon as a member of the ring
- → Example of aromatic heterocyclic compounds are shown below
 - Numbering always starts at the heteroatom

\rightarrow Pyridine has an *sp*² hybridized nitrogen

- P The *p* orbital on nitrogen is part of the aromatic π system of the ring
- P The nitrogen lone pair is in an sp^2 orbital orthogonal to the *p* orbitals of the ring; these electrons are not part of the aromatic system
- P The lone pair on nitrogen is available to react with protons and so pyridine is basic

Chapter 14

- → The nitrogen in pyrrole is sp^2 hybridized and the lone pair resides in the p orbital
 - P This p orbital contains two electrons and participates in the aromatic system
 - The lone pair of pyrrole is part of the aromatic system and not available for protonation; pyrrole is therefore not basic

➔ In furan and thiophene an electron pair on the heteroatom is also in a p orbital which is part of the aromatic system

Spectroscopy of Aromatic Compounds

• ¹H NMR Spectra

- → Protons of benzene derivatives are highly deshielded and appear in the region δ 6.0 to δ 9.5
 - A ring current is induced in the benzene ring that reinforces the applied magnetic field in the region of the protons in benzene
 - In large annulenes protons pointing into the ring are highly sheilded

• ¹³C NMR Spectra

- \rightarrow Aromatic carbons generally appear in the δ 100-170 region
 - **P** DEPT spectra will show these carbons to have one or no protons attached

→ Example : the spectrum of 4-*N*,*N*-diethylaminobenzaldehyde

P The assignment of carbons (d) and (c) is possible because carbons (d) should have higher electron density than carbons (c), based on resonance structures

Chapter 14

→ Given a molecular formula or mass spectrometric data,¹³C NMR can be used to recognize compounds with high symmetry

P The spectrum below corresponds to the last isomer which can have only two peaks

• Infrared Spectra of Substituted Benzenes

→ Benzene derivatives show several characteristic frequencies

- Stretching motions of the ring give bands at 1450-1600 cm⁻¹ and two bands near 1500 and 1600 cm⁻¹
- ➔ Monosubstituted benzenes show two strong absorptions at 690-710 cm⁻¹ and 730-770 cm⁻¹

→ Disubstituted benzenes show the following absorptions

• Ultraviolet-Visible Spectra of Aromatic Compounds

→ Benzene derivatives give an absorption band of moderate intensity near 205 nm and a less intense band at 250-275 nm

• Mass Spectra of Aromatic Compounds

- → The major ion in the mass spectrum of alkyl benzenes is m/z 91, which corresponds to a benzyl cation (C₆H₅CH₂⁺), which rearranges to a tropylium ion (C₇H₇⁺)
- → Another common ion is the phenyl cation ($C_6H_5^+$)