EXAMPLE 14-6

In a set of spur gears, a 300-Brinell 18-tooth 16-pitch 20° full-depth pinion meshes with a 64-tooth gear. Both gear and pinion are of grade 1 through-hardened steel. Using $\beta = -0.023$, what hardness can the gear have for the same factor of safety?

Solution

For through-hardened grade 1 steel the pinion strength $(S_t)_P$ is given in Fig. 14-2:

$$(S_t)_P = 77.3(300) + 12\,800 = 35\,990 \text{ psi}$$

From Fig. 14–6 the form factors are $J_P=0.32$ and $J_G=0.41$. Equation (14–44) gives

$$(S_t)_G = 35\,990 \left(\frac{64}{18}\right)^{-0.023} \frac{0.32}{0.41} = 27\,280 \text{ psi}$$

Use the equation in Fig. 14-2 again.

Answer

$$(H_B)_G = \frac{27\ 280 - 12\ 800}{77.3} = 187$$
 Brinell

EXAMPLE 14-7 For $\beta = -0.056$ for a through-hardened steel, grade 1, continue Ex. 14-6 for wear.

Solution

From Fig. 14-5,

$$(S_c)_P = 322(300) + 29100 = 125700 \text{ psi}$$

From Eq. (14-45),

$$(S_c)_G = (S_c)_P \left(\frac{64}{18}\right)^{-0.056} = 125700 \left(\frac{64}{18}\right)^{-0.056} = 117100 \text{ psi}$$

Answer

$$(H_B)_G = \frac{117\,100 - 29\,200}{322} = \underline{273}$$
 Brinell

which is slightly less than the pinion hardness of 300 Brinell.